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Abstract
Transformers based on attention mechanisms exhibit vulner-
ability to adversarial examples, posing a substantial threat to
the security of their applications. Aiming to solve this prob-
lem, the concept of robustness certification is introduced to
formally ascertain the presence of any adversarial example
within a specified region surrounding a given sample. How-
ever, prior works have neglected the dependencies among
inputs of softmax (the most complex function in attention
mechanisms) during linear relaxations. This oversight has
consequently led to imprecise certification results. In this
work, we introduce GaLileo, a General Linear Relaxation
Framework designed to certify the robustness of Transform-
ers. GaLileo effectively surmounts the trade-off between pre-
cision and efficiency in robustness certification through our
innovative n-dimensional relaxation approach. Notably, our
relaxation technique represents a pioneering effort as the first
linear relaxation for n-dimensional functions such as soft-
max. Our novel approach successfully transcends the chal-
lenges posed by the curse of dimensionality inherent in lin-
ear relaxations, thereby enhancing linear bounds by incor-
porating input dependencies. Our evaluations encompassed
a thorough analysis utilizing the SST and Yelp datasets along
with diverse Transformers of different depths and widths. The
experimental results demonstrate that, as compared to the
baseline method CROWN-BaF, GaLileo achieves up to 3.24
times larger certified radii while requiring similar running
times. Additionally, GaLileo successfully attains certification
for Transformers’ robustness against multi-word `p perturba-
tions, marking a notable accomplishment in this field.

Introduction
Transformers (Vaswani et al. 2017) have found applica-
tions across a wide range of fields, including natural lan-
guage processing (Vaswani et al. 2017), image classification
(Dosovitskiy et al. 2021), and automatic speech recognition
(Dong, Xu, and Xu 2018). The introduction of large-scale
pre-trained language models like BERT (Devlin et al. 2019),
GPT-3 (Brown et al. 2020), and Chat-GPT (OpenAI 2022)
has brought about a profound impact on modern society, re-
shaping the future by exceeding human performance levels.
However, despite their remarkable achievements, recent re-
search (Guo et al. 2021; Joshi, Jagatap, and Hegde 2021)
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has unveiled a significant vulnerability in Transformers—–
adversarial attacks (Szegedy et al. 2014; Papernot et al.
2016a). These attacks involve introducing subtle perturba-
tions (e.g., `p perturbations) to clean input data, causing the
target model to behave unexpectedly. These perturbed in-
puts are referred to as adversarial examples. The suscepti-
bility of Transformers to these attacks highlights their lack
of robustness, raising concerns about their deployment in
safety-critical scenarios such as facial recognition (Tran, Vu,
and Nguyen 2022) and autonomous driving (Prakash, Chitta,
and Geiger 2021). In response to this issue, earlier defensive
strategies, often founded on heuristics, were proposed to em-
pirically bolster the robustness of the target model, includ-
ing adversarial training (Goodfellow, Shlens, and Szegedy
2015) and model distillation (Papernot et al. 2016b). How-
ever, subsequent investigations (Carlini and Wagner 2017;
Madry et al. 2018) have revealed that these empirical de-
fenses lack solid theoretical guarantees and are often out-
witted by more sophisticated attack techniques.

To end the everlasting competition between attackers and
defenders, recent researchers have shifted their focus to ro-
bustness certification (Bunel et al. 2018; Weng et al. 2018;
Raghunathan, Steinhardt, and Liang 2018b), which quantita-
tively measure the model’s robustness by certifying whether
its predictions change when input samples are perturbed.
However, for large-scale and highly nonlinear models like
ResNet (He et al. 2016) and Transformers, it becomes im-
practical to certify their robustness without error. To ad-
dress this challenge, previous robustness certification meth-
ods have commonly employed linear relaxations to handle
the non-linear functions in these models, such as ReLU and
sigmoid. Unfortunately, relaxation-based methods trade pre-
cision for efficiency, leading to imprecise certification re-
sults. Thus, researchers have been dedicated to the pursuit of
tighter relaxations (Salman et al. 2019; Zhang et al. 2022),
which is a crucial area of research in robustness certification.

Limitation of prior works. Indeed, prior works (Shi et al.
2020; Bonaert et al. 2021) have made valuable contribu-
tions to the robustness certification of Transformers. How-
ever, we contend that their precision is compromised due to
the loose relaxations applied to softmax functions. Specifi-
cally, they decompose softmax functions into several unary
non-linear functions (e.g., exponential and reciprocal func-
tions) and relax them individually, neglecting the dependen-
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cies among the inputs of softmax. As Transformers typically
consist of multiple attention layers, the error introduced by
these looser relaxations accumulates layer by layer, lead-
ing to trivial certification results. Addressing the issue of
precision requires considering dependencies among inputs
in linear relaxations, which inevitably involves calculations
in an n-dimensional space. For instance, some researchers
(Singh et al. 2019; Tjandraatmadja et al. 2020) attempt to
tighten relaxations by jointly relaxing k ReLU neurons in a
k-dimensional space. However, their methods come with a
significant increase in computational time and are limited to
simple neural networks comprising only affine transforma-
tions and specific activation functions (e.g., ReLU). Thus,
they cannot be directly extended to larger and more complex
models (e.g., Transformers) that involve functions such as
softmax. Thus, tighter the relaxation of softmax is urgently
needed in certifying the robustness of Transformers.

Key Challenge. The key challenge in designing linear re-
laxations for n-dimensional functions is the curse of dimen-
sionality. Specifically, most linear relaxations are designed
to be able to choose proper bounds according to the numer-
ical bounds of its input because the nonlinearity of a certain
segment of a non-linear function varies with respect to its in-
put range. For instance, previous relaxations for unary func-
tions usually consider 3 cases of bounds (Zhang et al. 2018)
and those for binary functions usually consider 32 cases at
most (Du et al. 2021). Thus, naively extending previous re-
laxations into an n-dimensional space leads to 3n cases in
the worst-case scenario, which is infeasible in practice.

This work. In this work, we address the above challenge
by decoupling the nonlinearity in each dimension, which
permits us to compute accurate bounds independently in
each dimension without necessitating the consideration of
bounds in other dimensions. We substantiate its soundness
and efficiency via rigorous theoretical proofs. Leveraging
this approach, we propose a general linear relaxation frame-
work called GaLileo for certifying the robustness of Trans-
formers. To assess GaLileo’s performance, we conduct ex-
tensive evaluations on the SST and Yelp datasets, employ-
ing various Transformers for comparison with the baseline
method, CROWN-BaF (Shi et al. 2020). The results show
that GaLileo achieves up to 3.24 times larger certified radii
than CROWN-BaF while maintaining similar running times,
which indicates that our relaxation is indeed tighter and
more precise. Moreover, since prior works in the field have
primarily considered only 1 or 2-word perturbations, we fur-
ther explore Transformers’ robustness by certifying it under
multi-word (≥ 3) `p perturbations. This extension broadens
the scope of our research and enhances the understanding of
Transformers’ robustness in more complex scenarios.

Contributions. Our main contributions are:

• We identify the main limitation of prior works on robust-
ness certification for Transformers, i.e., they neglect de-
pendencies among the inputs in the relaxation of softmax
functions, leading to imprecise certification results.

• To the best of our knowledge, we design the first n-
dimensional linear relaxation for non-linear functions
such as softmax, which utilize dependencies between

the inputs to tighten bounds. Moreover, we theoretically
prove the soundness and efficiency of our relaxation.

• We propose GaLileo, a general linear relaxation frame-
work designed to certify the robustness of Transformers.
GaLileo effectively addresses the traditional trade-off be-
tween precision and efficiency, setting a new standard in
robustness certification of Transformers.

• We conduct comprehensive evaluations to demonstrate
that GaLileo achieves up to 3.24 times larger certified
radii than CROWN-BaF while consuming similar times.
Furthermore, this is the first work to certify Transform-
ers’ robustness under multi-word (≥ 3) `p perturbations.

Related Works. A line of work relevant to ours is robust-
ness certification for deep neural networks, which leverage
mathematical techniques to certify whether the prediction
of a DNN remains consistent when a given sample is sub-
jected to perturbations within a specified region surrounding
it. Earlier works on robustness certification usually model
the robustness certification problem as satisfiability mod-
ulo theories (SMT) problems (Katz et al. 2017; Bunel et al.
2018) or mixed integer linear programming (MILP) prob-
lems (Cheng, Nührenberg, and Ruess 2017). Though pre-
cise, those methods are limited to small DNNs due to the
lack of polynomial-time solutions for SMT and MILP prob-
lems. To scale up to larger DNNs, later robustness certifica-
tion methods (Raghunathan, Steinhardt, and Liang 2018b,a)
usually apply relaxations to trade precision for efficiency,
among which linear relaxation-based methods (Weng et al.
2018; Salman et al. 2019; Tjandraatmadja et al. 2020) are
shown to be more promising. One of the most widely
adopted linear relaxation-based methods are CROWN-like
methods (Zhang et al. 2018; Shi et al. 2020), which propa-
gate linear bounds of neurons through the model and achieve
a good balance between precision and efficiency.

As for certifying the robustness of Transformers, it’s im-
portant to note that the straightforward application of exist-
ing methods designed for other models can lead to signif-
icantly prolonged running times. CROWN-BaF (Shi et al.
2020) addresses the above issue by using the forward mode
to handle non-linear functions in attention layers. Unlike
CROWN-BaF, DeepT (Bonaert et al. 2021), which is based
on abstract interpretation and Zonotopes, improves effi-
ciency via noise symbol reduction. Prior work shows that
DeepT is more precise than CROWN-BaF but consumes
more time. However, they share a common limitation, i.e.,
neglecting dependencies among the inputs of softmax in lin-
ear relaxations, which leads to imprecise results of robust-
ness certification. In contrast, GaLileo considers the above
dependencies and overcomes the trade-off between preci-
sion and efficiency in robustness certification, which, in our
humble opinion, is a more meaningful direction.

Background
Transformer Architecture
The Transformer architecture in this work is shown in Fig.
1. The model processes an input sequence consisting of N
tokens through itself and associates the input with a label.
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Figure 1: The architecture of Transformers used in this work.

The key component in a Transformer is its self-attention
mechanism. Let x1, . . . , xN ∈ RE be the inputs of the self-
attention function. For simplicity, we transpose and stack
them into the matrix X ∈ RN×E . The self-attention func-
tion first multiplies X with three separate matrices to obtain
the queries Q, the keys K, and the values V . Then, the out-
put Z ∈ RN×E of the self-attention function is obtained by

Z = σ

(
QKT

√
dk

)
V = σ

(
XWQW

T
KX

T

√
dk

)
XWV , (1)

where WQ,WK ∈ RE×dk and WV ∈ RE×dv . Next, the
softmax function σ : RN 7→ RN is applied to every row:

σi(v1, . . . , vN ) =
evi∑N
j=1 e

vj
=

1∑N
j=1 e

vj−vi
, (2)

where σi is the i-th component of σ. Finally, the rows of Z
are returned as output embeddings of the self-attention layer.

Practical models usually adopt multi-head self-attention,
where multiple self-attentions, which are referred to as at-
tention heads, are combined in one layer for better perfor-
mance. Specifically, the input X is first fed to each attention
head and then their outputs are stacked as a matrix. Next, the
matrix is multiplied with Wo ∈ R(nadv)×E , where na is the
number of attention heads, resulting in Z ∈ RN×E . Similar
to self-attention, the rows of Z are returned.

We briefly introduce the rest structures. The normaliza-
tion layer is different from the original. Following the previ-
ous works (Shi et al. 2020; Bonaert et al. 2021), we remove
the division by the standard deviation for improving certifi-
cation rates without significantly affecting the performance.
The Feed-Forward Network (FFN) maps RE to RE for each
embedding, which consists of one hidden ReLU layer of size
H . The pooling layer picks the first output embedding and
disregards the others, followed by a linear classifier.

CROWN-like Certification
Definition 1 (Robustness Certification Problem). Given a
model f and a neighborhood Bp,ε(x0) around a clean input
x0, the robustness certification problem is to verify whether
the below condition holds.

arg maxif(x)i = arg maxif(x0)i, ∀x ∈ Bp,ε(x0), (3)

where Bp,ε(x0) = {x : ‖x− x0‖p ≤ ε}.

The maximum ε that makes Eq. 3 hold is called the certi-
fied radius, which can be calculated by binary search.

Here we provide a concise overview of how CROWN-
like methods solve the above problem. These methods prop-
agate two linear bounds (a lower bound and an upper bound)
through f layer by layer to derive the numerical bounds of
each neuron when x is perturbed within Bp,ε(x0). Let zi,j be
the j-th neuron (ni in total) in the i-th layer. They calculate
the lower bound zLi,j and the upper bound zUi,j of each neuron
zi,j by propagating linear bounds from the first layer to the
last layer. Specifically, for each neuron in the i-th layer, they
compute the bounds as linear functions of previous neurons
(as shown in Eq. 4). Thus, they can calculate linear bounds
between any two layers (k < i) by propagating the bounds.

Ak,i,Lj,: zk +Bk,i,Lj ≤ zi,j ≤ Ak,i,Uj,: zk +Bk,i,Uj , (4)

where Ak,i,L/U ∈ Rni×nk and Bk,i,L/U ∈ Rni are param-
eters of lower and upper bounds.

CROWN-like methods propagate the bounds in either the
backward mode or the forward mode. The backward mode
propagates the bounds to previous layers by substituting zi,j
with linear functions of its previous neurons. This process
can be recursively conducted until the input layer. The for-
ward mode propagates the bounds to the next layers by cal-
culating the bounds of the (i+1)-th layer as linear functions
of neurons in the previous layer according to the operations
in the (i+1)-th layer and linear bounds of the i-th layer. Prior
work (Shi et al. 2020) have shown that the forward mode is
faster and looser than the backward mode. After deriving the
linear bounds between the i-th layer and the input layer, the
method summarizes the above bounds to calculate the nu-
merical bounds of neurons in the i-th layer when tokens in
P are perturbed within Bp,ε(xpk0 ). Note that 1/p+ 1/q = 1
with p, q ≥ 1.

zLi,j = −ε‖A
0,i,L
j,: ‖q +A0,i,L

j,: x0 +B0,i,L
j , (5)

zUi,j = ε‖A0,i,U
j,: ‖q +A0,i,U

j,: x0 +B0,i,U
j . (6)

To accelerate robustness certifications of Transformers,
CROWN-BaF (Shi et al. 2020) combines the backward
mode with the forward mode, which is shown to be able
to achieve a better balance between tightness and efficiency
than using the fully backward mode or the fully forward
mode. Specifically, Shi et al. use the backward mode to
handle affine transformations and unary nonlinear functions
while using the forward mode to handle the challenging op-
erations in self-attention, including softmax functions.

Softmax Relaxation. Shi et al. conduct the relaxation by
treating softmax functions as compositions of non-linear
functions (as shown in Eq. 2) and extending existing relax-
ations to each non-linear function. Assume that the linear
bounds have been propagated to the layer before softmax.
The aim is to calculate linear bounds after softmax func-
tions using the forward mode. First, linear relaxations for
exponential functions are computed (as shown in Eq. 7) and
linear bounds of evi and

∑N
j=1 e

vj are derived.

yL = aLx+ bL ≤ ex ≤ yU = aUx+ bU . (7)
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Then, relaxations for reciprocal functions are computed
(similar to the above) and linear bounds for the reciprocal
of
∑N
j=1 e

vj are calculated. Finally, relaxations for multipli-
cations are computed (as shown in the following inequality)
and linear bounds of softmax functions are derived.

yL = aL1 x1+a
L
2 x2+b

L ≤ x1x2 ≤ yU = aU1 x1+a
U
2 x2+b

U .

Methodology
Overview. In this work, we adopt a procedure akin to that
of CROWN-like methods. Specifically, we propagate two
linear bounds through the model layer by layer and derive
numerical bounds of the outputs according to Eq. 5. Our key
observation is that the linear relaxation of softmax that was
used in previous works (Shi et al. 2020) neglects dependen-
cies among the inputs of softmax, which causes imprecise
certification results of Transformers’ robustness. To harness
the dependencies among inputs and enhance the precision of
robustness certification, it becomes necessary to address the
linear relaxation of softmax within an n-dimensional space.
This involves solving the following problem.

Problem Formulation. This study is focused on resolving
the n-dimensional (n-d, for brevity) linear relaxation prob-
lem, which is presented as follows:

Definition 2 (n-dimensional Linear Relaxation Problem).
Given an n-d function y = f(x1, x2, . . . , xn) where xi ∈
[li, ui](i = 1, 2, . . . , n), its linear relaxation problem is to
calculate a pair of linear functions, i.e., a lower bound yL
and an upper bound yU , that satisfy the following condition.

yL = aL1 x1 + · · ·+ aLnxn + bL ≤ f(x1, x2, . . . , xn)
≤ yU = aU1 x1 + · · ·+ aUn xn + bU , ∀xi ∈ [li, ui].

Key Challenge. The key challenge in addressing the above
problem lies in contending with the curse of dimensionality.
For a unary function such as sigmoid or tanh (let l and u
be the lower and upper bound of its input), since it is con-
vex within (−∞, 0) and concave within (0,∞), its relax-
ation (Zhang et al. 2018) requires considerations of 3 cases
of bounds: l ≤ u ≤ 0 (convex), 0 ≤ l ≤ u (concave), and
l < 0 < u (neither convex nor concave). For complex func-
tions such as y = sigmoid(x1)� tanh(x2) in LSTM models,
their relaxations (Du et al. 2021) need to consider numerical
bounds of both inputs, which can result in 32 cases at most (3
cases of x1 × 3 cases of x2). Thus, for softmax that is con-
vex within half of its domain and concave within the other
half on each vj (Eq. 2), a naive extension of above relax-
ation need to consider 3n cases at most. As n grows larger,
computing such relaxation becomes increasingly unattain-
able. Here n is the number of words in an input sentence.

n-dimensional Linear Relaxation
Preliminaries. We introduce generalized monotonic func-
tions, which play an important role in this work.

Definition 3 (Generalized Monotonic Function). We call an
n-dimensional function f a generalized monotonic function
if it increases monotonically with each of its input variables

increasing or decreasing respectively. The following condi-
tion corresponds to the increasing variables. The condition
for the decreasing variables is similar.

f(x1, . . . , xi, . . . , xn) ≤ f(x1, . . . , x′i, . . . , xn)
if xi ≤ x′i, ∀i ∈ [n], ∀ xj ∈ [lj , uj ], j ∈ [n], j 6= i.

According to the above definition, the softmax function
(Eq. 2) is generalized monotonic function. [n] = {1, . . . , n}.

Without loss of generality, here we assume that the func-
tion f increases monotonically with each of its input vari-
ables (i.e., xis) increasing. For variables with which decreas-
ing f increases monotonically, we can flip their signs with-
out changing the nonlinearity. For example, we can flip the
signs of a softmax function’s certain inputs and obtain a
symmetrical function y′i = σi(−x1, . . . , xi, . . . ,−xn) that
is non-decreasing on each of its inputs. We will provide de-
tails of how to compute its linear relaxation in the following.
The linear relaxation of softmax follows a similar approach.

Numerical Bounds. Calculating the linear bounds of a
function f requires its minimum fL and maximum fU ,
which can be computed according to the following theorem.

Theorem 1. An n-dimensional bounded generalized mono-
tonic function f reaches its minimum and maximum at~l and
~u respectively.

fL = f(~l) ≤ f(~x) ≤ f(~u) = fU , ∀xi ∈ [li, ui], ∀i ∈ [n],

~x = (x1, . . . , xn),~l = (l1, . . . , ln), ~u = (u1, . . . , un).

Similarly, for y′i, we have the below inequality, where
y′i(
~l), y′i(~u) ∈ R denote its minimum and maximum.

y′i(
~l) ≤ y′i(x1, . . . , xn) ≤ y′i(~u), ∀xj ∈ [lj , uj ], ∀j ∈ [n].

Linear Bounds. The linear relaxation of f is calculated
according to the following theorem. Let x̂j denote the input
dimensions except xj and f(xj ; x̂j) = f(~x).

Theorem 2. Given an n-dimensional bounded generalized
monotonic function f , its linear bounds yL and yU can be
computed according to the following equations.

yL(~x) ≤ f(~x) ≤ yU (~x), ∀xj ∈ [lj , uj ], ∀j ∈ [n], where

yL(~x) =
n∑
j=1

aLj xj + bL, yU (~x) =
n∑
j=1

aUj xj + bU , (8)

aLj = min

{
df(xj ; l̂j)

dxj
: ∀xj ∈ [lj , uj ]

}
, (9)

aUj = min

{
df(xj ; ûj)

dxj
: ∀xj ∈ [lj , uj ]

}
, (10)

bL = f(~l)−
n∑
j=1

aLj lj , b
U = f(~u)−

n∑
j=1

aUj uj . (11)

Theorem 2 gives linear bounds for generalized monotonic
functions. Furthermore, we find tighter bounds for the spe-
cific function y′i and calculate its aLj and aUj according to
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the following equations. The remainder of y′i’s linear bounds
follow the same formulation as described above.

aLj = min

{
∂y′i
∂xj

∣∣∣∣
~x=~l

,
y′i(uj ; l̂j)− y′i(lj ; l̂j)

uj − lj

}
, (12)

aUj = min

{
∂y′i
∂xj

∣∣∣∣
~x=~u

,
y′i(uj ; ûj)− y′i(lj ; ûj)

uj − lj

}
. (13)

As shown in the above equations, our relaxation for the
function y′i (and softmax) decouples its nonlinearity in each
dimension, which allows us to calculate aLj s or aUj s sepa-
rately and avoids the exponential number of cases.

Solution to the curse of dimensionality. By decoupling
the nonlinearity of softmax in each dimension of its input,
we reduce the number of cases to only 2n. This is signif-
icantly fewer than the impractical 3n cases encountered in
the naive extension of classic relaxations that consider input
dependencies. As a result, we have successfully overcome
the curse of dimensionality.

Tightness. CROWN-BaF (Shi et al. 2020) decomposes the
softmax into simple functions and relaxes them sequentially.
Errors generated in earlier relaxations adversely affect sub-
sequent stages (resulting in looser ‘pre-relaxation’ bounds).
To circumvent these negative impacts, we adopt one-stage
relaxations that treat softmax as an n-d function without de-
composition, which allows us to achieve tighter bounds.

Soundness. Soundness is crucial to linear relaxations in
robustness certification because unsound relaxations (e.g., f
exceeds its lower or upper bounds at certain points) lead to
incorrect results. We confirm the soundness of our relaxation
by providing the proof of that the inequality in Theorem 2
holds true. Due to the limited space, only the proof of the
lower bound (i.e., f(~x)−yL(~x) ≥ 0) is presented. The proof
for the upper bound follows a similar procedure. Note that
we set yL(~l) = f(~l) and yU (~u) = f(~u).

We start with the following lemma, which converts the n-
dimensional problem into several 1-dimensional problems
by decoupling its input dimensions.
Lemma 1. f(~x)−yL(~x) ≥ 0 holds true for any xj ∈ [lj , uj ]

if
∫ xj

lj

(
∂f
∂vj
− aLj

)
dvj ≥ 0 holds true for any j ∈ [n].

Proof. According to the fundamental theorem of line inte-
grals, we have the following equations, where the integral is
independent of the path between the endpoints.

f(~x)− yL(~x)

= f(~l) +

∫ ~x

~l

n∑
j=1

∂f

∂vj
dvj − yL(~l)−

∫ ~x

~l

n∑
j=1

∂yL

∂vj
dvj

=
n∑
j=1

∫ xj

lj

(
∂f

∂vj
− aLj

)
dvj

Proving Lemma 1 involves the proof of the lemma below.

Lemma 2. An integral
∫ xj

lj

(
∂f
∂vj
− aLj

)
dvj is non-negative

if the integral
∫ xj

lj

(
df(vj ;l̂j)

dvj
− aLj

)
dvj is non-negative.

Proof. Since f is a generalized monotonic function, we have
f(xj ; x̂j) ≥ f(xj ; l̂j). Then, according to the fundamental
theorem of integrals, we have the following equations.∫ xj

lj

(
∂f

∂vj
− aLj

)
dvj

= f(~l) +

∫ xj

lj

∂f

∂vj
dvj − yL(~l)−

∫ xj

lj

aLj dvj

= f(xj ; x̂j)− yL(~l)−
∫ xj

lj

aLj dvj

≥ f(xj ; l̂j)− yL(~l)−
∫ xj

lj

aLj dvj

=

∫ xj

lj

(
df(vj ; l̂j)

dvj
− aLj

)
dvj

Finally, according to Eq. 9, we have df(vj ; l̂j)/dvj −
aLj ≥ 0 for any vj ∈ [lj , uj ]. Hence, by Lemma 1 and
Lemma 2, we have f(~x) − yL(~x) ≥ 0. Q.E.D. The sound-
ness proof of y′i’s linear bounds is provided in the Appendix.

Experimental Evaluation
Overview. In this section, we evaluate the effectiveness of
GaLileo by comparing it to CROWN-BaF. We conducted
comprehensive experiments on various Transformers with
different depths and widths trained on the SST and Yelp
datasets. We compared the certified radius calculated by
the methods and their time cost. All experiments were con-
ducted on a Linux server with two Intel Xeon Silver 4210R
CPUs running at 2.40 GHz, 128 GB memory, 4TB HDD,
and a GeForce RTX 2080 Ti GPU card.

Benchmarks and Metrics. We trained various models
with different depths (M = 3, 6, and 12 layers) and widths
(hidden size E = 128, 256, 384, and 512) on two widely
used datasets, i.e., the SST dataset (Socher et al. 2013) and
the Yelp dataset (Zhang, Zhao, and LeCun 2015). All mod-
els in this evaluation use 4 attention heads and FFNs with
128 hidden neurons. We also consider the cases with differ-
ent types of norms including `1, `2, and `∞.

We compare GaLileo and CROWN-BaF in terms of the
following quantities. Certified Radius. We randomly choose
10 correctly classified test examples with sentence lengths
less than 32 and compute the maximum robustness radius
around the embedding of each word in them with binary
search. Running Time. We record the average running time
of computing the maximum robustness radius for each word.

Experiment I. In the first experiment, we compare the
precision and efficiency of GaLileo and CROWN-BaF on
Transformers with different depths and widths. We present
their results in Table 1. The scale of the Transformers ranges
from 3 layers to 12 layers and hidden sizes are 128 to 512.

First, GaLileo exhibits a higher level of precision com-
pared to CROWN-BaF. As shown in Table 1, GaLileo
achieves up to 3.24 times larger certified radii than CROWN-
BaF. The distinct advantage of GaLileo stems from the uti-
lization of our n-d relaxation, which effectively incorporates

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21801



Dataset
Model

Average Certified Radius
Ratio

Time (s)

CROWN-BaF GaLileo CROWN-BaF GaLileo

Depth Width `1 `2 `∞ `1 `2 `∞ `1 `2 `∞ `1 `2 `∞ `1 `2 `∞

SST

3

128 1.686 0.328 0.033 1.749 0.337 0.034 1.04 1.03 1.03 5.8 5.9 5.6 5.8 5.8 5.8
256 1.309 0.272 0.028 1.353 0.279 0.028 1.03 1.03 1.00 5.7 5.5 5.5 5.7 5.6 5.7
384 0.994 0.210 0.022 1.072 0.225 0.023 1.08 1.07 1.05 5.7 5.9 6.0 6.1 5.9 5.9
512 1.048 0.219 0.022 1.123 0.233 0.024 1.07 1.06 1.09 6.4 6.5 6.5 6.5 6.5 6.4

6

128 0.470 0.083 8.0e-3 0.620 0.111 0.011 1.32 1.34 1.38 16.9 15.9 16.4 16.3 16.0 15.8
256 0.360 0.070 6.8e-3 0.438 0.086 8.4e-3 1.22 1.23 1.24 16.0 16.3 15.4 16.1 16.1 15.7
384 0.227 0.046 4.5e-3 0.280 0.057 5.6e-3 1.23 1.24 1.24 17.4 17.8 17.7 17.6 17.4 17.9
512 0.310 0.060 5.9e-3 0.361 0.070 7.0e-3 1.16 1.17 1.19 19.7 19.2 20.0 19.2 19.6 19.6

12

128 0.018 3.7e-3 3.5e-4 0.023 4.7e-3 4.6e-4 1.28 1.27 1.31 53.9 53.8 54.0 54.3 52.5 51.8
256 0.020 4.2e-3 4.1e-4 0.024 4.9e-3 4.8e-4 1.20 1.17 1.17 55.2 53.3 52.2 53.5 56.7 55.3
384 0.022 4.0e-3 3.9e-4 0.026 4.8e-3 4.7e-4 1.18 1.20 1.21 62.7 62.4 64.5 61.5 61.7 60.2
512 0.043 9.0e-3 9.3e-4 0.050 0.011 1.1e-3 1.16 1.22 1.18 71.1 71.4 74.1 70.5 72.3 71.8

Yelp

3

128 0.573 0.137 0.015 0.755 0.181 0.020 1.32 1.32 1.33 5.5 5.6 5.6 5.4 5.5 5.5
256 0.468 0.125 0.014 0.546 0.148 0.017 1.17 1.18 1.21 5.4 5.4 6.0 5.5 5.6 5.9
384 0.528 0.137 0.015 0.622 0.160 0.018 1.18 1.17 1.20 6.4 6.8 6.6 5.8 6.0 6.2
512 0.462 0.118 0.013 0.522 0.133 0.015 1.13 1.13 1.15 6.3 6.3 7.5 6.2 6.7 6.6

6

128 0.022 5.6e-3 5.8e-4 0.034 8.1e-3 8.5e-4 1.54 1.45 1.47 28.8 26.8 23.0 20.8 22.2 21.8
256 0.023 5.4e-3 5.8e-4 0.051 0.012 1.3e-3 2.22 2.22 2.24 22.6 23.7 21.7 20.5 20.4 20.5
384 0.016 4.0e-3 4.3e-4 0.027 6.6e-3 7.2e-4 1.69 1.65 1.67 29.6 27.3 22.8 26.6 26.4 24.2
512 0.023 7.4e-3 8.2e-4 0.067 0.014 1.3e-3 2.91 1.89 1.59 33.0 31.3 26.2 31.1 28.6 27.9

Table 1: Average certified radius and running time by CROWN-BaF and GaLileo.

input dependencies and results in a tighter relaxation com-
pared to those employed in CROWN-BaF. Second, GaLileo
maintains a similar level of efficiency to that of CROWN-
BaF. As shown in Table 1, the execution time of GaLileo
closely approximates that of CROWN-BaF. To summarize,
GaLileo successfully overcomes the trade-off between pre-
cision and efficiency in the realm of robustness certification.
Thus, we firmly contend that GaLileo represents a superior
option for robustness certification of Transformers, particu-
larly when dealing with larger models.

Experiment II. In the second experiment, we proceed to
evaluate the robustness of Transformers against multi-word
`p perturbations. Prior works focus on 1 or 2-word pertur-
bations, which are challenged by more powerful attackers
capable of perturbing multiple words within the target sen-
tence. We have observed that in most multi-word attacks,
attackers often target specific vulnerable words for pertur-
bation, rather than opting for random word substitutions. In
light of this, we undertake the certification of Transform-
ers’ robustness by simulating scenarios where words with
the smallest certified radii within a sentence are perturbed
simultaneously. The results are presented in Table 3, where
the models have 3 layers and hidden size E = 128.

The results reveal a consistent trend: as the number of
perturbed words increases, the certified radii exhibit a no-
ticeable decrease. The results indicate that models are more
susceptible to alteration when more words are perturbed si-
multaneously.

Experiment III. In the third experiment, we further eval-
uate the impact of the n-d relaxation by comparing the pre-
cision and efficiency of GaLileo and CROWN-BaF on input
sequences with different lengths, where n is the sequence
length. The results are shown in Table 2, where the models
are trained on the Yelp dataset and hidden size E = 128.
We set 3 ranges of sequence lengths. For each range, we
randomly choose 10 correctly classified test examples with
lengths within the range to calculate their certified radii.

As indicated by the results, irrespective of the lengths of
input sequences, GaLileo consistently demonstrates a higher
level of precision compared to CROWN-BaF and exhibits
comparable efficiency to that of CROWN-BaF. To summa-
rize, the results affirm that GaLileo’s advantage remains con-
sistent across varying sequence lengths.

Experiment IV. In this experiment, we integrate the n-
dimensional linear relaxation with Zonotopes and conduct
a comparative analysis against DeepT (Bonaert et al. 2021).
The models are trained on the Yelp dataset with E = 128.

The results, as illustrated in Table 4, reveal that GaLileo
(Zonotope variant) attains larger certified radii in many
cases, although not universally. Notably, Zonotope-based
methods (e.g., DeepT) necessitate parallel bounds in linear
relaxations, distinguishing them from CROWN-like meth-
ods (e.g., CROWN-BaF). Consequently, the straightforward
extension of the n-d relaxation to Zonotope-based methods
does not guarantee the attainment of tighter bounds. We are
planning to find tighter bounds for Zonotopes in the future.
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Depth length

Average Certified Radius
Ratio

Time (s)

CROWN-BaF GaLileo CROWN-BaF GaLileo

`1 `2 `∞ `1 `2 `∞ `1 `2 `∞ `1 `2 `∞ `1 `2 `∞

3
( 8, 16] 0.561 0.134 0.015 0.745 0.178 0.019 1.33 1.33 1.27 5.6 5.4 6.0 5.7 5.6 5.9
(16, 24] 0.544 0.128 0.014 0.702 0.167 0.018 1.29 1.30 1.29 5.3 5.3 5.4 5.6 5.6 5.6
(24, 32] 0.665 0.157 0.017 0.920 0.218 0.024 1.38 1.39 1.41 5.7 5.7 5.5 5.7 5.8 6.0

6
( 8, 16] 0.018 4.7e-3 4.9e-4 0.029 6.9e-3 7.2e-4 1.61 1.47 1.47 28.2 24.8 22.0 22.8 22.5 22.7
(16, 24] 0.032 7.9e-3 8.3e-4 0.036 9.7e-3 1.0e-3 1.13 1.23 1.20 16.9 17.4 16.5 15.4 15.6 15.3
(24, 32] 0.043 0.010 1.1e-3 0.059 0.014 1.5e-3 1.37 1.40 1.36 15.8 15.9 15.8 17.2 17.3 18.1

Table 2: Evaluation results of input sequences with different lengths.

Perturbed
`p

SST Yelp

Words C.R. Time (s) C.R. Time (s)

2
`1 0.796 5.7 0.294 5.8
`2 0.149 6.1 0.070 5.7
`∞ 0.015 6.0 7.6e-3 5.8

3
`1 0.290 6.7 0.120 6.6
`2 0.073 6.8 0.038 6.3
`∞ 0.010 6.4 5.8e-3 6.3

4
`1 0.216 7.0 0.099 7.2
`2 0.054 7.5 0.030 6.6
`∞ 0.008 6.3 4.6e-3 6.6

5
`1 0.186 7.3 0.061 7.6
`2 0.047 7.4 0.022 7.1
`∞ 0.006 6.0 4.0e-3 6.8

Table 3: Average certified radius (C.R.) and running time
against multi-word perturbations.

Experiment V. In the final experiment, we extend GaLileo
to assess the robustness of Vision Transformers (ViTs). We
trained three ViTs on the MNIST dataset, where the hid-
den size E is set to 64 and the FFNs have 64 hidden neu-
rons each. Subsequently, we randomly selected 100 cor-
rectly classified test images and computed the average certi-
fied radii using the `p threat model in computer vision. The
results, including both the average certified radii and the cor-
responding running times, are presented in Table 5.

Conclusion
In this paper, we introduce GaLileo, a pioneering robust cer-
tification method that leverages our n-dimensional linear re-
laxation to establish security assurances for Transformers
against adversarial attacks. Through the application of the
n-dimensional linear relaxation approach, GaLileo success-
fully reconciles the age-old trade-off between precision and
efficiency in the field of robustness certification. This ap-
proach capitalizes on the inherent dependencies among in-
puts of softmax functions to tighten their linear bounds, all
while circumventing the curse of dimensionality by decou-
pling input dimensions. Furthermore, we substantiate the

Depth `p
DeepT GaLileo+Zono

Ratio
C.R. Time C.R. Time

3
`1 0.795 24.1 0.863 12.1 1.09
`2 0.194 24.1 0.216 12.0 1.11
`∞ 0.021 24.2 0.023 11.6 1.10

6
`1 0.243 48.7 0.249 24.5 1.02
`2 0.088 48.4 0.078 26.7 0.89
`∞ 0.011 49.9 0.009 26.4 0.82

12
`1 0.088 92.3 0.205 52.5 2.33
`2 0.025 112.4 0.068 50.9 2.72
`∞ 2.8e-3 111.5 8.7e-3 52.3 3.11

Table 4: Evaluation results on the Yelp dataset.

Depth
C.R. Time(s)

`1 `2 `∞ `1 `2 `∞

2 9.6e-3 3.7e-3 6.8e-4 6.1 6.9 7.8
3 4.8e-4 1.7e-4 3.2e-5 13.5 14.3 16.4
4 8.8e-5 2.9e-5 9.8e-6 21.8 23.4 24.6

Table 5: Evaluation results of Vision Transformers.

soundness and efficiency of the n-dimensional linear re-
laxation approach through rigorous theoretical validation.
Our comprehensive evaluation assesses GaLileo’s perfor-
mance across diverse models and two widely used datasets,
benchmarking it against the well-established CROWN-BaF
method. Experimental results unequivocally demonstrate
that GaLileo achieves higher precision than CROWN-BaF in
certifying the robustness of Transformers, while maintain-
ing a similar level of computational efficiency. These find-
ings provide solid validation for our assertions. Moreover,
GaLileo pioneers the certification of Transformers’ robust-
ness against multi-word (no less than three words) `p pertur-
bations for the first time, extending the scope of our contri-
butions and enhancing the understanding of Transformers’
robustness.
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