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Abstract

Social insurance benefits qualification assessment is an im-
portant task to ensure that retirees enjoy their benefits accord-
ing to the regulations. It also plays a key role in curbing so-
cial security frauds. In this paper, we report the deployment
of the Intelligent Benefit Certification and Analysis (IBCA)
platform, an AI-empowered platform for verifying the status
of retirees to ensure proper dispursement of funds in Shan-
dong province, China. Based on an improved Gated Recur-
rent Unit (GRU) neural network, IBCA aggregates missing
value interpolation, temporal information, and global and lo-
cal feature extraction to perform accurate retiree survival rate
prediction. Based on the predicted results, a reliability assess-
ment mechanism based on Variational Auto-Encoder (VAE)
and Monte-Carlo Dropout (MC Dropout) is executed to per-
form reliability assessment. Deployed since November 2019,
the IBCA platform has been adopted by 12 cities across the
Shandong province, handling over 50 terabytes of data. It has
empowered human resources and social services, civil affairs,
and health care institutions to collaboratively provide high-
quality public services. Under the IBCA platform, the effi-
ciency of resources utilization as well as the accuracy of bene-
fit qualification assessment have been significantly improved.
It has helped Dareway Software Co. Ltd earn over RMB 50
million of revenue.

Introduction
The process of qualifying applicants for social insurance
benefits involves periodic verification by the pension agen-
cies to confirm that pensioners continue to meet the eligi-
bility criteria. In the context of China’s increasingly aging
population, the number of pensioners receiving these bene-
fits has been consistently growing. The qualification certifi-
cation for social insurance benefits is a crucial undertaking
which ensures that retirees can access social security ben-
efits in accordance with the law. This process is essential
not only for retirees’ well-being but also to safeguard the in-
tegrity of social security funds by preventing fraudulent and
excessive pension claims.
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Figure 1: The process of social insurance benefits certifica-
tion through data comparison.

The payment of pension insurance benefits across various
government services involves multiple departments, includ-
ing the Human Resources and Social Security Department
and the Civil Affairs Department. The timely reporting of
the demise of entitled recipients is of utmost importance, as
any delay can lead to over payment of pensions and put pres-
sure on the national pension funds. To ensure proper usage
of the pension funds, government services across the board
mandate regular qualification assessment and certification
for benefit recipients. This proactive approach aims to re-
duce fraudulent claims, thereby ensuring the integrity of the
social insurance system.

The prevailing method of social insurance qualification
certification in China (Wang 2001) includes the following
options:

1. Face Recognition Self-Service Authentication: This in-
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volves authentication through a mobile app by utilizing
facial recognition technology.

2. Assisted Social Service Authentication: To assist el-
derly and other special groups with limited mobility, a
door-to-door certification service is available. Social se-
curity agents pay home visits to assist with the certifica-
tion process.

3. Data Comparison: This step entails gathering retirees’
information through various data comparison techniques.

At present, the third method is widely adopted in China
for benefit qualification authentication. Figure 1 illustrates
the authentication process through data comparison. By
leveraging data from various governmental services, this ap-
proach captures the trajectory of retirees’ survival-related
activities through manual auditing and data analysis. This
information helps determine the health and survival status of
individuals, allowing for the identification of those eligible
to receive benefits, those who have lost their benefit quali-
fication, and those requiring recertification. This authentica-
tion method faces the following challenges:
1. Accuracy and Completeness of Data: The qualification

certification process for insurance benefits involves the
collection of a substantial volume of personal informa-
tion and relevant documents. Unfortunately, due to the
scattered and inconsistent nature of this information, en-
suring the accuracy and completeness of the data is a sig-
nificant challenge.

2. Accuracy and Validity of Certification: There are con-
cerns regarding the precision and validity of current cer-
tification outcomes. A notable disparity exists between
these certification results and the ground truth, suggest-
ing room for improvement.

3. Efficiency and Promptness of Certification: The con-
ventional approach to insurance benefit qualification pre-
dominantly relies on manual review and processing. Un-
fortunately, this method is not only time-consuming and
labor-intensive but is also susceptible to errors.

To address the aforementioned concerns, we propose the
Intelligent Benefit Certification and Analysis (IBCA) plat-
form. At the core of this platform lies a robust artificial in-
telligence (AI) engine that integrates a novel survival pre-
diction model, referred to as the Missing Value Interpolation
based Temporal Survival Prediction (MVI-TSP) approach.
This model combines diverse elements, including missing
value interpolation, temporal information integration, com-
prehensive global and local feature extraction, and the uti-
lization of a Gated Recurrent Unit (GRU) neural network
(Cho et al. 2014), all of which synergistically enhance the
precision of survival prediction for retirees. Furthermore,
the IBCA platform innovatively incorporates a reliability as-
sessment mechanism, leveraging Variational Auto-Encoder
(VAE) (Caterini, Doucet, and Sejdinovic 2018) and Monte-
Carlo Dropout (MC Dropout) (Sadr, Zhu, and Hu 2023).
This advanced mechanism computes uncertainty scores for
both the missing value interpolation process and the model
prediction results, increasing reliability on two fronts. The
platform provides in-depth analytical insights, promoting
transparent decision support (Li et al. 2022).

Jointly developed by Dareway Software Co. Ltd.1 and
the Centre for AI Research (C-FAIR) jointly established
by Shandong University, China and Nanyang Technologi-
cal University, Singapore, the platform has been adopted
by 12 municipalities in Shandong province, including re-
gional population centres such as Jinan, Zibo, Yantai and
Weifang. It has helped various governmental bodies, includ-
ing big data bureaus, human resources, social departments,
and other public services to collaboratively ensure the proper
dispursement of pension funds. It has handled massive data
volumes exceeding 50 terabytes since its deployment in
November 2019. Under the IBCA platform, resource utiliza-
tion has been improved whilst misuse of resources has been
significantly reduced. The platform has yielded substantial
economic gains, with a cumulative contract revenue reach-
ing RMB 52.637 million for Dareway.

Application Description
In this section, we discuss in detail the system design of the
IBCA platform. The system architecture, as shown in Figure
2, consists of four main modules:

1. Data Preprocessing: The primary role of this module is
first to gather essential data from diverse sources such
as government information resource sharing platforms,
encompassing personal details, medical insurance, and
civil affairs information. This encompasses fields within
healthcare, health, and well-being. Subsequently, the col-
lected data undergo rigorous cleaning, integration, and
conversion before being formatted as input data for rele-
vant intelligent analysis models.

2. Modeling and Analysis: This module predominantly
comprises survival prediction model. The model draws
from data shared by various governmental resources,
considering factors such as age, gender, and disease type
among retirees to estimate individual or group health sta-
tus and survival probabilities. Survival prediction serves

1http://www.dareway.com.cn/
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Figure 2: The architecture of the IBCA platform.
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as the foundational element for optimizing subsequent
assessments, and the accuracy of this prediction signif-
icantly influences the validity of downstream processes.
The proposed AI model achieves the required accuracy
for our objectives.

3. Performance Evaluation: The role of this module is piv-
otal in assessing the accuracy, reliability, and adaptabil-
ity of the prediction model. This assessment is essential
for ensuring the effectiveness and safety of AI applica-
tions. Performance evaluation gauges the reliability of
the model output, ensuring consistent results across di-
verse datasets and samples, rather than excelling solely
on specific datasets. Moreover, it aids in determining the
model’s applicability across various populations and en-
vironments, highlighting its robust generalization capa-
bilities.

4. Certification Feedback: This module provides assess-
ments and feedback on the benefit qualification results
back into the business systems of each domain, facil-
itated by the government information resource sharing
platform. The primary purpose of this feedback loop is to
evaluate the quality and security of government services,
thereby fostering continuous improvement and enhance-
ment within government organizations.

Use of AI Technology
The application of AI techniques in the IBCA platform fo-
cuses on two main aspects: 1) survival prediction, and 2)
reliability assessment. In this section, we describe these two
parts in detail.

Survival Prediction
The key feature of the platform is the precise prediction of
the health and survival status of retirees. This prediction, in
turn, furnishes more accurate data for verifying the survival
status of individuals and facilitating the accurate disburse-
ment of pension benefits. Currently, survival prediction anal-
ysis faces the following challenges:
1. Missing Data: Missing data are mainly due to malfunc-

tioning data measurement equipment, software glitches,
or inadequate data recording. They result in poor quality
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Figure 4: The architecture of GRU-B.

of results from data analysis. Therefore, the development
of a method for interpolating missing data is important.

2. Temporal Information: When dealing with data as a
time series, not only does the survival status of retirees
evolve over time, but the impact of the missing informa-
tion also evolves temporally. Hence, accounting for the
influence of time information is important when interpo-
lating missing values.

3. Hidden Information Extraction: Many existing meth-
ods for survival prediction focus on analyzing standard
factors such as age, gender and disease type, often ne-
glecting the influence of secondary factors derived from
these standard factors.

To overcome these challenges, we have introduced
a pioneering survival prediction model, the Missing
Value Interpolation-based Temporal Survival Prediction
(MVI-TSP) model, as a core component of the IBCA plat-
form, as illustrated in Figure 3. The model includes missing
value interpolation, comprehensive global and local infor-
mation acquisition, and precise survival prediction. To tackle
the missing data issue, this paper proposes an enhanced in-
ternal structure of the GRU unit, referred to as GRU-B (as
depicted in Figure 4). Building upon the bidirectional GRU
architecture, GRU-B introduces a mask matrix and a time
decay function to capture potential correlation relationships
within the data, enabling the crucial functionality of miss-
ing value interpolation. Additionally, MVI-TSP leverages
a one-dimensional convolutional neural network (Yu and
Koltun 2016) and a bidirectional recurrent neural network
(Schuster and Paliwal 1997) for information feature extrac-
tion from both local and global perspectives. This collective
approach enables the model to effectively capture the sur-
vival patterns of retirees, substantially enhancing the accu-
racy of survival prediction. More details about MVI-TSP
can be found in (Li et al. 2022).

Reliability Assessment
After missing data interpolation, existing methods often
overlook the significance of incorporating uncertainty or
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confidence measures into the survival prediction modeling.
Such oversight can lead to challenges in modeling and a de-
cline in performance (Gal and Ghahramani 2016). Through-
out the modeling process, it becomes paramount for survival
prediction to be guided by uncertainty scores. Otherwise,
overly confident prediction models can introduce issues for
the organization (Tan et al. 2019; Jun et al. 2021). Therefore,
the inclusion of confidence-driven survival prediction mod-
els stands as a pivotal requirement within the realm of bene-
fits certification analysis. The IBCA platform prioritizes the
optimization of confidence assessment, addressing both the
uncertainty introduced during the missing value interpola-
tion phase and the level of confidence associated with the
resulting survival prediction outcomes.

Handling Missing Data Interpolation Uncertainty. For
the task of missing data interpolation, we adopt the Varia-
tional Recurrent Neural Network (VRNN) approach (Chung
et al. 2015; Bertugli et al. 2021). This VRNN framework in-
troduces valuable uncertainty measures following the miss-
ing value interpolation, which serves as complementary in-
formation, enabling the model to predict patient survival
more accurately. Specifically, the VRNN employs a Varia-
tional Auto-Encoder (VAE) (Lopez et al. 2018; Muthuku-
maran, Hariharanath, and Haridasan 2023) within each time
step. This entire process can be summarized in four key
steps: 1) Prioritization (Priori): in this step, potential vari-
ables are prioritized based on the state of the Recurrent
Neural Network (ht−1). 2) Inference: the encoder is utilized
to approximate the posterior distribution of the observation
variable (x) and the state variable, yielding the potential ran-
dom variable (z). 3) Generation: using the decoder, an ap-
proximate distribution of x is generated based on the po-
tential random variable (z). 4) Update of State Variable: the
state variable (h) is updated using the Recurrent Neural Net-
work (RNN). Implementation details of this process are as
follows.

Priori. The priors of the latent random variables follow
this distribution:

zt ∼ N(µ0,t, diag(σ
2
0,t)),

where [µ0,t, σ0,t] = F prior(ht−1).
(1)

Among them, µ0,t and σ0,t denote the parameters of the con-
ditional prior distribution, and F prior is a function that takes
the hidden state variables of the previous time step as input.

Inference. We leverage the encoder to learn a network
that approximates the posterior distribution of a latent ran-
dom variable, and the function F enc to estimate the mean
and log variance, conditioned on xt and ht−1:

zt | xt ∼ N
(
µz,t, diag

(
σ2
z,t

))
,

where [µz,t, σz,t] = F enc
(
FX (xt) , ht−1

)
.

(2)

Among them, µz,t and σz,t represent the parameters to ap-
proximate the posterior, and FX is the feature extractor of
xt. We utilize the reparameterization method (Rezende, Mo-
hamed, and Wierstra 2014) to perform network gradient de-
scent. Specifically, we sample e ∼ N(0, 1), and then make
z = µz,t + σz,t ∗ e, where ∗ denotes element-wise multipli-
cation.

Generation. The generative distribution is conditional on
ht−1 in addition to zt, so that:

x
′

t | zt ∼ N
(
µx,t, diag

(
σ2
x,t

))
,

where [µx,t, σx,t] = F dec
(
FZ (zt) , ht−1

) (3)

Among them, µx,t and σx,t represent the parameters of the
generated distribution, FZ is the feature extractor of zt, and
F dec is the decoder. In this way, we obtain the mean value
and the corresponding variance of the variables generated
by the VRNN at time step t. In addition, RNNs update their
hidden states using a recursive equation:

ht = FRNN (FX(xt), F
Z(zt), ht−1) (4)

where FRNN is the network of RNN units. From this equa-
tion, we find that ht is a function of xt and zt. Therefore,
Eq. (1) and Eq. (3) define the distributions p(zt|x<t, z<t)
and p(x′

t|z≤t, x<t), respectively. The joint distribution of
the generative model is:

p (x≤T , z≤T ) =
T∏

t=1

p (xt | z≤t, x<t) p (zt | x<t, z<t) .

(5)
Similarly, the distribution of the inference model is:

q (z≤T , x≤T ) =
T∏

t=1

q (zt | x≤t, z<t) . (6)

The IBCA platform leverages the Variational Recurrent
Neural Network (VRNN) for modeling both the mean and
variance of missing values during the missing value interpo-
lation process. In this endeavor, the platform introduces the
utilization of a mask matrix (M ) and temporal information
(δ) to compute the uncertainty post-interpolation. Specifi-
cally, the mask matrix (M ) functions as an indicator, reveal-
ing whether a value is missing at a specific time point, while
the temporal information (δ) indicates the duration for which
a value remains missing at that given moment in time. Fur-
thermore, the model output encompasses latent random vari-
ables which significantly enhance the modeling of intricate
time series data (Chung et al. 2015). Similar to the previ-
ously mentioned GRU-B unit, we first define a time decay
rate γt by using a sigmoid function, i.e.

γt = 1− sigmoid (δt) . (7)

Let σx,t be the variance computed by the generative net-
work. We use σx,t to compute the uncertainty score for the
imputed value. If the value is observed, the uncertainty is 0;
otherwise, the larger the variance, the larger the uncertainty.
Then,

ut = sigmoid((1−M) ∗ σx,t) (8)
where ut denotes the uncertain fraction of the interpolated
data.

Prediction Result Uncertainty. We define W as the
weight matrix of the single hidden layer network, b as the
bias, x as the input, and y as the output. Thus, we have:

y = sigmoid(Wx+ b). (9)
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We set a random variable vector d that obeys Bernoulli
distribution (Gal and Ghahramani 2016) to multiply by
the weight matrix to perform dropout. Specifically, d ∼
Bernoulli(p), p ∈ [0, 1], and the input is mapped to the
output as:

y = sigmoid((dW )x+ b). (10)
The Bernoulli function is to randomly generate a vector of 0
and 1 with probability p. According to variational inference
(Gal and Ghahramani 2016), the predicted distribution is:

q (y∗ | x∗) =

∫
p (y∗ | x∗, ω) q (ω) dω (11)

where y∗ represents the output. x∗ represents the input. ω
represents the parameter weight. We sample T Bernoulli
and weight distributions and use Monte-Carlo to estimate
the first moment of the prediction function as:

Eq(y∗|x∗) (y
∗) ≈ 1

T

T∑
t=1

ŷ∗
(
x∗,W t

1 , ...,W
t
L

)
. (12)

Among them, W t
1 ,...,W t

L represents the matrix composed of
T groups of vectors sampled from Bernoulli distribution.
Similarly, we can obtain the variance of the model as:

V arq(y∗|x∗) (y
∗) ≈ τ−1ID

+
1

T

T∑
t=1

ŷ∗
(
x∗,W t

1 , ...,W
t
L

)⊤
ŷ∗

(
x∗,W t

1 , ...,W
t
L

)
− Eq(y∗|x∗) (y

∗)
⊤ Eq(y∗|x∗) (y

∗)
(13)

where τ is set to 1, and ID is the D-dimensional identity ma-
trix. In practice, this is equivalent to performing T random
forward passes in the network and finding the variance. In
our model, we use MC dropout (Sadr, Zhu, and Hu 2023) to
estimate the predicted labels and uncertainty scores of our
model as follows:

Prediction : Ep(ŷ)[ŷ],

Uncertainty : V arp(ŷ)[ŷ].
(14)

Application Development and Deployment
The IBCA platform was implemented using Java and JSP
programming languages, developed by Dareway Software
Co. Ltd in Jinan, Shandong Province, China. The platform
uses a Hadoop infrastructure, enabling efficient storage of
vast quantities of shared data from diverse governmental re-
sources. In the development of the AI engine, we conducted
a comprehensive evaluation of five established survival pre-
diction analytical models, each serving a distinct purpose:
1. Logistic Regression (LR) (DeStefano 1990): This is a

foundational algorithm in machine learning which uses
linear regression normalized by a sigmoid function.

2. RetainEX (Kwon et al. 2019): This model introduces a
time decay factor and attention mechanism, enhancing its
utility for medical task prediction.

3. AdaCare (Ma et al. 2020): Utilizing dilated convolution
with multiple scales, this model captures concealed in-
sights into long and short-term historical data changes,
employing GRU for prediction tasks.

AUROC AUPRC
LR 0.7145±0.0005 0.2302±0.0003

RetainEX 0.9665±0.0004 0.8640±0.0003
AdaCare 0.9671±0.0007 0.8476±0.0002
Diople 0.9689±0.0005 0.8697±0.0003
GRU-D 0.9772±0.0005 0.8748±0.0004
MVI-TSP 0.9841±0.0006 0.9158±0.0011

Table 1: Survival prediction offline test results.

4. Diople (Ma et al. 2017): This model harnesses a bidi-
rectional recurrent neural network to memorize past and
future visit information, integrating three attention mech-
anisms to quantify inter-visit relationships for predictive
analysis.

5. GRU-D (Che et al. 2016): This model addresses missing
data directly by amalgamating masking and time inter-
vals within the GRU architecture.

The performance of these models was rigorously tested
on a government dataset2 from a city within Shandong
Province, China. This dataset consists of a one-year tem-
poral span across varying seasons. The five candidate meth-
ods were tasked with predicting the survival of individuals
in a forthcoming time period. The results, as shown in Ta-
ble 1, demonstrate that MVI-TSP has the highest AUROC
(Area Under the Receiver Operating Characteristic Curve)
and AUPRC (Area Under the Precision-Recall Curve) val-
ues of 0.9841 and 0.9158, respectively, based on the test
dataset. In comparison to the best-performing alternative
method (i.e., GRU-D), MVI-TSP exhibits improvements of
0.69% and 4.1% in AUROC and AUPRC values, respec-
tively. Here we need to clarify that the main objective of
this paper is to predict the survival status of treatment el-
igibles based on historical behavioral data, so as to derive
the list of to-be-tested with high probability of death risk,
and then determine the survival information of to-be-tested
by manual verification. The comparisons depicted in Table 1
are intended to verify whether the proposed model is better
able to tap into the population with high probability of death
risk so that it can be applied to the developed platform. Con-
sequently, MVI-TSP was selected for implementation in the
AI engine of the IBCA platform.

Figure 5 shows the user interface of the IBCA certifica-
tion process, encompassing various vital components: the
certification analysis of the benefit population, trend anal-
ysis, multi-channel trajectory data, and the latest statistics
on the certified population. Specifically: 1) Benefit Popula-
tion Certification: This section provides a snapshot of the to-
tal number of certified individuals, the certification rate, and
their corresponding changes over time. 2) Trend Analysis:
The trend analysis segment offers insights into the certifi-
cation status of individuals with varying trust levels, focus-
ing on the preceding six months. 3) Multi-channel Trajec-
tory Data: This segment showcases the utilization of trajec-

2The dataset is available upon request via email to the contact
authors as the requesters will be asked to agree on certain terms of
use.
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Figure 5: The IBCA platform interface for the overall certification process.

Figure 6: The IBCA platform interface for survival prediction and analysis results.

tory data across multiple channels, offering a comprehensive
view of data access patterns on the platform. 4) Latest Certi-
fication Statistics: This section offers up-to-date information
on certified individuals, providing a current snapshot of the
certified population.

Figure 6 is a screenshot showing information and survival
prediction results pertaining to trajectories within social in-

surance, health insurance, and other relevant domains. In ad-
dition, detailed analyses are conducted for each trajectory
type, including the number of individuals certified at differ-
ent trust levels, the corresponding percentages, and the va-
lidity periods for each trajectory. Additionally, this figure of-
fers an insight into the incremental trends observed in recent
months.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22820



Figure 7: The IBCA platform interface for the qualified population, certification fit, and certification by institution.

Figure 7 focuses on the in-depth analysis of the bene-
fits qualified population, authentication fit, and certifications
based on the respective affiliations of the individuals. 1)
Benefits Qualified Population: Analyzes different categories
of certified individuals, such as employees, residents, and
other certified personnel, providing a breakdown based on
these categories. 2) Authentication Fit: Shows the number
and percentage of individuals within different classes, as de-
termined by the reliability assessment model. 3) Authentica-
tion by Institution: Offers a detailed analysis of the number
of individuals certified under each administrative institution
they are affiliated with, providing insights into the distribu-
tion of certifications across different institutions.

Note that the interfaces illustrated in Figures 5-7 are trans-
lated into English for the benefit of non-Chinese speaking
readers. The actual deployed system interfaces are in Chi-
nese for the target users. A video demonstration of the IBCA
platform can be found on Youtube3.

Application Use and Payoff
In this section, we discuss the real-world impact and pivotal
role played by the IBCA platform. It has pioneered a novel,
unobtrusive approach to benefits qualification certification,
upending the traditional process. By harnessing aggregated
multi-channel business data, it constructs a comprehensive
database for benefits qualifications, leveraging big data tech-
nology to conduct analysis and certification. This approach
offers real-time and effective insights into the survival sta-
tus of retirees, facilitating prompt cessation of pension pay-
ments for deceased individuals. Concurrently, it significantly

3https://www.youtube.com/watch?v=DGy5FqqAyik

reduces the workload of government service personnel in-
volved in business handling, leading to significant reduc-
tions in administrative costs.

Since its deployment in November 2019, the IBCA plat-
form has gained widespread adoption in Shandong, mak-
ing a significant impact within various governmental do-
mains, including big data bureaus and human resources de-
partments. This operation has resulted in a substantial data
processing volume of 50 terabytes, empowering diverse sec-
tors such as human resources and social services, civil af-
fairs, health, and construction, among others.

The platform significantly enhances the accuracy of sur-
vival prediction for retirees through the comprehensive in-
tegration of multi-model AI technology. Among the 80,028
residents normally receiving benefits, 611,421 have had hos-
pitalization records within the past 6 months, with 1,137
deaths in January. The preliminary analysis of the survival
prediction model reveals that 780 of the 1,137 deceased
individuals were accurately predicted by IBCA, alongside
78,891 survivors. The predicted survival count is 70,893,
yielding a recall rate of 68.8% and an accuracy rate of
89.6%. For the remaining 531,393 individuals without hos-
pitalization records, among the 679 who passed away in one
month, the model predicted 509 accurately, with 530,714
survivors. The predicted survival count is 526,912, resulting
in a recall rate of 75.0% and an accuracy rate of 99.3%.

In addition, the products stemming from the IBCA plat-
form have been effectively marketed, utilizing strategies
such as system upgrades, new product promotions, platform
expansion, and the provision of comprehensive big data ser-
vices. These efforts have yielded remarkable economic ben-
efits, with cumulative revenue reaching RMB 52.637 mil-
lion, a testament to the commercial viability and positive so-
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cietal impact of the IBCA platform.

Maintenance
The workflows, personnel and operational parameters in
IBCA may change with time. Updates can be performed
without impacting the AI engine due to the separation of
concerns achieved through a modular system design. These
AI algorithms have not required modification since their de-
ployment in November 2019.

Lessons Learned During Deployment
The real-world deployment of the IBCA platform has high-
lighted the following key lessons:
1. The target users are mostly not information technology

(IT) savvy with little knowledge of AI. The IBCA plat-
form follows modular design approach to clearly separate
the responsibilities of different stakeholders so that the
required IT skills level is low. This, coupled with stan-
dardization through various information templates, has
reduced the level of training required for new users of the
platform. The detailed outputs of the AI engine are only
presented to the high level decision-makers and technical
team. This enables the technical team to provide more
target support during deployment.

2. The IBCA platform was designed for efficiency at the ex-
pense of data privacy protection. Certain operations such
as the sharing of digital assets amongst different govern-
ment organizations do not follow best practices for data
privacy protection. In subsequent development, we will
adopt a react, resolve, reinvent approach to balance the
need for efficiency with the need for ethical AI solutions
(Tzachor et al. 2020). Beyond the initial “react” phase,
we plan to incorporate privacy preserving machine learn-
ing paradigms such as federated learning (Yang et al.
2020; Kairouz et al. 2021) to enhance the protection of
sensitive information. The aims is to transform the IBCA
platform into an exemplary AI for social good solution
(Tomašev et al. 2020).

Conclusions and Future Work
This paper discusses the use of AI technology to solve
challenges encountered in benefits eligibility certification in
Shandong Province, China. We have developed the IBCA
platform to improve the survival status verification process
for retirees and pension disbursements. IBCA leverages big
data analysis to capture the trajectory of retirees’ health re-
lated information and predict their health and survival sta-
tuses. Since its deployment in November 2019, the plat-
form has been successfully adopted across 12 major cities in
Shandong Province. It has been embraced by governmental
departments, including big data bureaus, human resources
and social services, among others. This widespread adop-
tion empowers areas such as human resources, social ser-
vices, civil affairs, health, construction, and disability ser-
vices, providing substantial benefits to these sectors. The
platform has also been a commercial success.

In subsequent work, we intend to explore the application
of interpretable AI methods (Zeng et al. 2019; Theunissen

and Browning 2022) to automatically generate explanations
for AI predictions and recommendations (Yu et al. 2016,
2017). This effort aims to enhance understanding within
governmental organizations, fostering acceptance and trust
in AI (Yu et al. 2014a,b; Tanyel, Ayvaz, and Keserci 2023).
Given the significant amount of personal information in-
volved in the benefits certification process, e.g., ID numbers
and medical records, data security and privacy protection
are paramount. Hence, we will investigate the integration
of privacy-preserving machine learning techniques, such as
federated learning (Gao et al. 2019; Fu et al. 2022; Goebel
et al. 2023), into the IBCA platform. This approach will
enable collaboration among various governmental depart-
ments, while complying with privacy-protecting regulations
such as the General Data Protection Regulation (Goddard
and Michelle 2017).

Acknowledgments
This work is supported by the Key R&D Program of Shan-
dong Province, China (2021CXGC010103); the National
Natural Science Foundation of China (Grant No. 62376135);
Joint SDU-NTU Centre for Artificial Intelligence Research
(C-FAIR) (NSC-2019-011); the National Research Founda-
tion Singapore and DSO National Laboratories under the AI
Singapore Programme (AISG Award No: AISG2-RP-2020-
019); and the RIE 2020 Advanced Manufacturing and En-
gineering (AME) Programmatic Fund (No. A20G8b0102),
Singapore. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research
Foundation, Singapore.

References
Bertugli, A.; Calderara, S.; Coscia, P.; Ballan, L.; and Cuc-
chiara, R. 2021. AC-VRNN: Attentive Conditional-VRNN
for multi-future trajectory prediction. Comput. Vis. Image
Underst., 210: 103245.

Caterini, A. L.; Doucet, A.; and Sejdinovic, D. 2018. Hamil-
tonian Variational Auto-Encoder. In NeurIPS.

Che, Z.; Purushotham, S.; Cho, K.; Sontag, D. A.; and Liu,
Y. 2016. Recurrent Neural Networks for Multivariate Time
Series with Missing Values. CoRR, abs/1606.01865.

Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.;
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