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Abstract

In neural memory decoding, a concept being mentally re-
called is identified using brain data. Recently, the feasibility
of neural memory decoding with EEG data has been demon-
strated. Here we propose a new application – neural informa-
tion retrieval – that uses neural memory decoding to allow a
document to be retrieved merely by thinking about it. In this
paper we describe neural memory decoding, define the appli-
cation of neural information retrieval, present experimental
results related to the practicality of the application, and dis-
cuss issues of deployment and data privacy.

Introduction
In the near-future, we will not type commands, or say com-
mands, but will think them. Already, brain-computer inter-
faces are in use, and it is possible to produce a transcript of
what is being silently read from a record of brain activity ob-
tained using functional magnetic resonance imaging (fMRI)
(Tang et al. 2023).

Recently, neural memory decoding with electroenceph-
alogram (EEG) imaging has been shown to be possible
(Bruns, Haidar, and Rubino 2023). Neural memory decod-
ing is the reconstruction of a mentally-recalled concept from
brain data. This finding is important because, unlike fMRI,
EEG devices can be inexpensive and comfortable. Con-
sumers could purchase EEG devices and wear them for
much of the day. Neural memory decoding with consumer-
grade EEG devices suggests a range of exciting applications.

Neural information retrieval is one such application. As
more information becomes available on the internet, finding
a document that one has encountered earlier becomes a diffi-
cult problem. Creating and storing bookmarks is not a good
solution, because user-created labels or keywords are sub-
jective and hard to create. The alternative of re-searching for
a document can be difficult and time consuming.

With neural information retrieval, information seen once
can be retrieved by merely thinking about it. In this ap-
plication (see Fig. 1) a user, after finding a useful docu-
ment or website, thinks about it briefly while a short EEG
is recorded. Later, to retrieve the document, the user briefly
recalls the contents of the document while an EEG is again
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Figure 1: Neural information retrieval. Top: To index, or
“bookmark” a document, the system records the user’s brain
activity and the document location. Bottom: To search for a
document, the system captures brain activity while the user
recalls the document. The user is then presented with a list
of predicted document links. (Figure from (Bruns, Haidar,
and Rubino 2023); used with permission.)

captured. The system then presents links to documents as
search results. In contrast to keywords, an EEG provides
an information-rich bookmark and does not require creative
work by the user.

The model used in (Bruns, Haidar, and Rubino 2023) to
show the feasibility of neural memory decoding with EEG
data works by mapping segments of an EEG to a lower-
dimensional embedding space, classifying each embedding,
and then using an ensemble method to yield a class for the
EEG as a whole. We will later explain the deployment and
data privacy benefits in adopting this model for neural infor-
mation retrieval.

Our main contributions are as follows: we define the neu-
ral information retrieval application, show how the design of
(Bruns, Haidar, and Rubino 2023) can be adapted to imple-
ment the application, and provide experimental results con-
cerning the practicality of the application.

In what follows we describe the problem of neural mem-
ory decoding, briefly survey existing applications of neural
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decoding, define the application of neural information re-
trieval, present experimental results related to the question
of whether the application is practical, and discuss deploy-
ment and data privacy issues.

Neural Memory Decoding
Neural decoding is the reconstruction of stimuli or mental
state from a record of brain activity. For example, neural de-
coding can be used to reconstruct an individual’s emotional
state from an EEG (Bird et al. 2019).

EEG and fMRI are two widely-used methods for measur-
ing brain activity. Some advantages of EEG are that EEG
devices are much cheaper, much smaller, and have better
temporal resolution. An advantage of fMRI is its high spa-
tial resolution. EEG and fMRI can be used simultaneously
(Ritter and Villringer 2006), and other methods also exist to
measure brain activity, such as positron emission tomogra-
phy (PET), and magnetoencephalography (MEG).

Neural memory decoding is the neural decoding of mem-
ory. Memory can be categorized as either episodic (memory
of events) or semantic (memory of facts, untied to events)
(Tulving 1972).

Existing work on the decoding of episodic memory in-
cludes classifying whether participants had previously seen
pictures of faces (Rissman, Greely, and Wagner 2010), clas-
sifying which of three film clips participants had recalled
(Chadwick et al. 2010), and detecting deception while par-
ticipants respond to questions about personal experiences
(Ofen et al. 2017). In these works, fMRI was used.

With respect to semantic memory decoding, Polyn et al.
classify brain activity captured during the study and recall
of photographs using fMRI data, distinguishing between the
categories of face, location, and object (Polyn et al. 2006).
Classifier accuracy is not reported. Abstract concepts such
as multiplication and consciousness have also been decoded
using fMRI data (Vargas and Just 2020).

The feasibility of semantic memory decoding using EEG
data was demonstrated in (Bruns, Haidar, and Rubino 2023).
We now sketch the experimental setup of that work; see
(Bruns, Haidar, and Rubino 2023) for details. Data for the
study was collected as follows. First, a set of 103 Wikipedia
pages were identified and placed into groups of 10. Then,
for each group:
• On “day 0”, the study participant read each page in the

group for 5 minutes, then mentally recalled each page for
75 seconds while a 16-channel EEG was recorded.

• The next day (“day 1”), the participant again mentally
recalled each page for 75 seconds while EEG data was
recorded.

• Two days later (“day 3”), the participant repeated the last
step.

Data was collected on multiple days because memories of
semantic concepts change over time (Winocur and Moscov-
itch 2011).

After data preprocessing, experiments were then con-
ducted as follows, with the aim of seeing whether a page
could be identified from a day 1 EEG given a collection of
labeled day 0 EEGs:

• The Wikipedia pages were split randomly into training
and test sets.

• A classifier was trained on the day 0 and day 1 EEGs for
the training pages, with the page titles (or “topics”) serv-
ing as training labels. The classifier was also provided
with the day 0 EEGs for the test pages, but no training
was performed with this data.

• The classifier was then presented with day 1 EEGs for
the test pages, and the label of each EEG was inferred.

• Top-1, top-2, and top-3 accuracy values were computed.

The above steps were repeated, yielding average accuracy
values. (This process is sometimes called “repeated random
sub-sampling validation”.) Note that the classifier was tested
on pages not used in training.

With a test set size of 25 topics, the classifier obtained
a mean top-1 accuracy of 75.0%, and a mean top-3 accu-
racy of 94.4% (a top-1 accuracy of 4% would be obtained
by chance). Similar results were obtained when day 3 EEG
data was used in place of day 1 data.

We now describe details of the classifier used in (Bruns,
Haidar, and Rubino 2023), because it will be adapted for
the application we propose. For simplicity, we refer to that
system as EMD, for “Experimental Memory Decoder”.

The classifier of EMD is an ensemble that classifies an
EEG by first segmenting the EEG, classifying each segment,
and then combining the inferred segment labels to yield a la-
bel for the EEG as a whole. Fig. 2 illustrates the process. The
figure shows only four segments, but in reality an EEG of
75 seconds yields about 850 segments when using a rolling
(or “sliding”) window with a length of 100 samples and a
stride of 10 samples. We use “segment” to refer to a rolling-
window sample of an EEG.

Figure 2: From the inferred labels for every EEG segment, a
label for the EEG as a whole is inferred.

Supervised representation learning (Bengio, Courville,
and Vincent 2013) is used to classify segments. With rep-
resentation learning, classification proceeds in two stages.
In the “upstream” stage, a convolutional embedding model
maps EEG segments to points in an embedding space. The
embedding model is trained using supervised contrastive
loss (Khosla et al. 2020): the aim is that the embeddings of
two segments belonging to the same EEG (in other words,
the same topic) will be nearby in the embedding space. In the
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“downstream” stage, a k-nearest-neighbor (KNN) classifier
is used to infer the topic of a segment embedding.

Fig. 3 illustrates the training and inference process of
EMD. The left side shows how segments from day 0 and 1
training EEGs are used to train the embedding model. EEGs
for only two pages are shown. The trained embedding model
maps EEG segments to the embedding space. Using training
data from multiple days helps the embedding model learn
what is invariant about the recall of a topic over time.

Fig. 3 (right) shows how labels are inferred for day 1 test
EEGs. The segments of all day 0 test EEGs are mapped to
the embedding space using the trained embedding model.
Segments from the same EEG tend to map to nearby points
in the embedding space, even though the test EEGs were not
used in training. A KNN classifier is trained on the embed-
dings of the day 0 test EEGs, and then used to infer the label
of each segment of every unlabeled, day 1 EEG. (See (Bruns,
Haidar, and Rubino 2023) for a discussion of alternatives to
KNN for downstream classifier.)

A key property of this system is that it can predict a topic
that the neural embedding model has never been trained on.
This is in contrast to classical classifiers that can only infer
classes seen in the training data. However, a topic can only
be predicted from a day 1 test EEG if a day 0 test EEG of
the same topic is available.

Related Work

In this section, we survey some existing applications of
neural decoding. Previous studies demonstrate non-invasive
brain recordings can be used to reconstruct music and sto-
ries experienced during fMRI recordings (Denk et al. 2023;
Tang et al. 2023). Although fMRI is an effective tool for neu-
ral decoding, its large size and high cost limit its practicality
in real-world applications.

We are particularly interested in more portable and inex-
pensive applications. For example, in education, neural de-
coding with EEG has been used to classify student engage-
ment levels during presentations, providing insights into
learning processes and personalized educational interven-
tion (Poulsen et al. 2017).

Within assistive technology, EEG-based neural decoding
has made significant advancements. Recent systems have
been used to control prosthetics and facilitate communica-
tion (Limchesing et al. 2021). The integration of neural de-
coding in healthcare promises new methods of rehabilita-
tion and quality-of-life improvements for users (Orban et al.
2022). Additional assistive technologies include real-time
epileptic seizure detection and personalized sleep recom-
mendation (Olokodana et al. 2021; Ghosh et al. 2023).

Non-medical, consumer-driven applications include inter-
facing with video games (Vasiljevic and De Miranda 2020;
Putri et al. 2019), predicting consumer preferences of e-
commerce products (Amin et al. 2020), smart home con-
trol (Qin et al. 2020), and even sports performance (Slutter,
Thammasan, and Poel 2021). We are unaware of applica-
tions that use EEG data for information retrieval.

Neural Information Retrieval
In this section we define the application of neural informa-
tion retrieval. The application functions as follows. A user
finds a document of interest. To index the document, the
user briefly recollects the content of the document while
an EEG is recorded. The EEG is stored along with a link
to the document. Later, to search for the document, the
user recalls the content of the document while an EEG is
again recorded. The application then returns an ordered list
of document links, ordered by estimated relevance. Only
previously-indexed documents appear in the list.

Any kind of document could be used, provided it has a
unique identifier, such as a URL. The document need not be
a text document. It could be an image, an audio recording,
or a video recording, for example. Further, the application
could support multiple types of documents. We generically
refer to a unique document identifier as a “link”.

Before using the application, the user would need to per-
sonalize the application through a training process. In this
process, the user would be asked to record EEG data for a
collection of short documents. For each document, the user
would first read (or otherwise study) the document, then
record EEG data while recalling it.

The design of the EMD classifier (previously described in
the section on neural memory decoding) can be adapted for
our proposed application. We now describe the training, in-
dexing, and search operations of the application, highlight-
ing differences with the EMD classifier.

Fig. 4 (left) shows how the application is trained. A col-
lection of training EEGs are used to train the embedding
model. In contrast to the training of the EMD classifier,
shown on the left of Fig. 3, the training EEGs for a docu-
ment are not necessarily recorded on two consecutive days.
For each document, a user could provide a single EEG or
multiple EEGs, recorded over any combination of days.

Fig. 4 (middle) shows how a document is indexed. Each
segment from the EEG for the document is mapped to the
embedding space using the trained embedding model. No
retraining of the embedding model is performed. In compar-
ison to the EMD system, the mapping of segments to points
in the embedding space is precomputed; not performed at
inference time.

Fig. 4 (right) shows how search is performed. The seg-
ments of the unlabeled EEG are mapped to the embedding
space, and then a KNN classifier infers a label for each of the
segments. In comparison to Fig. 3, inference for a document
happens any time after it is indexed.

With EMD, training data for a document consisted of a
day 0 EEG and a day 1 EEG. In our application, training data
for a document can involve EEG data from one or more days,
recorded at any time. Another change to EMD in adapting it
to our proposed application is retraining of the system over
time. With EMD, a fixed set of training documents are used.
In an information retrieval system, the number of indexed
documents will grow over time, making classification more
difficult. This can be compensated for by increasing the size
of the training set used to train the neural embedding model.
Approaches to retraining over time are discussed in the later
section on deployment.
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Figure 3: Training (left) and inference (right) in the system of (Bruns, Haidar, and Rubino 2023).

Figure 4: Training (left), indexing a document (middle), and searching for a document (right) in neural information retrieval.
Web pages are used as example documents in the figure, but the application could work with any kind of document that has a
unique identifier.

Experimental Results
The EMD system described in (Bruns, Haidar, and Rubino
2023) was created to show the feasibility of neural mem-
ory decoding with EEG data, not to serve as part of a soft-
ware application. In preparation for discussion of deploy-
ment issues, we present here the results of experiments to
test whether our application is practical. Our tests adapt
EMD’s code and data, which were provided with the au-
thors’ permissions.

Time spent in EEG recording. Users would not want to
spend too much time recording EEG data. In neural infor-
mation retrieval, an EEG is recorded for each training doc-
ument, whenever a document is indexed, and whenever a
search is performed.

In (Bruns, Haidar, and Rubino 2023), 78 documents were
used for training, and all EEGs were 75 seconds long, which
amounts to about 850 segments per document. Thus, over 3
hours of EEG recording was performed for system training.
Row 1 of Table 1 shows the performance of this baseline
system.

To see how the EMD system performs under a more prac-
tical scenario, we tested system accuracy with 40 training
topics, using 20 segments per training topic, and 10 seg-
ments for both indexing and search. For training, following

the process of (Bruns, Haidar, and Rubino 2023), both day
0 and day 1 EEG data was used for each document. The
data set for the experiment by using a random subset of the
training documents, and a random subset of the segments
associated with each document.

A single segment is about 0.8 seconds in length, so un-
der this more practical regime about 21 minutes of EEG
recording would be needed for training, and about 8 sec-
onds of EEG recording would be needed for each indexing
and search operation.

Row 2 of Table 1 shows the EMD system accuracy us-
ing this “small data size” regime. Repeated random sub-
sampling validation was used to compute the accuracy val-
ues; each row of the table is the result of at least 20 random
splits of the topics into training and test topics. A 95% con-
fidence interval obtained using bootstrapping is shown after
the top-1 and top-3 accuracy values. The table shows that
the small data regime results in a significant drop in top-1
accuracy, from about 75% to about 48%, and a smaller drop
in top-3 accuracy, from about 94% to about 81%. The test
set always contains 25 topics, so the top-1 accuracy should
be compared to a baseline (obtained by random guessing) of
4%. No hyperparameter tuning was performed after reduc-
ing the data size, so the values in the table are conservative.
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row data size model size EEG channels mean top-1 mean top-3
1 full 655k 14 0.750 [0.71, 0.78] 0.944 [0.93, 0.96]
2 small 655k 14 0.476 [0.44, 0.51] 0.812 [0.78, 0.84]
3 full 39k 14 0.690 [0.66, 0.72] 0.918 [0.90, 0.94]
4 full 655k 4 0.764 [0.73, 0.80] 0.954 [0.93, 0.97]
5 small 39k 14 0.472 [0.43, 0.51] 0.808 [0.77, 0.85]
6 small 655k 4 0.512 [0.48, 0.54] 0.884 [0.85, 0.92]
7 full 39k 4 0.726 [0.69, 0.76] 0.922 [0.90, 0.94]
8 small 39k 4 0.500 [0.46, 0.55] 0.852 [0.82, 0.89]

Table 1: Top-1 and top-3 accuracy by system data size, number of model parameters, and number of EEG channels. In the data
size column, “full” means 78 training documents and 75 second EEG recording duration for all EEGs, and “small” means 40
training documents, with 16 second EEG recording duration in training, and 8 second duration in indexing and search.

Size of the neural embedding model. Another practical
matter is the memory footprint of the embedding model and
the CPU work needed in inference. These factors can limit
the deployment options for the application. The neural em-
bedding model of EMD has about 655k parameters.

To see the impact of model size, we tested system accu-
racy using an embedding model of about 39k parameters
(about 6% of the size of the model of EMD). The size reduc-
tion was achieved by reducing the number of convolutional
layers from 4 to 3, reducing the number of dense layers from
2 to 1, reducing the number of convolutional filters from 256
per layer to 64 per layer, and reducing the embedding size
from 32 to 24.

Rows 1 and 3 of Table 1 show the result of changing only
the size of the embedding model. The mean top-1 accuracy
drops from about 75% to about 69%, and the top-3 accuracy
drops from about 94% to about 92%. Rows 1 and 5 of the
table show the result of changing both the data and model
sizes. The accuracy values are similar to those on row 2;
reducing the data size has little impact once the model size
is reduced.

Number of EEG channels. Fig. 6, left shows the large
EEG headset, containing 16 electrodes, that was used to col-
lect EEG in (Bruns, Haidar, and Rubino 2023). Fig. 6, right
shows a more comfortable, consumer-grade headset with
only 4 electrodes.

The neuroscience literature suggests that the prefrontal
cortex plays a large role in the formation and recall of se-
mantic memory (Devlin et al. 2002; Gabrieli, Poldrack, and
Desmond 1998). We therefore tested the accuracy of the sys-
tem using EEG data from only the electrodes in locations
FP1, FP2, F3, and F4 of the international 10-20 system (see
Fig. 5).

Rows 1 and 4 of of Table 1 show the result of reducing the
number of EEG channels from 14 to 4. There is no signif-
icant change in top-1 or top-3 accuracy as a result of this
change, at least when no change is made to data size or
model size.

Rows 1 and 8 of Table 1 show the result of reducing the
data size, model size, and number of channels. Top-1 accu-
racy drops from about 75% to about 50%, and top-3 accu-
racy drops from about 94% to about 85%. The drop in top-3
accuracy is significant, but represents a top-3 accuracy re-
duction of only about 10%.

Figure 5: Electrode locations in the 10-20 system.

Deployment and Data Privacy
A consumer application or service for neural information re-
trieval should satisfy requirements that include:
1. Users’ EEG data must be kept private.
2. The EEG recording equipment should be affordable and

comfortable.
3. The application should be usable in a range of environ-

ments.
4. The time spent in recording EEG data should not be a

burden.
5. The application should be able to be run with acceptable

performance on typical consumer laptops and, ideally,
also smartphones.

6. The performance of the system should not degrade as
more and more documents are indexed over time.

The first requirement is important because the health in-
formation that could be derived from EEG data is unknown
today. We prefer a deployment model in which EEG data is
never shared with a service provider.

Regarding the second requirement, the EEG sensing hard-
ware used in (Bruns, Haidar, and Rubino 2023) costs about
US$ 3000, which includes a 16-channel headset, electrodes,
and interface hardware (see Figure 6, left). More comfort-
able and lower-cost consumer-grade headsets are also avail-
able. For example, the one shown in Figure 6 (right) sells
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for about US$ 400, including all hardware. It has four EEG
electrodes, two of which are near the prefrontal cortex. Re-
sults in the neuroscience literature link the prefrontal cor-
tex with semantic memory recall (Gabrieli, Poldrack, and
Desmond 1998; Martin and Chao 2001). The importance of
these nodes in memory recall is further substantiated by ex-
perimental results presented in Table 1, which show that the
accuracy of EMD can be matched when only four electrodes
are used: the electrodes associated with the prefrontal cortex,
and two of the frontal nodes.

A range of lower-cost headsets are assessed in (LaRocco,
Le, and Paeng 2020; Pathirana, Asirvatham, and Johar 2018)
in the context of drowsiness detection and brain-computer
interfaces.

The third requirement, concerning use of the application
in a range of environments, is important because EEG is
sensitive to noise and is traditionally performed in a clini-
cal environment. We do not know how the accuracy of the
application would be affected by noise in the recording en-
vironment, or whether the EEG artifacts of this noise could
be suppressed by an application. This topic is a subject for
future work.

The fourth requirement is addressed by the data size
experiments presented in the experimental results section.
They show that the top-3 accuracy of the EMD system is
about 85% when only 8 seconds of EEG capture is used for
indexing and search. We do not have data on the length of
time users typically require to bookmark a page or to search
for an existing bookmark. However, experience suggests that
8 seconds is comparable to the time needed for these tasks.

The fifth requirement, concerning use of the application
on laptops, smartphones, and other mobile devices, is tied
to how the application is deployed: as a web service, locally
in the browser, or locally as an application. To achieve data
privacy, we focus on the latter two options. Suppose the ap-
plication is run locally on a modern consumer laptop. Does
it have the memory, storage, and CPU resources needed for
our application to perform well?

To answer this question, we look at the operations of
training, indexing, and search. Indexing requires only that
a recorded EEG be segmented, preprocessed, and then each
segment mapped to an embedding using the trained embed-
ding model. With a small embedding model, such as the one
discussed in the experimental results section, these steps can
easily be handled on a laptop.

Search involves the same steps as indexing, but addition-
ally requires the classification of the embeddings of search
segments using an instance-based classifier. Tests with the
Scikit-Learn machine learning library, made under the the
assumption of 20K topics and 10 segments used in indexing
and search, show that the KNN classification step could be
performed in less than 0.1s on a 2017 Windows computer,
and so could also be performed acceptably fast on a modern
laptop.

Training involves the training of the embedding model,
which is a convolutional network. Training the model of
(Bruns, Haidar, and Rubino 2023) on a 2017 Windows com-
puter, using only the CPU, takes only about 4 minutes. Re-
garding storage, a 4-channel EEG of length 20 seconds re-

Figure 6: The OPENBCI Mark IV EEG headset (left). The
Muse-S EEG headband (right). Image sources: openbci.com
and choosemuse.com.

quires only about 40kB of storage, or 40MB for 1000 such
EEGs – the equivalent of about 20 high quality JPEG im-
ages.

Regarding the sixth requirement, simple occasional re-
training of the embedding model using EEGs acquired in
the indexing process may be sufficient. Alternatively, ap-
proaches like incremental learning, in which a model is im-
proved using new training data, without access to earlier
training data, may also be an option. Particularly relevant to
our application is few-shot class incremental learning (Tao
et al. 2020).

Conclusions
We have defined the application of neural information re-
trieval, described the design of its machine learning com-
ponent, and presented experimental results related to its de-
ployment.

More experimentation is needed to address questions of
the practicality of the application. How much will perfor-
mance of the application vary from person to person? How
will the performance change as thousands of documents are
indexed? Will the system perform well when the time be-
tween indexing a document and searching for it is weeks,
months, or even years?

We illustrated neural information retrieval with a text re-
trieval application, but neural information retrieval is not
limited to documents consisting of text or to semantic mem-
ories of concepts. For example, in a music retrieval applica-
tion, a user could retrieve an audio recording by recalling the
sound of a passage in a piece of music. We believe a wide
range of useful applications will be discovered.
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