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Abstract

Digital mental health (DMH) interventions, such as text-
message-based lessons and activities, offer immense poten-
tial for accessible mental health support. While these inter-
ventions can be effective, real-world experimental testing can
further enhance their design and impact. Adaptive experi-
mentation, utilizing algorithms like Thompson Sampling for
(contextual) multi-armed bandit (MAB) problems, can lead
to continuous improvement and personalization. However, it
remains unclear when these algorithms can simultaneously
increase user experience rewards and facilitate appropriate
data collection for social-behavioral scientists to analyze with
sufficient statistical confidence. Although a growing body
of research addresses the practical and statistical aspects of
MAB and other adaptive algorithms, further exploration is
needed to assess their impact across diverse real-world con-
texts. This paper presents a software system developed over
two years that allows text-messaging intervention compo-
nents to be adapted using bandit and other algorithms while
collecting data for side-by-side comparison with traditional
uniform random non-adaptive experiments. We evaluate the
system by deploying a text-message-based DMH intervention
to 1100 users, recruited through a large mental health non-
profit organization, and share the path forward for deploying
this system at scale. This system not only enables applica-
tions in mental health but could also serve as a model testbed
for adaptive experimentation algorithms in other domains.

Introduction
Enhancing digital mental health interventions can contribute
significantly to improved well-being and support in today’s
society (Boardman 2011). The global prevalence of men-
tal health problems increased by an unprecedented 25%
in 2020, the first year of the COVID-19 pandemic. This
increased prevalence and disruptions to traditional mental
health care emphasized preexisting gaps in access to sup-
port. Before, during, and after the pandemic, many cannot
access adequate mental health support and are increasingly
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turning to DMH tools (Torous et al. 2020). There is an op-
portunity for AI to help address these challenges and en-
hance mental health support across various populations (Ku-
mar et al. 2023; Malgaroli et al. 2023).

Digital Mental Health (DMH) interventions hold promise
in extending the availability of support for individuals as
they take steps to manage their mental health. Automated
messaging is a central component of many DMH interven-
tions as a modality for delivering support and information.
However, messaging interventions typically deliver the same
content across users despite the users’ varied needs. This
in turn reduces the relevance of such messages as well as
compromises engagement and effectiveness. This is prob-
lematic because while engagement with interventions is not
sufficient, it is necessary to benefit users. Moreover, build-
ing, optimizing, and evaluating multicomponent interven-
tions is a multi-stage process that is complex and requires
data-driven decisions from experts (Collins, Murphy, and
Strecher 2007).

To address these challenges, we developed a system for
adaptive experimentation to improve people’s engagement
with text messages providing a mental health intervention,
using Multi-Armed Bandit (MAB) algorithms. The sys-
tem was built in partnership with Mental Health America
(MHA)1, a large non-profit organization dedicated to pro-
moting mental health and preventing mental illness through
advocacy, education, research, and services. The system
supports an eight-week DMH intervention in which users
receive various contents via text messages to help manage
their mental health (see Figure 1). To continually test out im-
provements, our software system instruments components of
the text messages to function like intelligent agents that test
out different actions (arms), by using MAB algorithms to
conduct adaptive experiments.

The purpose of using this system is twofold:

• First, we are able to run algorithms in a real-world mental
health setting to optimize efficacy, as has been done in

1https://mhanational.org/
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Figure 1: Schematic representation of an example sequence of messages a user could receive during days Di, where Di is any
random day within the 8-week-long intervention when the user receives a message. ‘Mood’ and ‘Energy’ during each day Di
represent a subset of contexts describing the user during that particular day, and ‘Reward’ indicates a response from the user to
the question “How helpful were these messages? Reply with a number 1 (not at all helpful) to 5 (very helpful)” after receiving
the messages during the day. The messages are composed of three modular components in a 2 (Rationale: present vs absent) x
2 (Link: present vs absent) x 4 (Interaction type: 4 options) factorial design.

product development.

• Second, this system allows us to understand how well
the results of such algorithms can be analyzed by clinical
scientists with statistical rigor.

For example, consider an Action (experimental) variable
that is testing whether providing a rationale for using a par-
ticular psychological strategy impacts the Reward (outcome)
– a measure of message helpfulness. The impact of the Ac-
tion variable on the Reward may depend on contextual vari-
ables, such as self-reported Mood. Domain scientists, like
clinical psychology researchers, may want to analyze such
data to understand how the Action variable impacts the Re-
ward, and how that impact is mediated by covariates or con-
textual variables like Mood.

Traditional experiments with uniform random assignment
generate data that can be used to provide answers to these
questions. However, traditional experiments do not dynam-
ically provide a better user experience by rapidly using ex-
isting data to inform what a user will receive in the future.
Using the most fundamental formulation of exploration-
exploitation tradeoffs, (contextual) MAB algorithms allow
for such a dynamic, adaptive experimental design. This can
have the benefit of increasing the probability that users are
assigned to actions that work best for them, as well as the
benefit of decreasing the probability that users receive bur-
densome or ineffective actions.

However, there might be a trade-off between collecting
data to answer domain scientist questions and using data to
try to optimize for users (Yao et al. 2021). For example, re-
search has suggested that there may be biases in estimates of

arm means, increased false positive rates, and reduced statis-
tical power. Our system not only enables the use of contex-
tual MAB algorithms to optimize for users, but also provides
a testbed for evaluating how different scenarios can impact
false positive rates, statistical power, and reward maximiza-
tion.

Related Work
Digital Mental Health and Text-Message Based
Interventions
Digital mental health (DMH) interventions provide a solu-
tion for narrowing the service provision gap, wherein the
need for mental health support far outweighs the availability
of traditional care (Gan et al. 2021). By utilizing tools like
computers and smartphones, psychological treatment can
become widely accessible. The majority of Americans own
smartphones, and DMH interventions using this modality al-
low users to customize how they wish to receive and engage
with mental health support. Previous work has found DMH
interventions for depression to be effective across random-
ized control trials (Firth et al. 2017). However, user engage-
ment levels with DMH interventions are low, barring adop-
tion into the real world (Gan et al. 2021). Text messaging as
a modality has proven to be effective in promoting behavior
change. Using automated messaging, short content that is re-
peatedly delivered throughout the day can lay the foundation
for a larger behavior change process (Abroms et al. 2015).
Further, automated messaging has been successful in pro-
moting and maintaining positive mental health (Armanasco
et al. 2017).
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Adaptive Experiments and Multi-Armed Bandit
Algorithms
Contextual MAB algorithms are one solution for adaptive
experiments. These algorithms base the probability of as-
signment on previous data, ensuring that more users are ex-
posed to more effective conditions, and fewer users are ex-
posed to less effective conditions (Li et al. 2010). Bandit
algorithms have been extensively applied in real-world set-
tings to tackle the exploration-exploitation dilemma in se-
quential decision-making (Fouché, Komiyama, and Böhm
2019; Zhan et al. 2021). However, there are issues that arise
from MAB algorithms that complicate data analysis. Primar-
ily, these algorithms have been shown to produce measure-
ment errors, increases in false positive rates, and decreases
in statistical power (Russo 2020). These hindrances work
directly against the objective of the algorithm by decreasing
the chance that effective conditions will be identified and
increasing the probability that unhelpful conditions will be
deployed (Rafferty et al. 2019). Therefore, it may be helpful
to use systems that enable comparisons of different algo-
rithms, such that researchers can make informed decisions
about these statistical trade-offs.

Design of Intervention
A series of design workshops were conducted with non-
treatment seeking participants (Kornfield et al. 2022; Bhat-
tacharjee et al. 2023) to generate content which could be
tailored according to users’ preferences, backgrounds, and
contexts. In the next section, we deep dive into a particular
component of the intervention to show as an example how
contextual multi-armed bandit algorithms are used through-
out the numerous experimentation points.

Adaptive Components in DMH Intervention
Modular dialogues are brief, self-contained interactions that
support a single psychological strategy, and can be delivered
at one contact point without the need to reference messages
earlier or later in the day. Our software system enables em-
bedded adaptive experiments at a number of intelligent de-
cision points in these modular dialogues.

Figure 1 illustrates an example of message sequences a
participant may receive during an 8-week intervention to
practice self-compassion. The messages contain three mod-
ular components (decision points) in a factorial design: Ra-
tionale (present vs. absent), Link (present vs. absent), and
Interaction type (four options). Our software system enables
adaptive experiments at various intelligent decision points in
these modular dialogues.

We use contextual multi-armed bandit algorithms
throughout numerous experimentation points to adapt the
assignment of arms based on the collected data. The sys-
tem captures various contextual variables to tailor messages
according to users, such as user profiles, preferences, and in-
teractions with the system during the intervention (Table 1).
The coding of these variables can be adjusted as needed.

Rewards in the form of message ratings and link clicks
are used to optimize content quickly. For instance, at the end
of each message sequence, users rate the helpfulness of the

Variable Type Description
Mood &
Energy

Binary Takes 0 when users report Low or
Medium levels, and 1 for High lev-
els

K10 Ordinal Based off of the Kessler Psycho-
logical Distress Scale. Bounded be-
tween 1 and 4.

Recent
Activity
Last 48
hours

Binary Takes 0 when user is inactive in
the last 48 hours of receiving the
message, and 1 if user interacts in
any way with the system (e.g. types
something, clicks on any link, etc).

Table 1: Some user contexts captured by the system (out of
12 total contextual variables).

messages on a scale of 1 to 5. The bandit algorithm also
considers whether users click the embedded hyperlinks in
the messages.

The bandit algorithm adapts the assignment of action vari-
ables based on the collected data. For example, it decides
whether to provide a Rationale for introducing a psycholog-
ical strategy, include a Link to web content, or select one of
the four Interaction types. The system is designed to capture
rewards of varying natures to enable rapid prototyping and
testing of different rewards for different contexts.

Algorithms for Adaptive Experimentation
The system supports a range of algorithms for adaptive ex-
perimentation, which dynamically update the assignment
probability of each intervention based on the observed data.
Below we describe the application of one of the algorithms.

Problem Formulation Assuming an experiment over a
horizon of size T , the problem is to choose a sequence of
T actions {at}t=1,...,T that maximize the expected cumu-
lative reward over time E[

∑T
t=1 rat

(t)], with rat
(t) being

the reward associated to action at at time t. One way to
formalize the problem of dynamic decision-making about
what type of message to deliver to whom is by using a con-
textual MAB problem (Li et al. 2010; Agrawal and Goyal
2013). In contextual MABs, the reward is conceived as a
function of users’ contexts, in addition to allocated arms, so
it allows personalization as well. We formulate each dimen-
sion of the messaging protocol (framing, hyperlink, inter-
action type) as a separate intelligent decision point, so we
solve three contextual bandit problems. Here, we illustrate
the setup of a popular MAB strategy based on contextual
linear TS (Agrawal and Goyal 2013).

Algorithm Suppose that the likelihood of the observed
reward ri(t) of arm i at step t, given a context vector
bi(t) ∈ Rd and the unknown parameter vector µ ∈ Rd,
is given by a Gaussian model with mean bi(t)µ and stan-

dard deviation v = R
√

24
ϵ d ln (

1
δ ) with ϵ ∈ (0, 1). De-

noting with B(t) = Id +
∑t−1

τ baτ
(τ)baτ

(τ)T and with

µ̂(t) = B(t)−1
(∑t−1

τ baτ
(τ)raτ

(τ)
)

, if the prior at step t
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is N (µ̂(t), v2B(t)−1), then the posterior at t + 1 is given
by N (µ̂(t + 1), v2B(t + 1)−1). In practice, at each step t,
a sample µ̃(t) is be generated from N (µ̂(t), v2B(t)−1), and
the i-th arm which maximizes bi(t)T µ̃(t) is played.

Evaluation of System
After extensive internal testing, we deployed this system
with 50 participants (recruited from the MHA website) to
undergo the eight-week intervention. The study was ap-
proved by the local university ethics board. This helped us
design simulation scenarios and make adjustments to ensure
data is being appropriately collected, and that the algorithms
are adequately adapting the experiments. Based on data from
pilot deployments, we illustrate the following simulated sce-
narios. The code to reproduce the following analysis is made
publicly available2.

Simulation Settings
We generate each user’s context randomly (with all pos-
sible values being equally likely). To resemble our real-
world scenario, where the users’ feedback rating has 5 lev-
els (see Figure 1), we simulate reward values from R =
{0, 0.25, 0.5, 0.75, 1}. The generating process involves first,
generating a raw reward from a Normal distribution, and
then rounding it to the closest value in R. We consider ’Ra-
tionale’ framing (arm i = 1) versus ’No Rationale’ framing
(arm i = 0) arms, and context.

Scenario 1: No arm difference In this case, the raw-
reward ri(t) follows the same distribution for both arms and
does not depend on the context:

ri(t) ∼ N
(
0.5, (1/6)2

)
, i = 0, 1.

Scenario 2: Substantial arm difference Here, we as-
sume that arm i = 1 works better than the arm i = 0:

ri(t) ∼ N
(
0.5 + 1/8× i, (1/6)2

)
, i = 0, 1.

Scenario 3: Optimal arm changes based on the context
We assume that the reward for each arm i = 0, 1 changes
based on an interaction between arm and context. Denoting
the interaction with ∗, this is given by:

ri(t) ∼ N

(
0.5 +

3

8
× i− 1

4
×mt −

5

8
× i ∗mt, (

1

6
)2
)

where mt is the context variable assuming value of 1 if the
t-th participant has a high mood, and 0 otherwise. According
to our setting, when a participant has a high mood, the arm
’Rationale’ has a higher expected raw reward (0.875 with
’Rationale’ versus 0.5 with ’No Rationale’), while the oppo-
site is true for participants with a low mood (0 with ’Ratio-
nale’ versus 0.25 with ’No Rationale’).

Simulation Analysis
For statistical analysis, the data collected can be used to run
simulations of the algorithm’s behavior if an experiment was

2https://github.com/harsh-kumar9/bandit simulation

Figure 2: Average rewards using Thompson Sampling for
Contextual Bandits (Contextual TS) versus Uniform Ran-
dom in different cases. The first pair of bars compares the
reward in the group of participants having low mood, the
second pair compares in high mood group, and the last pair
takes the average among all participants.

run thousands of times. We present the Reward, False Pos-
itive Rate (FPR; the probability of a statistical test to in-
correctly report an arm difference, when one does not ex-
ist), and Statistical Power (the probability of a test to cor-
rectly report an arm difference, when one exists). The hy-
pothesis tests related to FPR and Power are conducted by
sampling from the joint posterior distribution of the param-
eters of interest and estimating the 95% Confidence Inter-
vals. Compared with traditional uniform random experimen-
tation, these reveal the extent to which an algorithm’s adap-
tive data collection increases, reduces, or has no effect on
reliably detecting different kinds of effect - like whether or
how much better an arm is or which arm is best based on a
contextual variable.

From Figure 2, we see that Contextual TS can adapt to the
data and lead to a higher reward than Uniform Random when
there is a difference in the expected arm rewards. For peo-
ple in a high mood, Contextual TS assigns most of them to
the ’Rationale’ arm, and gets 0.14 more average reward than
Uniform Random; for people in a low mood, Contextual TS
assigns the arm with ’No Rationale’ more frequently.

Table 2 shows the FPR results in our first simulation set-
ting (Scenario 1). The FPR for Contextual TS is almost as
good as the Uniform Random algorithm when the sample
size is N = 100, and it increased to 0.07 when the sample size
increases to N = 1000. This is because we chose a relatively
uninformative prior, which forces Contextual TS to explore
more and reduces FPR. Increasing the sample size, the effect
of the prior is reduced, and an exploitative algorithm like TS
may allocate the two arms unevenly, impacting statistical in-
ference ability. However, a value of 0.07 may be regarded
as a good trade-off given the higher average reward. This
highlights how one could further reduce the FPR by using a
wider confidence interval, or choosing a more uninformative
prior – making the choice to give up some reward.

Table 3 summarizes the results for Power in simulation

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22909



N=100 N=1000
Contextual TS 0.03 0.07
Uniform Random 0.04 0.04

Table 2: False Positive Rate (FPR) in simulation Scenario 1
where there are no differences between the arms.

N=100 N=1000
Scenario 2

Contextual TS
Rationale 0.72 0.97

Uniform Random
Rationale 0.87 1.00

Scenario 3
Contextual TS
Rationale 0.92 1.00
Mood 0.41 0.47
Rationale * Mood 1.00 1.00

Uniform Random
Rationale 1.00 1.00
Mood 0.95 1.00
Rationale * Mood 1.00 1.00

Table 3: Calculation of Power for Scenario 2 (substantial dif-
ference between the arms) and 3 (optimal arm changes based
on context).

Scenarios 2 and 3. In Scenario 2, when the sample size is
small (N = 100), the Contextual TS algorithm has 15% less
Power than Uniform Random. However, when the sample
size is fairly large, Power is not much of a concern, as both
approaches produce Power close to 1. In Scenario 3, where
the reward is a more complicated function of ’Rationale’ and
’Mood’, the Contextual TS algorithm has good discovery
rates on detecting effects in terms of ’Rationale’ and the in-
teracting effect ’Rationale ∗ Mood’. The only drawback for
Contextual TS, in this case, is its low Power on the single
effect on ’Mood’. This occurs because Contextual TS as-
signs most people with a high mood to the arm ’Rationale’
and those with a low mood to ’No Rationale’ arm, increas-
ing Reward for both groups, whereas UR more accurately
evaluates the effect of Mood across both arms.

The data can also be used to understand the detailed be-
havior of an algorithm over time, and reveal violations of
assumptions and interesting extensions based on the struc-
ture of the data, like unforeseen subgroups, non-stationarity,
or correlations between observations.

These simulations are an important part of the inter-
vention design process. First, they help evaluate the effec-
tiveness of adaptive algorithms for exploration-exploitation,
such as MAB-based strategies, in terms of how they balance
reward and rigor of statistical analysis. Second, when tuned
for the specific intervention design problem, they serve as
a foundation for fine-grained intervention design discussion
between domain scientists, developers, and machine learn-
ing specialists, allowing exploration of multiple alternative

adaptive experimentation scenarios in mental health even
before data collection.

Real-World Deployment
To evaluate the system and the intervention experimentally,
we deployed the system with 1100 users recruited through
an online ad on the MHA website in multiple batches. Each
user consented to enroll in the 8-week program, where they
received modular messages (visually represented in Figure
1) 2-3 times a week, as part of a larger text-message-based
intervention.

We structure the analysis around two factors of the inter-
vention, Rationale (present vs absent) and Link (present vs
absent).

Provided Response

No Yes Total

Link Present 610 (78%) 171 (22%) 781 (100%)
Link Absent 628 (80%) 160 (20%) 788 (100%)
Total 1,238 (79%) 331 (21%) 1,569 (100%)

Table 4: Response rate by arm for the factor “Link”. We do
not observe large differences between arms in terms of re-
sponse rate

Engagement For 8,521 total arm assignments, we re-
ceived 813 ratings (9.54% engagement rate), contributed by
230 unique users (20.9% of total users). Overall engagement
is low, as is characteristic of DMH interventions (Gan et al.
2021). To check if the engagement depends on the experi-
mental arms, we analyzed the rate by arms (see Table 4 for
the Link arm), observing no large differences.

Efficiency of Policies Table 5 shows the summary of data
for the different factors and arms of the experiment. We ob-
serve an increase in Mean rewards for both levels of each
factor for Contextual TS, compared to Uniform Random as-
signment.

Contextual Effects Checks on potential contextual effects
are difficult in the early stages due to higher power require-
ments for detecting interactions, but they are still important.
Here we present two summary analyses for promising con-
textual variables. In Figure 3, we can see that Contextual

Contextual TS Uniform Random

Factor Present Absent Present Absent

N 232 175 202 204
Link Mean 0.790 0.716 0.719 0.640

SEM (0.018) (0.024) (0.021) (0.024)

N 282 167 192 171
Rationale Mean 0.736 0.728 0.710 0.703

SEM (0.018) (0.025) (0.022) (0.024)

Table 5: Overall summary of the rewards collected for the
Link and Rationale factors.
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Figure 3: Average reward (rating of 1 to 5 scaled) using Con-
textual TS versus Uniform Random for ”Link” rating for dif-
ferent levels of contextual variables. Figure A shows the dis-
tribution for contextual variable Mood (Low vs High). Num-
ber of participants (N) from left to right is [322, 316, 83, 87].
Figure B shows the distribution for Activity in last 48 hours
(Yes vs No). N from left to right are [67, 75, 338, 329].

TS with Mood as a contextual variable was able to achieve
a slightly higher average reward compared to Uniform Ran-
dom. This corresponds to the results of one of the simulation
scenarios we developed in the earlier stage of the analysis
(Figure 2), contributing to the reinforcement of our hypoth-
esis about the role of mood in moderating reactions. Fig-
ure 4 shows how Contextual TS adapts the assignments for
Link vs No Link decisions based on users’ interactions. For
the Recent Activity variable, the effect is less pronounced
for not recently active participants but observed for those re-
cently active. One design decision to consider based on these
results might be to revise the 48h cut-off or make it adaptive.

Discussion and Conclusion
A key insight in the design of our system was to build flex-
ibility in how algorithms are applied. First, in open source
testbed where algorithms can be directly uploaded and used
in production within days3. Second, in allowing for algo-
rithms to flexibly adjust which reward and contextual vari-
ables are being used and how, with rapid redeployment. For
example, the current reward for the Rationale bandit prob-
lem is the message rating provided by the user. However,
other variables could be used as reward to optimize the mes-
sages. The system also allows for new arms to be added by
the social-behavioural science design team, as the adaptive
experiments reveal that some arms are less effective, as we
scale to 5000 users.

Our system provides a testbed for optimizing user expe-
rience in mental health while also facilitating critical analy-
sis of algorithms, particularly understanding how algorithms
balance reward maximization with data collection for sta-
tistical analysis. This places more emphasis on support-

3https://github.com/Intelligent-Adaptive-Interventions-
Lab/mooclet-engine

Figure 4: Arm allocation dynamics for Contextual Thomp-
son Sampling. Columns represent arms, and grid rows arti-
ficially split experiments by approximately one-month peri-
ods, allowing to compare arm allocation in different stages
of the experiment. Each small square is one reward we re-
ceive with a fill color representing how helpful the par-
ticipant found the message. In the Period 1, there was a
marginally better response for “No Link,” leading to more
allocations to this arm in Period 2. However, the algorithm
was able to adjust based on responses, consistently allocat-
ing more interactions to the “Link” arm in periods 3–4.

ing domain scientists to answer socio-behavioral research
questions and to draw conclusions that can be generalized
to many future users, which is increasingly being empha-
sized in applications of bandit algorithms (Yao et al. 2021).
There is a growing understanding in the behavioral science
and policy communities that behavioral interventions re-
quire taking into account the heterogeneity of treatment ef-
fects (Bryan, Tipton, and Yeager 2021), including adapting
to the contexts on the participant or situational level. This
is also relevant for vulnerable and underprivileged popu-
lations, providing intervention designers with the tools to
break the vicious circle of optimizing for the average par-
ticipant. Future work can look into incorporating fairness
metrics to evaluate the fairness of these algorithms when ap-
plied in a mental health setting (Wang et al. 2022; Joseph
et al. 2016; Huang et al. 2022).

We showed how the algorithms trade-off optimization of
reward (by giving the better arm on average or providing a
personalized user experience) while collecting data that en-
ables statistical inference. These just begin to scratch the sur-
face of the complex real-world scenarios. Our system opens
doors for future investigation of rewards that are dependent
on multiple interactions between different action variables,
between contextual variables, non-stationarity, when data
are missing in different ways, and with repeated observa-
tions from the same person. The accompanying appendix to
this manuscript is available online.4

4https://arxiv.org/abs/2310.18326
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