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Abstract

More than ever, air transport players (i.e., airline and air-
port companies) in an intensely competitive climate need to
benefit from a carefully optimized management of airport re-
sources to improve the quality of service and control the in-
duced costs. In this paper, we investigate the Airport Check-
in Desk Assignment Problem. We propose a Constraint Pro-
gramming (CP) model for this problem, and present some
promising experimental results from data coming from ADP
(Aéroport de Paris). Our works are deployed in a preprod en-
vironment since 1 year.

Introduction
Before the COVID-19 health crisis, the International Air
Transport Association (IATA) forecasts showed that pas-
sengers would double by 2036, reaching 7.8 billion. The
COVID-19 pandemic has slowed air traffic considerably, es-
pecially in 2020 and early 2021, but since then, the eco-
nomic pressure is back again. Air traffic picked up in 2022
and is similar to 2019. Some airlines have even announced
the return to service of Airbus 380 to manage demand. In
such a context, optimizing airport resources management
remains essential to control induced costs while keeping a
good quality of services. For many planning and scheduling
air transport problems, techniques and tools developed from
mathematical and constraint programming remain essential.
Specifically, when airline companies have access to the re-
sources delivered at the airport, the consumption of these
resources (e.g., check-in banks, aircraft stand) must be care-
fully planned while optimizing an objective function deter-
mined by some business rules; see, for example, (Mangoubi
and Mathaisel 1985; Dincbas and Simonis 1991; Lim, Ro-
drigues, and Zhu 2005; Diepen et al. 2007; Simonis 2007).
A classical air transport problem is the Airport Gate Assign-
ment Problem (AGAP), which involves assigning each flight
(aircraft) to an available gate while maximizing both passen-
ger conveniences and the airport’s operational efficiency; see
surveys in (Bouras et al. 2014; Daş, Gzara, and Stützle 2020)
and models in (Li 2008, 2009; L’Ortye, Mitici, and Visser
2021). Another classical problem is the Check-in Assign-
ment Problem, which involves assigning each flight to one

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or more check-in desks depending on the airline’s require-
ments. Different approaches in MILP (mixed-integer linear
programming) have been proposed (Yan, Tang, and Chen
2004; Araujo and Repolho 2015). A recent survey (Lalita
and Murthy 2022) presents different methods for solving this
problem using integer programming or dynamic program-
ming. Because significant improvements have been made
during the last decade in Constraint Programming (CP), such
as, e.g., efficient filtering (and compression) algorithms for
table constraints (Le Charlier et al. 2017; Demeulenaere
et al. 2016), or lazy clause generation (G. Chu et al. 2011),
tackling optimization of airport tasks with CP remains an in-
teresting issue. In this paper, we are interested in the Airport
Check-In Desk Assignment Problem as defined at CDG In-
ternational Airport. We propose a Constraint Programming
(CP) approach and show its potential interest by presenting
promising experimental results. The rest of this paper is or-
ganized as follows. In Section , we present Airport Check-In
Desk Assignment Problem. In Section , we propose a Con-
straint Optimization model for this problem and some pos-
sible variants of this model. In Section , we discuss the ar-
chitecture of the XCSP toolchain in the Paris airport sys-
tem. Next, in Section , we present some experiments carried
out in an in-situ experimental context with the Paris airport
system. Before concluding, we discuss the deployment chal-
lenges of our approach. Finally, in Section , we conclude and
give some perspectives for future works.

Airport Check-In Desk Assignment Problem
at Paris Airport

CDG Airport is the ninth-largest airport in the world regard-
ing passenger traffic. There are approximately 1, 400 flight
movements (takeoff or landing) per day. At the airport, one
of the combinatorial problems to address is to set each flight
(or group of flights) to one or more available check-in desks.
This Section provides some information about the Airport
Check-In Desk Assignment Problem. A registration corre-
sponds to a flight or a set of flights of the same airline. For
each registration, a task must be carried out: associating a
set of check-in desks with it. Each task of registration (or
check-in for a flight) starts at the same time and ends simul-
taneously. Note that the number of check-in desks depends
on the number of passengers and is fixed in advance by the
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airline and the airport. Figure 1 presents some registration
tasks at Orly Airport with 1, 4, and 5 tasks.

Planning registrations can be achieved for one or more
days. For the moment, the planning horizon we manage is
one week (sometimes less). In the rest of the paper, a check-
in desk will be called a bank, the set of all registrations
(tasks) is denoted by R, the set of all zones (groups of banks)
is denoted by Z , the set of banks by C and the maximal num-
ber of banks required by registration by ν.

Imposing Consecutive Desks
When attempting to model this problem, a first arising con-
straint is that the banks (check-in desks) used for a specific
registration must be consecutive (as we can observe in Fig-
ure 1). Importantly, as banks are grouped by zones, we must
pay attention to assigning only banks from the same zone to
a registration. For example, in Figure 2, there are two zones
(colored in blue and pink); so for registration, we cannot use
both a blue and a pink bank.

Sharing Desks under Conditions
By default, a registration cannot share its assigned banks
with another registration if the two registration tasks over-
lap. So at any time, no bank can be shared by two dif-
ferent registrations. However, for some reason of logistics
(space) and under certain general conditions (called over-
lapping rules), some overlapping between flights from the
same airline company may be tolerated for a limited period
and/or for a limited number of tasks. In the latter case, if,
for example, the number of banks required by registration
is set to 4 and the maximum number of overlapping situa-
tions is 2, then only two banks from the four banks associ-
ated with the registration can be shared with another regis-
tration that shares the same overlapping rule. We will note
O the set of pairs of registrations (ρ1, ρ2) that cannot strictly
share banks (they may be time overlapping, but no rule ex-
ists permitting to have shared banks between them). We also
note OR where each element or is a pair (Ror, t) or triplet
(Ror, t,m) where Ror ⊂ R is the set of registration cov-
ered by the rule, t is the overlapping duration tolerated by
the rules, and m is the maximum number of tasks that can
overlap. Finally, we note for each rule or and for each reg-
istration ρ ∈ Ror, Nρ,or ⊂ Ror the set of neighbors (i.e.,
registrations that have a temporal overlap with ρ) of ρ con-
sidering the rule or.

Figure 2 presents an example of planning that allows over-
lapping for 100% of the time and without a limited number
of tasks.

Excluding Some Banks
Some banks are frequently unavailable for several hours to
several days (for example, for maintenance reasons). The
unavailable constraints ensures that certain banks are not
available for a period of time (which may be periodic). In
other words, we must remove from the domain the check-in
desk for each task that overlaps with the period of exclu-
sion. Another type of exclusion is to exclude the check-in

desk for a given registration regardless of the time. The ex-
clusion constraints ensures that certain banks are excluded
for specific registration under some conditions.

Pre-assigning Banks
Sometimes, users (from ADP) may want to force a spe-
cific set of banks to be associated with some registrations.
We will note (ρ, j, c) the triplet that represents the pre-
assignment of bank c as the jth bank used by registration
ρ; all such triplets will be denoted by P .

Specifying the Objective
Of course, assigning a bank to a registration is subject to
some placement preferences by airline companies. For each
assigned bank, a reward is given: the reward of assigning
the bank c as the jth bank used by registration ρ is denoted
by rcρ,j . Assuming that we have a series1 of 0/1 variables
xc
ρ,j associated with each registration task (indicating which

check-in desk will be used), we can then define the overall
objective function as follows:

maximize
∑
ρ∈R

j∈1..ntasks(ρ)

xc
ρ,j × rcρ,j (1)

Constraint Optimization Model
Now that the problem has been introduced in general terms,
we need to describe it more formally using a constraint net-
work. A Constraint Network (CN) consists of a finite set of
variables subject to a finite set of constraints. Each variable
x can take a value from a finite set called the domain of x.
Each constraint c is specified by a relation that is defined
over (the Cartesian product of the domains of) a set of vari-
ables. A solution of a CN is the assignment of a value to
every variable such that all constraints are satisfied. A Con-
straint Network under Optimization (CNO) is a constraint
network that additionally includes an objective function obj
that maps any solution to a value in R. For modeling CNOs,
also called Constraint Optimization Problems (COPs), sev-
eral modeling languages or libraries exist, such as, e.g.,
OPL (P. van Hentenryck 1999), MiniZinc (Nethercote et al.
2007; Stuckey, Becket, and Fischer 2010), Essence (Frisch
et al. 2007) and PyCSP3 (Lecoutre and Szczepanski 2020).
Our choice is the recently developed Python library PyCSP3

that permits to generate specific instances (after providing ad
hoc data) in XCSP3 format (Boussemart et al. 2016, 2020),
which is recognized by some well-known CP solvers such
as ACE (AbsCon Essence) (Lecoutre 2023), OscaR (OscaR
Team 2012), Choco (Prud’homme and Fages 2022), and Pi-
catSAT (Zhou, Kjellerstrand, and Fruhman 2017). For sim-
plicity, however, we formally describe below the model de-
veloped for the Airport Check-in desk problem in a higher
“mathematical” form. Subsequently, we employ the data it-
self (for example, ρ) to serve as both the data and their corre-
sponding indexes. Additionally, we adopt the notation a[i, b]
or a[i][b] interchangeably to access the cells within a matrix

1Note that we shall not use 0/1 variables in the model proposed
in Section .
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Figure 1: An example of planning at Orly Airport

Figure 2: Example of a planning that allows overlapping.

denoted as a. Lastly, we employ the notation ntask(ρ) to
retrieve the count of tasks associated with the registration
ρ. Firstly, we need to introduce the variables of our model.
A registration must use check-in desks in coherence with
its strategy. Therefore, rather than making domains contain-
ing all possible banks, the domains are initially reduced to
those compatible with the registration strategy. For each reg-
istration ρ we note this domain Dx,ρ. Similarly, the domains
for the variables representing airlines’ rewards contain only
the values corresponding to the allowed check-in desks. For
each registration ρ we note this domain Dr,ρ. We also intro-
duce a fictive bank f with a reward of 0.

We need two (2-dimensional) arrays of variables to repre-
sent assigned registration and associated rewards:

• x is a matrix of |R|×ν variables having the set of values
Dx,ρ; x[ρ][j] represents the index (code) of the check-in
desk assigned to the jth task of the registration ρ.

• w is a matrix of |R|×ν variables having the set of values
Dw,ρ; w[ρ][j] represents the satisfaction of the airline for
the jth registration task ρ.

Secondly, we need to introduce the constraints in our
model. Because of the nature of the problem (and data), it is
natural to post so-called table constraints, which explicitly
enumerate either the allowed tuples (positive table) or the
disallowed tuples (negative table) for a sequence of variables
(representing the scope of a constraint). Efficient algorithms
for such table constraints have been developed over the last
decade (Lecoutre 2011; Lecoutre, Likitvivatanavong, and
Yap 2015; Demeulenaere et al. 2016; Verhaeghe, Lecoutre,
and Schaus 2017).

A First COP Formulation
Let us consider the variables previously introduced, the
problem can be formulated as follows:

x[ρ][j] = c, ∀(ρ, j, c) ∈ P (2)

(x[ρ][j] = x[ρ][j + 1]− 1) ∨
(x[ρ][j] = f ∧ x[ρ][j + 1] = f),

∀ρ ∈ R,

∀j ∈ ntask(ρ)

(3)

x[ρ1][i] ̸= x[ρ2][j], ∀ρ1, ρ2 ∈ O,

∀i ∈ ntask(ρ1),

∀j ∈ ntask(ρ2)

(4)

x[ρ][i], r[ρ][i] ∈ {(c, rcρ,i), ∀c ∈ C ∪ {f, 0}} (5)
Constraints (2) ensure that each pre-assignment of P is

respected. Constraints (3) ensure that the chosen check-in
desks for registration are consecutive or used the the fictive
check-in desk for each registration task (see Section ). The
introduction of holes in the domains (e.g., useless check-in
desks) makes it possible to manage this by imposing that
a task must be equal to the following task minus one and
by not including useless check-in desks in the domain. In
this way, we insert a hole representing the zone’s separation.
Constraints (4) prevent two overlapping registration from
being assigned to the same check-in desk (as presented in
Section ). Constraints (5) use table constraint to map the
check-in desk with this weight. We use the weight (reward)
defined in Section . As detailed earlier, overlapping rules can
be set up to tolerate registrations using the same check-in
desk. There are three methods of implementing these rules
for two registrations:
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• if no rule exists between these registrations, or if a rule
exists but is incompatible with the overlap period, then
overlap is prohibited using a non-overlap constraint (see
Constraint 4).

• if a rule exists as a pair (i.e., without specifying the m in
the rules), overlapping is tolerated, and no constraint is
added.

• if a rule exists as a triplet, specific constraints are added
to represent this particular case.

We add a new matrix of |OR| × |R| × |ν| × |n| variables
called od. n is the maximum number of possible neighbors
(i.e., max ({|Nρ,or|, ∀or ∈ OR, ∀ρ ∈ Ror})). The domain
of a variable od[or, ρ, b, ρ1] is a binary domain composed of
the value 0 and the overlapping duration between the regis-
tration ρ and ρ1 considering the rule or. Next, we can add
the constraints over this previous matrix.

od[or, ρ, b, ρ1] = 0 ⇔
ntasks(ρ1)∧

bb=0

(x[ρ, b] ̸= x[n, bb]) ∨ x[ρ, b] = f,

∀or ∈ OR,

∀ρ ∈ R,

∀b ∈ ntask(ρ),

∀ρ1 ∈ Nρ,or

(6)

Constraints 6 ensure that the overlap time between a reg-
istration ρ and and one of its neighboring registration n is
equal to 0 if and only if the two tasks use different check-in
desks or one of them uses the dummy bank. Based on the
assignment in the x matrix, this constraint is used to deter-
mine whether two registrations overlap or not. We now must
introduce constraints considering the maximum number of
overlaps possible on a registration.

Sum({od[or, ρ, b, ρ1] > 0, ∀ρ1 ∈ Nρ,or, ∀b ∈ ntasks(ρ)}) ≤ m,

∀or ∈ OR,

∀ρ ∈ R
(7)

In Constraint 7, od[or, ρ, b, ρ1] > 0 is true when the reg-
istrations ρ and ρ1 overlap on task b of ρ. We ensure that the
sum of these booleans for each task b of a registration ρ and
the set of tasks of these neighbors is less than or equal to m
from the or rule.

Finally, we can use the matrix w for posting the objective
function (see Section ):

maximize
∑
ρ∈R

j∈1..ntasks(ρ)

wc
ρ,j (8)

Gathering Binary Difference Constraints
We will now strengthen this natural formulation by reformu-
lating the set of constraints (4) using the AllDifferentExcept
constraint. This latter enforces all variables to take distinct
values, except those assigned to a special (joker) value (here
it is our fictive bank f ).

AllDifferentExcept({x[ρ1], x[ρ2]}, f) (9)

For each pair ρ1, ρ2 in the set of forbidden overlaps O.
Note that we used the notation x[ρ1] and x[ρ2] for a short-
cut that integrates the entire second dimension of the matrix
into the constraint (i.e., each task of ρ1 or ρ2). This formu-
lation allows us to reduce the number of constraints about
no-overlapping tasks considerably, as the previous formula-
tion needs a quadratic number of not-equal constraints.

Gathering AllDifferentExcept Constraints
Even though the formulation above notably reduces the
number of posted constraints, the solver remains too slow
to find acceptable results (bounds) in a reasonable amount
of time. We have thus gathered all AllDifferentExcept
constraints into a unique, pragmatic constraint called
GatherAllDifferentExcept. For this particular con-
straint, we use a specific fast propagator that performs a lim-
ited form of filtering (i.e., does not enforce generalized arc
consistency). This is a very pragmatic approach, which is
equivalent to the initial set of binary constraints but faster
(only one constraint being posted).

Refinement of the Overlapping Constraint
To reduce the dimensions of the od matrix, an alternative
approach involves utilizing not the cardinality of R for the
second dimension, but solely the size of the set of regis-
trations governed by rules. This size is represented by the
union of all registrations involved in the rules, denoted as
ROR =

⋃
∀Ror∈OR Ror. We can also use a true binary do-

main (i.e., {0,1}) to avoid the reification constraint intro-
duced by od[or, ρ, b, ρ1] > 0. Consequently, Constraint 7
can be reformulated in two possible ways: First, in Con-
straint 10, we exploit the binary domain to sum the variables
directly. This eliminates the need for reification and results
in the following form:

Sum({od[or, ρ, b, ρ1], ∀ρ1 ∈ Nρ,or, ∀b ∈ ntasks(ρ)}) ≤ m,

∀or ∈ OR,

∀ρ ∈ R
(10)

Alternatively, in Constraint 11, we make use of a Count
constraint along with the binary domain, taking advantage
of the associated propagator:

Count({od[or, ρ, b, ρ1], ∀ρ1 ∈ Nρ,or, ∀b ∈ nt(ρ)}, v = 1) ≤ m,

∀or ∈ OR,

∀ρ ∈ R
(11)

Architecture
The sequence diagram, depicted in Figure 3, elucidates the
intricate integration process of the XCSP toolchain into
the newly developed software, referred to as DCB (De-
mand Capacity Balancing), at Paris Airport. The architec-
ture of DCB is structured into two distinct components.
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Figure 3: Sequence diagram of the XCSP toolchain.

First, there is DCB.WEB, which operates as an API, fa-
cilitating communication with the front-end developed in
REACT. This component is interconnected with various
vital systems of Paris Airport, enabling seamless access
to resources, traffic data, and other pertinent information.
Furthermore, it is connected with the second component,
DCB.SOLVER.SERVER (also called SOLVER). SOLVER
functions as another API, responsible for receiving a JSON
representation of the problem. Subsequently, the problem is
added to a thread-pool, and the associated ID is pro-
vided to DCB.WEB to facilitate tracking the resolution sta-
tus. Following this initial step, the problem undergoes a de-
composition process, with various strategies available for
this decomposition, which will be discussed in Section .
For each distinct decomposition, the PyCSP3 model is in-
voked, generating an XML file that encapsulates the prob-
lem’s details. To facilitate solution retrieval and reconstruc-
tion, a corresponding mapping file is also generated. Each
of these generated XML files is then submitted to the solver
ACE to derive a solution. Each Java solver is connected to
DCB.SOLVER.SERVER through a UNIX socket. The pro-
cess continues as we await the completion of each solver
instance. Once all solvers have finished their operations, the
solutions are merged into a global solution. When DCB.WEB
queried SOLVER for a specific problem’s solution with an
associated ID, the corresponding solution is sent if the reso-
lution process is complete.

Experiments Results
Instances
Table 1 presents some factual aspects concerning our in-
stances based on real data from Paris Airport and repre-
senting realistic scenarios. The first column is the instance’s
name, while the second, third, fourth, and fifth columns indi-
cate the number of check-in desks, tasks, overlapping rules,
and strategy rules, respectively. We consider 3 kinds of in-
stances. The first is the instance without overlapping rules
(denoted by Φ1), the second is the instance with overlapping
rules but without a limited number of tasks (denoted by Φ2),
and the last case is the instances with overlapping rules that
specify a limited number of tasks (denoted by Φ3). For space
reasons, we have limited the results to only ORLY instance
from Φ2, but all the results are available and reproducible2

(thanks to Metrics3).

Decomposition
Because decomposing the problem is possible without de-
grading results, it was decided to break the problem into sim-
pler sub-problems to solve them successfully. We have three
kinds of decomposition. The first strategy (also called com-
plete decomposition) consists of breaking down the problem
into groups of terminals based on assignment strategies. If

2see supplementary materials or https://gitlab.com/
productions-tfalque/articles/check-in-scheduling-optim-cdg-
airport/experiments-iaai-2024

3https://github.com/crillab/metrics
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Instance |C| # Tasks |OR| # Strategy rules

ORLY 1234-2023-05-08/2023-05-14 326 2224 19 31
CDG T1-2023-07-03/2023-07-09 137 630 6 38
CDG T2-B & D-2023-07-03/2023-07-09 108 766 1 21

Table 1: Description of the main instances uses in this study.

a strategy for registration covers the check-in desks of sev-
eral terminals, then we group the terminals; otherwise, we
leave them separate. Finally, for each group of terminals,
we can re-decompose them day by day. If there are night
flights, these are pre-assigned before launching resolution.
In the second strategy, we keep the terminals together, and
we decompose only day by day. In the last strategy, we gen-
erate a global problem without decomposition.

Environment
In our experimentation, the time limit for each execution
(part of the decomposition) is limited to 30 seconds (compi-
lation time in XCSP format is not included in this timeout).
They are launched in a real environment in the Paris air-
port system equipped with 64 GB of RAM and two 10-core
Intel Xeon Silver 4210R (2.4 GHZ) and running Windows
Server 2019. We have limited the number of parallel jobs to
10 (i.e., no more than 104 “resolution5” jobs can be run si-
multaneously). Note that the solver is stopped when no more
improvement has been made during a period of 5 seconds
(since the last solution was found). Since the choice of stop-
ping the solver after 5 seconds makes it non-deterministic,
we run each configuration on each decomposition 5 times.
For our study, we use frba/dom (Li, Yin, and Li 2021) as
variable-ordering heuristic (this heuristic was observed as
the best one on this problem), solution-saving (Vion
and Piechowiak 2017; Demirovic, Chu, and Stuckey 2018)
for simulating a form of large neighborhood search. Con-
cerning the value-ordering heuristic, we have tested different
configurations: BIVS (Fages and Prud’Homme 2017), until
the first solution is found (after that, the smallest value in the
domain is systematically selected if solution-saving cannot
be applied), Static, a static order based on the rewards of
check-in desks in the strategies, and BIVS+ Static, an ap-
proach that mixes the two heuristics: BIVS until the first so-
lution is found (after that, Static is used if solution-saving
cannot be applied). We use the solver ACE6 and in particular
the JUniverse7 adapter of ACE: ACEURANCETOURIX8 which
allows interaction with ACE via an interface.

Comparison with the First Release ons Φ2

In the initial iteration of our approach, the preliminary
processing of ADP data was executed directly in PyCSP3

4We use the value returned by
Environment.ProcessorCount (20) divide by two.

5“resolution” means compilation phase and solving phase
6https://github.com/xcsp3team/ace
7https://github.com/crillab/juniverse
8https://github.com/crillab/aceurancetourix

model. Additionally, SOLVER was limited to conducting a
complete decomposition exclusively. The improvements in
the second version can be summarized as follows:

• The preliminary processing was executed directly in C#
before calling PyCSP3 model.

• The variables representing tasks are now ordered based
on their start dates.

• Certain computations related to the integration of the
GatherAllDifferent constraint within the solver have un-
dergone optimization.

For this Section, we consider instances with overlapping
rules that do not have a limited number of tasks and the best
solver’s configuration of the first version reproduced identi-
cally in the second version. Note that as there is no overlap
rule with a limited number of tasks, the constraints 6 and 7
are not present.

Tables 2 and 3 present some results with different config-
urations for instance ORLY 1234 for the week from 2023-
05-08 to 2023-05-14. After the decomposition step, this lat-
ter is decomposed in two groups of terminals (ORLY 1,2,4
and ORLY 3). The first column presents the configuration
of ACE, and the second column indicates the arity limit for
which intension constraints are transformed into extension
constraints by the solver. The third column indicates if we
gather or not the AllDifferentExcept constraints, False
corresponds to the second formulation (Section ) and True
to the third formulation (Section ). The next 10 columns
present results for the first version and the second version.
For both versions, we found 5 columns:

• Time presents the best and worst case of resolution time
(including compilation time) over the 5 executions if we
have run the resolution sequentially.

• Solver T is similar to the column Time but only for the
solver.

• First and Last contain the mean of the first (resp. last)
bound computed over the 5 executions and the best and
worst case runtime for obtaining the first (resp. last)
bound.

• # not contains the number of registrations that are not as-
signed (i.e., the number of registrations that use the fic-
tive check-in desk).

We can see that the updated version leads to a significant
reduction in the computational time (column Time), with
improvements of 17% for the best-case scenario and 21%
for the worst-case scenario. The improvements made by this
second version limit the impact of using Python and allow
us to continue using the PyCSP3 library to model problems.
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Configuration ALE GAT Time Solver T First Last # not

Bivs+ Static 4 True 139-182 80-102 22,648,100 (5-10) 23,694,100 (30-50) 255

Bivs 0 True 118-159 77-110 22,648,100 (5-7) 23,620,900 (26-44) 258

Static 0 True 119-187 80-112 17,512,500 (4-7) 23,940,100 (30-44) 243

Table 2: Result on decomposition ORY124 (7 days) from planning ORLY 1234 of Φ2.

Configuration ALE GAT Time Solver T First Last # not

Bivs+ Static 4 True 109-135 85-108 22,692,100 (4-8) 23,779,100 (34-51) 254

Bivs 0 True 112-158 91-119 22,692,100 (4-9) 23,819,100 (42-56) 253

Static 0 True 87-116 67-96 22,624,900 (3-8) 23,974,100 (21-39) 243

Table 3: Result on decomposition ORY124 (7 days) from planning ORLY 1234 of Φ2.

Results of the Second Version Over Φ2

Tables 4 and 5 present results corresponding to various de-
compositions of instance ORLY 1234, while Table 6 illus-
trates results for the same instance but without any decom-
position. It’s worth noting that in the latter table, configura-
tions where GatherAllDifferent is set to false have been
excluded due to resulting in a TIMEOUT situation. More-
over, it’s notable that despite relatively short resolution times
(refer to column Solver T), the global times still remain high
(as indicated in column Solver T), which can be attributed
to the increased time taken for compilation processes. Fi-
nally, we can see that decomposition seems to be a good
option because it gives a better bound and fewer unassigned
flights than when no decomposition is used (9+253 = 262).
For example, for Bivs+ Static the bound is 45255160
(23795100+21460060) and the number of unassigned flight
is 262 (253 + 9).

Deployment Challenges
Our current approach represents a comprehensive reorga-
nization of the existing planning tool, originally built on
technologies dating back approximately two decades. The
cornerstone of our strategy is to enable future maintainers
to focus primarily on PyCSP3 models. Through special-
ized training in this library, these individuals can adeptly
adjust and customize the models to meet the Paris Airport
group’s dynamic needs, all while bypassing the need to al-
ter the solver’s intricate components. However, it’s notewor-
thy that employing Python may introduce certain limitations
in speed, particularly during the compilation stages, which
could potentially become a bottleneck. A significant tech-
nical challenge we encountered was integrating the primary
components of DCB, which are developed in C#, with both
the Python-based PyCSP3 models and the Java-based solver,
ACE. This integration posed a multifaceted engineering chal-
lenge, albeit one that falls outside the purview of this paper.
The system we describe is deployed in a preprod environ-
ment in a real-world context at Paris Airport for Demand
Capacity Balancing (DCB). Its deployment runs in parallel
with the legacy solution, enabling user-led visual compar-

ative analyses. It’s crucial to acknowledge that direct com-
parisons between the previous and new methodologies are
constrained due to the differences in modeling approaches.
Given the disparities in the scales of the objective functions,
users rely on visual methods for comparing the two sys-
tems. One of the principal advantages of our approach is
the significant cost savings associated with license fees for
the previous commercial solution. By opting to develop its
own solution, Paris Airport retains complete control over its
data, avoiding the purchase of an expensive external system.
Moreover, the user experience has been greatly enhanced by
transitioning to a modern web interface, replacing the out-
dated, heavy client UI of the legacy system. This improve-
ment is notable not just in the solver aspect but also in user
interactions for configuration and manual corrections on the
Gantt chart. The adoption of open-source tools, in contrast to
the former commercial solution, not only reduces costs but
also markedly enhances the tool’s adaptability and acces-
sibility, aligning well with the strategic objectives of Paris
Airport.

Conclusion
In this paper, we have been interested in the Airport Check-
in Desk Problem as defined at Paris Airport. We have formu-
lated a COP model for this problem, mainly exploiting table
constraints and developing an ad-hoc constraint (for reduc-
ing the number of constraints and accelerating the resolution
consequently). We have presented an empirical evaluation of
our approach. Our results look quite promising as the ADP
group starts replacing their current proprietary solution with
ours, based on generic open-source tools (modeling library
and constraint solver). Our work is an integral part of re-
designing Paris Airport planning tools, leading to the cre-
ation of the new DCB tool. However, despite the encourag-
ing performance metrics and the seamless integration that
empowers users to focus solely on PyCSP3-written models,
the reliance on Python in the current execution workflow has
unveiled a potential bottleneck. Consequently, we are cur-
rently exploring avenues to avoid the Python dependency
and, if feasible, to communicate with the solver API with
the same user-friendliness akin to the PyCSP3 library.
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Configuration ALE GAT Time Solver T First Last # not

Bivs+ Static 0 False 118-150 98-128 22,692,100 (35-60) 22,890,100 (50-79) 281
Bivs+ Static 0 True 109-141 89-120 22,692,100 (4-12) 23,795,100 (36-60) 253
Bivs+ Static 4 False 120-155 99-131 22,692,100 (36-59) 22,890,100 (51-80) 281
Bivs+ Static 4 True 109-135 85-108 22,692,100 (4-8) 23,779,100 (34-51) 254

Bivs 0 False 130-164 108-143 22,692,100 (40-68) 22,896,100 (60-90) 281
Bivs 0 True 112-158 91-119 22,692,100 (4-9) 23,819,100 (42-56) 253
Bivs 4 False 124-148 102-126 22,692,100 (38-53) 22,89,0100 (53-75) 281
Bivs 4 True 109-132 89-107 22,692,100 (4-9) 23,819,100 (41-49) 253

Static 0 False 115-470 78-134 22,624900 (18-31) 23,073,760 (37-79) 251
Static 0 True 87-116 67-96 22,624,900 (3-8) 23,974,100 (21-39) 243
Static 4 False 127-293 85-168 22,624,900 (16-28) 23,109,440 (36-75) 251
Static 4 True 93-120 71-85 22,624,900 (3-6) 24,000,100 (25-33) 242

Table 4: Result on decomposition ORLY 124.

Configuration ALE GAT Time Solver T First Last # not

Bivs+ Static 0 False 217-288 177-248 21,232,800 (107-166) 21,237,620 (124-184) 12
Bivs+ Static 0 True 135-176 94-139 21,232,800 (7-18) 21,460,060 (39-54) 9
Bivs+ Static 4 False 206-275 167-235 21,232,800 (96-158) 21,237,900 (114-170) 12
Bivs+ Static 4 True 123-219 84-170 21,232,800 (5-10) 21,428,900 (14-69) 10

Bivs 0 False 201-251 164-214 21,232,800 (93-139) 21,238,220 (110-158) 12
Bivs 0 True 125-203 85-151 21,232,800 (4-15) 21,421,400 (26-54) 9
Bivs 4 False 200-253 164-216 21,232,800 (92-141) 21,238,540 (110-158) 12
Bivs 4 True 116-176 77-137 21,232,800 (4-10) 21,442,480 (23-54) 9

Static 0 False 179-579 137-280 21,049,200 (15-52) 21,190,220 (72-165) 16
Static 0 True 150-219 108-179 21,049,200 (4-11) 21,721,160 (51-122) 3
Static 4 False 182-854 130-244 21,049,200 (14-30) 21,194,800 (60-167) 16
Static 4 True 154-214 112-173 21,049,200 (3-10) 21,758,460 (45-116) 2

Table 5: Result on decomposition ORLY 3.

Configuration ALE GAT Time Solver T First Last # not

Bivs+ Static 0 True 112-114 18-19 43,924,300 (9-10) 43,927,600 (9-10) 298
Bivs+ Static 4 True 112-121 18-26 43,924,300 (9-14) 43,927,600 (10-16) 298

Bivs 0 True 112-117 18-23 43,924,300 (9-13) 43,927,600 (9-14) 298
Bivs 4 True 112-120 18-25 43,924,300 (9-14) 43,927,600 (10-16) 298

Static 0 True 107-122 12-27 43,674,100 (4-5) 43,677,380 (4-18) 274
Static 4 True 107-108 12-14 43,674,100 (3-5) 43,674,100 (3-5) 274

Table 6: Result on instance ORLY 1234 without decomposition.
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