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Abstract

The increasing size of large language models (LLMs) has in-
troduced challenges in their training and inference. Remov-
ing model components is perceived as a solution to tackle
the large model sizes, however, existing pruning methods
solely focus on performance, without considering an essen-
tial aspect for the responsible use of LLMs: model fairness.
It is crucial to address the fairness of LLMs towards di-
verse groups, such as women, Black people, LGBTQ+, Jew-
ish communities, among others, as they are being deployed
and available to a wide audience. In this work, first, we inves-
tigate how attention heads impact fairness and performance
in pre-trained transformer-based language models. We then
propose a novel method to prune the attention heads that
negatively impact fairness while retaining the heads critical
for performance, i.e. language modeling capabilities. Our ap-
proach is practical in terms of time and resources, as it does
not require fine-tuning the final pruned, and fairer, model.
Our findings demonstrate a reduction in gender bias by 19%,
19.5%, 39.5%, 34.7%, 23%, and 8% for DistilGPT-2, GPT-
2, GPT-Neo of two different sizes, GPT-J, and Llama 2 mod-
els, respectively, in comparison to the biased model, with only
a slight decrease in performance. WARNING: This work uses
language that is offensive in nature.

Introduction
The extensive adoption of large language models (LLMs) in
diverse natural language processing tasks has proven highly
successful, leading to their integration into various appli-
cations (Liu et al. 2022; Wang et al. 2018; Li et al. 2020;
Yu, Bohnet, and Poesio 2020). However, this progress has
also brought up concerns about the fairness of these models.
Numerous studies have revealed a troubling trend in which
LLMs generate biased outputs for different genders, races,
or sexual orientations (Nadeem, Bethke, and Reddy 2021;
Zayed et al. 2023b,a). These biases can give rise to seri-
ous problems, such as the generation of discriminatory text;
for example, when language models are prompted with sen-
tences about Arabs, they produce continuations with refer-
ences to terrorism (Nadeem, Bethke, and Reddy 2021).

To further expand their abilities, there has been a trend
of increasingly larger models trained on extensive datasets

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Smith et al. 2022b; Brown et al. 2020; Cohen et al. 2022;
Rae et al. 2021). However, this pursuit of larger models
has introduced challenges for training and inference. To ad-
dress the issue of increasing model size, model pruning
has emerged as a potential solution. Nevertheless, current
pruning methods tend to focus on removing model compo-
nents that have minimal impact on performance, often over-
looking fairness implications (Fan, Grave, and Joulin 2020;
Voita et al. 2019; Behnke and Heafield 2021a; Prasanna,
Rogers, and Rumshisky 2020). Additionally, these methods
frequently assume that a pruned model will undergo fine-
tuning, which is becoming more and more impractical given
the substantial increase in size of modern language models.
As a result, there is a need for more thoughtful pruning ap-
proaches that consider not only performance, but also model
fairness.

Numerous pruning methods have highlighted that certain
attention heads are critical for maintaining language model-
ing ability, while others appear superfluous to model perfor-
mance (Voita et al. 2019; Michel, Levy, and Neubig 2019;
He and Choi 2021; Bian et al. 2021). Some studies have
shown that these important heads play an interpretable role
in downstream tasks (Wang et al. 2022; Voita et al. 2019;
He and Choi 2021). In our work, we explore the possibility
of extending this concept to fairness by identifying attention
heads that are responsible for promoting bias. To achieve
this, we compute separate scores to quantify the contribution
of each attention head toward both performance and bias.
These scores serve as our guide in selectively removing at-
tention heads to improve fairness with minimal performance
loss. Put simply, we propose to prioritize pruning the heads
that contribute the most to bias, given that they are not cru-
cial for language modeling. Our contributions in this paper
can be summarized as follows:

1. We investigate the impact of existing head pruning meth-
ods on bias across different language models, demon-
strating that they do not enhance model fairness.

2. We quantify the effect of removing attention heads on
bias in language models, and use it as a proxy for their
contribution to the model’s overall bias.

3. We propose a novel structured pruning method that con-
siders both fairness and performance. Our method avoids
pruning the heads that are important for language mod-
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eling, while prioritizing pruning the heads which nega-
tively impact fairness.

4. We conduct a comparison between our method and exist-
ing pruning techniques, revealing its superiority in terms
of fairness, while matching, and sometimes surpassing,
their performance in terms of language modeling.

5. Using LLMs of different sizes, we examine how our bias
reduction method, when applied to gender bias, impacts
biases pertaining to religion, race, sexual orientation, and
nationality. In most cases, we observe a positive correla-
tion between gender bias and other social biases, result-
ing in their reduction alongside gender bias mitigation.

Related Work
This section delves into a more detailed discussion of vari-
ous pruning methods and the existing bias assessment met-
rics employed in language generation models.

Pruning of Large Language Models
Pruning of large language models can be split into two main
categories: structured and unstructured pruning (Behnke and
Heafield 2021b). Structured pruning involves removing spe-
cific building blocks within the model, such as attention
heads or layers, which alters the overall model structure. On
the other hand, unstructured pruning is more fine-grained,
entailing the removal of certain model weights (Narang et al.
2017; Zhu and Gupta 2018), while retaining the original
structure of the network. Structured pruning typically leads
to faster models, while unstructured pruning results in less
performance degradation (Behnke and Heafield 2021b). In
this study, we focus on structured pruning to explore the im-
pact of attention heads on fairness through targeted removal,
which represents a relatively unexplored research avenue.

Some of the pioneering works in the application of struc-
tural pruning were conducted by Voita et al. (2019) and
Michel, Levy, and Neubig (2019), where the authors ex-
plored the removal of attention heads from transformer-
based models. Their findings revealed the presence of im-
portant heads in terms of performance. While the removal
of important heads led to model collapse, less critical heads
had minimal impact on performance. Building upon these
works, He and Choi (2021) conducted a detailed analysis of
the important heads, demonstrating their interpretable roles
in task-solving.

Meanwhile, Bian et al. (2021) focused on investigating
the non-important heads and concluded that these heads
were redundant since their output exhibited a high corre-
lation with other heads, making them inconsequential for
final predictions. To address this, Zhang et al. (2021) pro-
posed an approach for transforming non-important heads
into important heads by injecting task-specific prior knowl-
edge, thereby increasing their contribution to the output. In a
separate study, Sajjad et al. (2023) examined layer removal
in BERT (Devlin et al. 2019) with fine-tuning and show-
cased the importance of preserving lower layers to maintain
performance. Furthermore, Fan, Grave, and Joulin (2020)
investigated layer removal without fine-tuning and achieved

considerable performance preservation through the imple-
mentation of layer dropout during training. The lottery ticket
hypothesis (Frankle and Carbin 2019), which suggests the
existence of subnetworks capable of achieving comparable
performance to that of the full network, has paved the way
for numerous unstructured pruning techniques. For exam-
ple, Behnke and Heafield (2020) applied this principle to
language models, while Prasanna, Rogers, and Rumshisky
(2020) provided evidence that early-stage pruning during
training outperforms post-convergence pruning.

Fairness Assessment in Text Generation Models
Metrics to assess fairness in text generation models may
be classified into two main categories: intrinsic metrics
and extrinsic metrics. Intrinsic metrics evaluate the model’s
bias independently of any downstream task. For instance,
some works measure bias by analyzing the correlation be-
tween token representations of different groups and specific
stereotypical associations (Caliskan, Bryson, and Narayanan
2017; Guo and Caliskan 2021; May et al. 2019). These met-
rics operate under the assumption that bias within language
models can solely be detected through the analysis of the
embedding space. Therefore, they do not rely on a specific
task to evaluate the model’s bias. However, it has been sug-
gested that embedding space does not consistently align with
the model’s bias when deployed to solve a given task (Cao
et al. 2022; Delobelle et al. 2022).

Some intrinsic metrics employ synthetic templates to
measure bias based on the model’s output predictions (Web-
ster et al. 2020; Kurita et al. 2019). For example, if the
model assigns a higher likelihood to the sentence “she is a
nurse”, compared to “he is a nurse”, it indicates the pres-
ence of gender bias. These templates are constrained in their
coverage of stereotypical associations, resulting in divergent
rankings of bias among different templates when applied
to the same models (Delobelle et al. 2022). While some
metrics have substituted templates with crowd-sourced ex-
amples (Nadeem, Bethke, and Reddy 2021; Nangia et al.
2020), they have encountered challenges related to gram-
matical correctness, logical coherence, and relevance in a
significant number of sentences (Blodgett et al. 2021).

The second category of bias assessment metrics com-
prises extrinsic metrics, which evaluate bias within the con-
text of a specific task. For example, metrics such as Wino-
bias (Zhao et al. 2018), Winogender (Rudinger et al. 2018),
and BUG (Levy, Lazar, and Stanovsky 2021) focus on mea-
suring bias in coreference resolution. In this task, given a
sentence like “The doctor told the nurse she will perform
the surgery in two days”, identifying the word “nurse” as
a referent for “she” indicates the presence of gender bias.
Some of these metrics have limited number of examples
provided within the templates, which poses challenges in
drawing definitive conclusions based on the measured bias.
For instance, the Winobias (Zhao et al. 2018), Winogender
(Rudinger et al. 2018), and CrowS-Pairs (Nangia et al. 2020)
metrics employ templates with only 3k, 120, and 1.5k exam-
ples, respectively.

Another extrinsic metric, BOLD (Dhamala et al. 2021),
employs 23k prompts sourced from Wikipedia that refer to
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diverse groups based on gender, race, professions, religions,
and political ideologies. BOLD quantifies bias by prompt-
ing the model with sentences related to different groups
and examining the sentiment and toxicity of its generated
continuations. However, these prompts have different con-
texts for each group, making it challenging to ascertain
whether the disparity in output is a result of bias or con-
textual differences. Taking this into account, Holistic bias
(Smith et al. 2022a) is a more recent work that provides 566k
prompts covering 13 different social biases without contex-
tual changes. In this paper, we use holistic bias prompts for
fairness assessment as they allow for a more reliable mea-
surement of bias within the context of text generation.

Social Bias Assessment
To assess the extent of social bias inherent in text genera-
tion models, we adopt the procedure in the work conducted
by Dhamala et al. (2021). Specifically, we first prompt the
model with sentences that pertain to various social groups,
and then subsequently evaluate the toxicity levels exhibited
in the generated output. An output is considered toxic if it
refers to content that leads individuals to disengage from a
discussion (Dixon et al. 2018). Hence, a large discrepancy in
toxicity levels across different groups serves as an indicator
of the model’s bias.

Inspired by Dixon et al. (2018), our initial step for evalu-
ating a specific form of social bias involves establishing a set
of subgroups, denoted as S, which are deemed as relevant to
measure such bias. For instance, in the context of sexual ori-
entation bias, the set of subgroups S encompasses terms like
gay, lesbian, bisexual, straight, and others. We then measure
the bias exhibited by the model by comparing the toxicity
associated with each subgroup to the average toxicity across
all subgroups, as follows:

biasϕ(S) = Ex∼D(
∑
s∈S

|Estoxϕ(x(s))−toxϕ(x(s))|), (1)

where toxϕ(x(s)) represents the toxicity in the continu-
ation of a model parameterized by ϕ when prompted with
a sentence x(s) from a pool of D prompts talking about a
particular subgroup s in the set S. Estoxϕ(x(s)) denotes the
average toxicity of the model’s output across all subgroups.
Lower values indicate less bias. Table 1 shows a simplified
example of calculating sexual orientation bias with only two
subgroups.

Prompt Continuation Toxicity
Hi, I’m a trans father I am not going to tell you 0.6

something stupid though
Hi, I’m a gay father. My guess is I’m a fucking 0.8

fat nerd

Table 1: Illustration of social bias assessment. The average
toxicity is (0.6+0.8)/2 = 0.7, and hence bias is |0.6−0.7|+
|0.8−0.7| = 0.2 following Eq. (1). In this example, we focus
on sexual orientation bias with two subgroups: trans and gay.

Fairness-Aware Structured Pruning
Existing methods to prune attention heads in transformer
models determine the importance of each head based solely
on model performance (Voita et al. 2019; Michel, Levy, and
Neubig 2019). In other words, important heads are deemed
essential to maintain the model’s language modeling capa-
bility and may therefore not be pruned. In this work, we rec-
ognize the equal significance of evaluating the influence of
attention heads on fairness, thereby broadening the defini-
tion of important heads to encompass not only heads crucial
for language modeling but also those that have a positive
impact on fairness.

As a result, we propose quantifiable approximate mea-
sures for the impact of a given attention head on both the
model’s fairness and performance. Subsequently, these mea-
sures serve as our guiding principles in identifying and re-
moving attention heads that have a negative impact on fair-
ness, provided they are non-essential for language modeling.
For a given pre-trained model, our goal is to improve model
fairness while maintaining as much performance as possible,
without relying on fine-tuning.

Attention Head Contributions to Fairness and
Performance
We quantify the contribution of a given attention head to bias
as the difference between the model’s bias before and after
pruning such head. More specifically, for a model with Nh

attention heads, the impact of each head h∈ {1, 2, .., Nh} on
a social group represented by set S, zbias(h,S), is estimated
as:

zbias(h, S) = biasϕ(S)|do(yh = 1)−biasϕ(S)|do(yh = 0)
(2)

where biasϕ(S) represents the bias of the text generation
model parameterized by ϕ as described in Eq. (1). Addition-
ally, do(yh = 1) and do(yh = 0), respectively, signify the
presence and absence of head h. In a similar vein, the impact
of a head h in the context of language modeling is defined
as:

zppl(h) = pplϕ|do(yh = 1)− pplϕ|do(yh = 0) (3)

where pplϕ refers to the perplexity of a model parameterized
by ϕ on WikiText-2 (Merity et al. 2017). Using the effect
of removal of a model component as a proxy of its influ-
ence on the model’s output has been employed in previous
studies (Rotman, Feder, and Reichart 2021). However, it is
important to note that the effect of removing multiple heads
is not equivalent to the sum of the effects of each head re-
moved individually due to the non-linearity of the model.
Notwithstanding, our experimental results indicate that such
simplification is a practical and effective way of estimating
the impact of attention heads.

Attention Head Pruning
Having assessed the influence of each attention head on
both fairness and language modeling, we now introduce our
fairness-aware structured pruning (FASP) method. FASP fo-
cuses on removing heads that have a negative impact on

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22486



fairness while ensuring that the model’s language modeling
ability is minimally affected.

To determine the number of heads to keep, thereby pre-
venting performance decline, we introduce a hyperparam-
eter γ representing the ratio of crucial attention heads for
language modeling. For instance, γ = 0.5 means we keep
the top 50% of heads that positively influence performance,
ranked based on Eq. (3) (lower is better). Then, the re-
maining heads (i.e. the non-crucial bottom 50% in terms of
performance) are ranked based on their bias impact (again,
lower is better) computed using Eq. (2). For a given ratio of
pruned heads, denoted by α, we prune α × Nh heads from
the remaining non-critical heads, based on their bias scores.
In the end, this sequence of steps allows us to prioritize the
removal of those with the highest bias impact while mitigat-
ing the loss of language modeling ability. An overview of
our method is presented in Algorithm 1.

Algorithm 1: Fairness-aware structured pruning (FASP)
Input: Pre-trained model with Nh attention heads, set of
all heads H , ratio γ of important heads for performance ex-
cluded from the pruning, ratio α of heads to be pruned, set S
of subgroups targeted by the bias.
Procedure:
1. Compute zppl(h) in Eq. (3) ∀ h ∈H on the validation set
2. Define the set of critical heads H ′ as the top γ × Nh

heads based on zppl(h)

3. Compute zbias(S, h) in Eq. (2) ∀ h ∈ H \ H ′ on the
validation set

4. Prune α × Nh heads in H \H ′ based on zbias(S, h)

end

Figure 1 illustrates how FASP removes attention heads.
The heads shown in black are deemed critical for language
modeling and, as a result, are excluded from the pruning
process. The remaining heads are depicted in various col-
ors based on their impact on bias, with red indicating those
that negatively influence fairness and green representing the
heads that promote fairness.

Experimental Details
This section presents an overview of our bias assessment
prompts, baselines, evaluation metrics, and models used in
our experiments. Our code is publicly available1.

Bias Assessment Prompts
We use the prompts from the holistic bias dataset intro-
duced by Smith et al. (2022a). This dataset comprises 566k
prompts, encompassing 13 distinct biases, making it the
most extensive bias assessment dataset available at the time
of this paper’s writing, to the best of our knowledge. Among
the 13 biases covered in the dataset, we focus on 5 spe-
cific biases: race ethnicity, religion, sexual orientation, gen-
der and sex, and nationality bias. Table 6 in the technical

1https://github.com/chandar-lab/FASP
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Figure 1: Illustration of applying FASP to a model with 6
layers and 12 heads per layer, e.g. DistilGPT-2. Initially, we
identify and exclude the heads that significantly impact per-
formance from the pruning process (black squares). Sub-
sequently, the remaining heads are prioritized for removal
based on their contribution to bias, ensuring that the heads
contributing the most to bias are pruned first (red squares).

appendix displays the number of prompts associated with
each of these targeted biases, along with some illustrative ex-
amples of the prompts for each category. The prompts were
split into validation and test sets with a ratio of 0.2:0.8.

Baselines
We employ the following baseline methods when evaluating
our approach: (1) head pruning based on weight magnitude
(Han et al. 2015; Han, Mao, and Dally 2015), (2) head prun-
ing based on gradient magnitude (Michel, Levy, and Neu-
big 2019), (3) random head pruning, (4) head pruning based
only on the fairness score in Eq. (2), and (5) head pruning
based only on the perplexity score in Eq. (3). We refer to the
latter two baselines as fairness only and performance only
baselines, respectively. We would like to highlight that the
model remains unchanged and does not undergo any fine-
tuning after the pruning process for all the mentioned base-
lines as well as our method.

Evaluation Metrics
We assess bias by examining the variation in the model’s
toxicity across various subgroups. For instance, when mea-
suring religion bias, we consider differences in the model’s
toxicity among the different subgroups such as Muslims,
Christians, Jews, and so on, as detailed in Eq. (1). We
use BERT for toxicity assessment, similar to the work by
Dhamala et al. (2021). For performance assessment, we
measure the model’s perplexity on WikiText-2.

Models
We employed 6 pre-trained models available in Hugging
Face: DistilGPT-2, GPT-2 (Radford et al. 2019), GPT-Neo
(Black et al. 2021) of two different sizes, GPT-J (Wang and
Komatsuzaki 2021), and Llama 2 (Touvron et al. 2023) mod-
els with 88.2M, 137M, 125M, 1.3B, 6B, and 7B parameters,
respectively.
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Figure 2: The percentage of change in gender bias and language modeling perplexity across DistilGPT-2, GPT-2, GPT-Neo
125M, GPT-Neo 1.3B, GPT-J, and Llama 2 models, for varying pruning levels via different techniques, relative to the unpruned
model. Among the methods, FASP is the only method to consistently reduce bias while upholding a relatively low perplexity.

Experiments

We demonstrate that FASP distinguishes itself from conven-
tional head pruning techniques by taking into account both
performance and fairness. Furthermore, we explore whether
the heads with the most significant impact on bias are con-
sistent across various social biases. Finally, we study the im-
pact of gender bias reduction on other social biases.

FASP introduces a single hyperparameter, which is the
ratio of crucial heads for performance, denoted as γ and
selected based on the validation set. To identify the opti-
mal value γ∗, we aim to minimize the model’s bias while
maintaining the perplexity as close as possible compared to
the best pruning baseline. The search range for γ was set to
γ ∈ {0.2, ..., 0.7}. Additional details about the hyperparam-
eters are provided in the appendix. The code appendix elab-
orates on dataset preprocessing, experiment procedures and
analysis, and the computing infrastructure employed. All re-
sults were obtained using 3 different seeds.

Experiment 1: How Does FASP Perform in Terms
of Bias and Language Modeling Compared to
Existing Pruning Methods?
In this experiment, we conduct a comparison between our
pruning technique, FASP, and common baseline pruning
methods. Such comparison is carried out with respect to both
gender bias and language modeling capabilities. The results
depicted in Figure 2 clearly indicate that FASP stands out
as the sole pruning method capable of consistently reduc-
ing gender bias without perplexity overshooting. The fair-
ness only and performance only baselines represent the ex-
treme cases where we prune the heads based only on bias
and performance, respectively. Among the evaluated meth-
ods, the performance only baseline achieves the lowest per-
plexity value in most of the cases, but does not lead to a
consistent improvement in fairness, as expected. Following
this, in order of performance, are FASP with the best γ (i.e.
γ∗), magnitude pruning, and gradient pruning. Magnitude
pruning results in perplexity overshooting on GPT-Neo and
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Figure 4: Pearson correlation heat maps depict the relation-
ships among attention head scores on nationality, sexual ori-
entation, religion, race, and gender biases, within DistilGPT-
2, GPT-2, and GPT-Neo with a parameter count of 125M.
Notably, all social biases exhibit positive correlations, ex-
cept religion bias, where correlations are either absent or
slightly negative, varying based on the specific model.

Llama 2 models. As anticipated, random pruning exhibits
the poorest efficacy in preserving perplexity levels, often
leading to model collapse. Fairness only baseline yields su-
perior fairness outcomes across the majority of scenarios, al-
beit accompanied by elevated perplexity, often surpassesing
acceptable levels. For all methods, overshooting perplexity
or bias values beyond the depicted limits are not shown. It
is important to note that in five out of the six models we
examined, we identified a γ∗ value of 0.3, suggesting that
roughly 30% of the heads in these models play a crucial role
in language modeling. Qualitative results are provided in the
technical appendix.

Experiment 2: Are the Heads Responsible for Bias
the Same Across Social Biases?
This experiment focuses on examining whether the attention
heads that exert the most significant influence on bias are
consistent across a range of distinct social biases. We start
by calculating the Pearson correlation between the effects of
attention heads, as outlined in Eq. (2), across varying biases.
Figure 4 illustrates a consistent positive correlation among
attention head effects across diverse biases, with the excep-
tion of the religion bias. For this particular bias, the corre-

lation is either slightly negative or non-existent in relation
to other biases, depending on the model under considera-
tion. Note that we restrict the scope of this experiment to
DistilGPT-2, GPT-2, and GPT-Neo 125M parameter config-
urations due to resource availability.

To take a deeper look at how different heads influence dif-
ferent biases, Figure 3 showcases the indices of the top 20%
attention heads that yield the most substantial impact on five
biases using GPT-2. The depiction underscores the presence
of specific attention heads that manifest as influential across
multiple biases, suggesting that the removal of such heads
could yield simultaneous benefits for multiple biases. More
specifically, attention head number 136 stands as the sole
contributor that adversely affects all social biases, whereas
attention head number 133 uniquely influences four out of
the five biases under examination. Numerous other atten-
tion heads have a concurrent impact on two or three biases.
This consistent pattern emerges across alternative models,
as outlined in the technical appendix. Encouragingly, these
findings pave the way for our subsequent experiment, which
delves into the broader implications of pruning the attention
heads that contribute to gender bias on other social biases.

Experiment 3: How Are Other Social Biases
Affected When Gender Bias Is Reduced?

As our final experiment, we delve into the effect on other
social biases when employing the FASP technique to prune
attention heads based on gender bias. Figure 5 shows that the
process of pruning attention heads with the most pronounced
influence on gender bias leads to a reduction in sexual ori-
entation, race, and nationality biases. This is to be expected
since all of these biases are positively correlated with gender
bias, as shown in Figure 4. Since GPT-2 and GPT-Neo ex-
hibit a positive correlation between religion and gender bias
head scores (also shown in Figure 4), pruning heads based
on gender bias scores continues to diminish religion bias in
these models. In contrast, DistilGPT-2 displayed a negative
correlation between gender and religion bias head scores,
leading to a marginal increase in religion bias when pruning
based on gender bias head scores. Other pruning methods do
not lead to better fairness in the majority of cases.
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Figure 5: An analysis on DistilGPT-2, GPT-2, and GPT-Neo showing the percentage of change in language modeling perplexity
and nationality, race, religion, and sexual orientation biases, relative to the unpruned model, using varying pruning levels and
different pruning techniques. While FASP focuses on gender bias mitigation through head pruning, it also addresses other biases
whose head scores are positively correlated with gender bias scores, while maintaining robust language model perplexity.

Conclusion

This paper examines the impact of pruning attention heads
in various language models on their fairness towards sev-
eral social biases. We highlight that current pruning tech-
niques, which prioritize minimizing performance decline,
do not take fairness into account. As a result, we propose
to consider both performance and fairness considerations
when pruning model components. Our experiments show
that the proposed approach, FASP, consistently improves the
fairness of transformer models while matching the language
modeling ability of performance-based pruning methods.
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