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Abstract

Counterfactual Explanation (CE) techniques have garnered
attention as a means to provide insights to the users en-
gaging with AI systems. While extensively researched in
domains such as medical imaging and autonomous vehi-
cles, Graph Counterfactual Explanation (GCE) methods have
been comparatively under-explored. GCEs generate a new
graph similar to the original one, with a different outcome
grounded on the underlying predictive model. Among these
GCE techniques, those rooted in generative mechanisms have
received relatively limited investigation despite demonstrat-
ing impressive accomplishments in other domains, such as
artistic styles and natural language modelling. The prefer-
ence for generative explainers stems from their capacity to
generate counterfactual instances during inference, leverag-
ing autonomously acquired perturbations of the input graph.
Motivated by the rationales above, our study introduces
RSGG-CE, a novel Robust Stochastic Graph Generator for
Counterfactual Explanations able to produce counterfactual
examples from the learned latent space considering a par-
tially ordered generation sequence. Furthermore, we under-
take quantitative and qualitative analyses to compare RSGG-
CE’s performance against SoA generative explainers, high-
lighting its increased ability to engendering plausible coun-
terfactual candidates.

Introduction
Explainability is crucial in sensitive domains to enable users
and service providers to make informed and reliable de-
cisions (Guidotti et al. 2018). However, deep neural net-
works, commonly used for generating predictions, often suf-
fer from a lack of interpretability, widely referred to as the
black-box problem (Petch, Di, and Nelson 2021), hindering
their wide adoption in domains such as healthcare and fi-
nance. On the other end of the spectrum of explainability, we
find inherently interpretable white-box prediction models
(Loyola-González 2019), which are preferred for decision-
making purposes (Verenich et al. 2019). Alas, black-box
models demonstrate superior performance and generalisa-
tion capabilities when dealing with high-dimensional data
(Aragona et al. 2021; Ding et al. 2019; Feng, Tang, and Liu
2019; Huang et al. 2020; Madeddu, Stilo, and Velardi 2020;
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Prenkaj et al. 2021, 2020, 2023a; Verma, Mandal, and Gupta
2022; Wang, Yu, and Miao 2017).

Recently, deep learning (relying on GNNs (Scarselli et al.
2008)) has been beneficial in solving graph-based predic-
tion tasks, such as community detection (Wu et al. 2022),
link prediction (Wei et al. 2022), and session-based recom-
mendations (Wu et al. 2019; Xu, Xi, and Wang 2021). De-
spite their remarkable performance, GNNs are black boxes,
making them unsuitable for high-impact and high-risk sce-
narios. The literature has proposed several post-hoc explain-
ability methods to understand what is happening under the
hood of the prediction models. Specifically, counterfactual
explainability is useful to understand how modifications in
the input lead to different outcomes. Similarly, a recent field
in Graph Counterfactual Explainability (GCE) has emerged
(Prado-Romero et al. 2023).

We provide the reader with an example that helps clar-
ify a counterfactual example in graphs. Suppose we have a
social network where a specific user U posts an illicit adver-
tisement, thus violating the Terms of Service (ToS). A coun-
terfactual explanation of U ’s account suspension would be
if the user had refrained from writing the post about selling
illegal goods, her account would not have been banned.

Generally, GCE methods can be search, heuristic, and
learning-based approaches (Prado-Romero et al. 2023).
Search-based approaches find counterfactual examples
within the data distribution. Heuristic-based approaches per-
turb the original graph G into G′ such that, for a certain pre-
diction model Φ, namely oracle, Φ(G) ̸= Φ(G′) without ac-
cessing the dataset G. In other words, G′ can be outside the
data distribution of G′. Heuristic-based approaches suffer the
need to define the perturbation heuristic (e.g., rules), which
might come after careful examination of the data and involve
domain expertise to express how the input graph should be
perturbed faithfully. For instance, producing valid counter-
factuals for molecules requires knowledge about atom va-
lences and chemical bonds. Contrarily, learning-based ap-
proaches learn the generative “heuristic” based on the data.
This kind of explainer is trained on samples and thus can be
used to produce counterfactual instances at inference time.

In this work, we propose RSGG-CE, a Robust Stochastic
Graph Generator for Counterfactual Explanations, to pro-
duce counterfactual examples from the learned latent space
considering a partially ordered generation sequence. RSGG-
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CE is not confined to the data distribution (vs. search ap-
proaches) and does not rely on a learned mask to apply to
the input to produce counterfactuals (vs. other learning ap-
proaches). However, it learns the perturbation of the input
autonomously (vs. heuristic approaches), relying on a par-
tial order generation strategy. Moreover, it does not need ac-
cess extensively to the oracle Φ since its latent space can
be sampled to generate multiple candidate counterfactuals
for a particular input graph. The following discusses the re-
lated works in Sec. . In Sec. , we present the method and the
needed preliminary knowledge (see Sec. ). Finally, in Sec. ,
we conduct the performance analysis, four ablation studies,
and a qualitative anecdotal inspection. We add supplemen-
tary material (SM) to this paper available here1.

Related Work
The literature distinguishes between inherently explainable
and black-box methods (Guidotti et al. 2018). Black-box
methods can be further categorised into factual and counter-
factual explanation methods. Here, we concentrate on coun-
terfactual methods as categorised in (Prado-Romero et al.
2023) and exploit the same notation used in that survey.

While many works provide counterfactual explanations
for images/text (to point out some (Vermeire et al. 2022;
Xu et al. 2023; Zemni et al. 2023)), only a few focus on
graph classification problems (Abrate and Bonchi 2021;
Liu et al. 2021; Ma et al. 2022; Nguyen et al. 2022; Nu-
meroso and Bacciu 2021; Tan et al. 2022; Wellawatte, Se-
shadri, and White 2022). According to (Prado-Romero et al.
2023), GCE works are categorised into search (heuristic)
and learning-based approaches. We are aware that a new
branch of global (model-level) counterfactual explanations
is being developed (see (Huang et al. 2023)). Here, we treat
only instance-level and learning-based explainers.

Learning-based approaches The methods belonging to
this category share a three-step pipeline: 1) generating
masks that indicate the relevant features given a specific in-
put graph G; 2) combining the mask with G to derive a
new graph G′; 3) feeding G′ to the prediction model (ora-
cle) Φ and updating the mask based on the outcome Φ(G′).
Learning-based strategies can be divided into perturbation
matrix (Tan et al. 2022), reinforcement learning (Nguyen
et al. 2022; Numeroso and Bacciu 2021; Wellawatte, Se-
shadri, and White 2022), and generative approaches (Ma
et al. 2022). After training, the learned latent space of gen-
erative approaches can be exploited as a sampling basis
to engender plausible counterfactuals. (w.l.o.g.), generative
methods learn a latent space that embeds original and non-
existing estimated edges’ edge probabilities (e.g., see (Ma
et al. 2022)). This way, one can employ sampling tech-
niques to produce counterfactual candidates w.r.t. the input
instance. In the following, we report the most recent and ef-
fective SoA methods.

MEG (Numeroso and Bacciu 2021) and MACCS
(Wellawatte, Seshadri, and White 2022) employ multi-
objective reinforcement learning (RL) models (retrained for

1https://aiimlab.org/blog/2023/12/19/AAAI 24 Robust Stoch
astic Graph Generator for Counterfactual Explanations.html

each input instance) to generate molecule counterfactuals.
Their domain-specificity limits their applicability and makes
them difficult to port on other domains. The reward func-
tion incorporates a task-specific regularisation term that in-
fluences the choice of the next action to perturb the input.
MACDA (Nguyen et al. 2022) uses RL to produce counter-
factuals for the drug-target affinity problem.

CF2 (Tan et al. 2022) balances factual and counterfac-
tual reasoning to generate explanations. Like other factual-
based approaches, it identifies a subgraph in the input, then
presents the remainder as a counterfactual candidate by re-
moving this subgraph (Bajaj et al. 2021). Notably, CF2

favours smaller explanations for simplicity.
CLEAR (Ma et al. 2022) uses a variational autoencoder

(VAE) to encode the graphs into its latent representation Z.
The decoder generates counterfactuals based on Z, condi-
tioned on the explainee class c ̸= Φ(G). Generated counter-
factuals are complete graphs with stochastic edge weights.
To ensure validity, the authors employ a sampling process.
However, decoding introduces node order differences be-
tween G and G′. Thus, a graph matching procedure (NP-
hard (Livi and Rizzi 2013)) between the two is necessary.

While unrelated to graphs, (Nemirovsky et al. 2022)
rely on a GAN. They produce counterfactual candidates
by training the generator to elucidate a user-defined class.
(Prado-Romero, Prenkaj, and Stilo 2023) adapt this into G-
CounteRGAN by treating the adjacency matrix as black-
and-white images and employing 2D image convolutions.

What is our contribution to the literature? We design a
novel approach to generate counterfactuals by leveraging the
latent space of the generator network to reconstruct the in-
put’s topology. The discriminator guides this process, which
compels the generator to learn the production of counterfac-
tuals aligned with the opposite class.

Firstly, we tackle the limitations of factual-based meth-
ods that remove subgraph components to craft counterfac-
tual candidates, a strategy found in (Bajaj et al. 2021; Tan
et al. 2022). However, this falters when dual classes clash
(e.g., acyclic vs cyclic graphs). In such cases, shifting from
cyclic to acyclic mandates edge removal, while acyclic to
cyclic requires edge addition, i.e., creating a cyclic graph
from acyclic needs an added edge for a loop. Since our
method combines the generated residual weighted edges
with the original edges, we empower both edge addition and
removal operations. Unlike images, graphs lack node order-
ing, rendering standard 2D convolutions inadequate due to
the significance of node adjacency. We integrate Graph Con-
volution Networks (GCNs) to address this, naturally captur-
ing node neighbourhoods via message-passing mechanisms
(Feng et al. 2022). Our approach is zero-shot counterfactual
generation. Prevalent techniques, especially those rooted in
Reinforcement Learning (RL) (Nguyen et al. 2022; Nu-
meroso and Bacciu 2021; Wellawatte, Seshadri, and White
2022), require recalibration at inference time to generate
counterfactuals for previously unseen graphs. Differently,
we learn a latent graph representation enabling stochastic es-
timations of the graph’s topology, allowing us to reconstruct
and generate counterfactuals without retraining.
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Lastly, our model introduces an innovative strategy - i.e.,
partial-order sampling - using estimated edge probabilities
acquired from the generator network. To the best of our
knowledge, this is the first work that proposes a partial-order
(Dan and Djeraba 2008) sampling approach on estimated
edges. This aids in identifying sets of edges that should
be sampled first for effective counterfactual generation (see
Sec. and Algorithm 1).

Preliminaries
This section briefly overviews the fundamental concepts and
techniques relevant to our study on robust counterfactual ex-
planations. We introduce the concepts of graphs, adjacency
matrices, and graph counterfactuals.

Graphs and Adjacency Matrix A graph, denoted as G =
(X,A), is a mathematical structure consisting of node fea-
tures X ∈ Rn×d and an adjacency matrix A ∈ Rn×n

which represents the connectivity between nodes. For an
undirected weighted graph, the adjacency matrix A is sym-
metric, and its elements are defined as

A [vi, vj ] =

{
w (vi, vj) if (vi, vj) is an edge in G

0 otherwise
(1)

where w (vi, vj) ∈ R is the weight vector of the edge inci-
dent to the nodes vi and vj . For directed graphs, the adja-
cency matrix may exhibit asymmetry, thereby indicating the
directionality of the edges. We focus on undirected graphs
and denote the graph dataset with G = {G1, . . . , GN}.
Graph Counterfactuals Given a black-box (oracle) pre-
dictor Φ : G → Y , where, w.l.o.g., Y = {0, 1}, according
to (Prado-Romero et al. 2023), a counterfactual for G is de-
fined as

EΦ (G) = argmax
G′∈G′,G ̸=G′,Φ(G)̸=Φ(G′)

S (G,G′) (2)

where G′ is the set of all possible counterfactuals, and
S(G,G′) calculates the similarity between G and G′.
(Prenkaj et al. 2023b) reformulate Eq. 2 and take a proba-
bilistic perspective to produce a counterfactual that is quite
likely within the distribution of valid counterfactuals by
maximising
EΦ(G) = argmax

G′∈G′
Pcf (G

′ | G,Φ (G) ,¬Φ (G)) (3)

where ¬Φ(G) indicates any other2 class from the one pre-
dicted for G. In this work, we find valid counterfactuals by
solving a specialisation of Eq. 3.

Method
Here we introduce RSGG-CE, namely Robust Stochastic
Graph Generator for Counterfactual Explanations, a su-
pervised explanation method that exploits the generator’s
learned latent space to sample plausible counterfactuals for
a particular explainee graph G = (X,A). RSGG-CE dis-
tinguishes between the training and inference phases as de-
picted in Figure 1. For this reason, we first discuss the train-
ing phase and, later, the inference one.

2The provided formulation supports multi-class classification
problems. For simplicity, we are in binary classification.

Training Let D(Y |X,A) denote a GCN discriminator that
produces Y = {0, 1} based on the plausibility assessment
of the graph represented by the adjacency matrix A and
node features X . Let G represent a Graph Autoencoder
(GAE) (Kipf and Welling 2016) with ENC(X,A) serving
as the representation model for latent node-related interac-
tion components (i.e., encoder), and DEC(Z) acting as an
inner-product decoder. Conversely to the original Residual
GAN, (Zhang et al. 2020), where the generator G is trained
on sampled Gaussian noise, we exploit the Residual GAN
introduced in (Nemirovsky et al. 2022), where G is trained
on instances sampled from the data distribution and opti-
mised according to Eq. 4:

L(D,G) = E
(Xi,Ai)∈G

[
logD(Y | Xi, Ai)

]
︸ ︷︷ ︸

discriminator optimisation

+ E
(Xj ,Aj)∈G,

X̂j ,Aj+Âj=G(Xj ,Aj)

[
log(1− D(Y | X̂j , Aj + Âj))

]
︸ ︷︷ ︸

generator optimisation
(4)

where G(X,A) = DEC(ENC(X,A)). For completeness
purposes, the generator G returns the reconstructed adja-
cency tensor Â and the reconstructed node features X̂ . No-
tice that, unlike vanilla GANs, the input to the Residual
GAN’s discriminator is Aj + Âj for a graph (Xj , Aj) ∈ G.
To overcome the constraint of (Nemirovsky et al. 2022),
which fixes the latent space of the generator to be of the same
size as the input space, we exploit a Graph Autoencoder
(GAE) such that it encodes graphs into a point in the latent
space Z , and the decoder maps it into a new reconstructed
graph belonging to the same space as the input. This also
allows the generator to learn relationships between its input
and output, enabling fine-grained regularisation of residuals
and alleviating mode collapse. Moreover, to support edge
additions and removals, we set the activation function of the
generator to the hyperbolic tangent and sum it to the input
adjacency matrix.

Let I[Φ(X,A) ̸= c] be an indicator function that returns
1 if Φ(X,A) ̸= c for a graph G = (X,A). Let also be Gc =
{(X,A) | (X,A) ∈ G ∧¬I[Φ(X,A) ̸= c]}. Conversely, we
indicate with G¬c = {(X,A) | (X,A) ∈ G ∧ I[Φ(X,A) ̸=
c]}. Because we need to generate counterfactuals for a pre-
trained black-box oracle Φ in a particular class c, we modify
Eq. 4 as follows:

LΦ,c(D,G) =
∑

(Xr,Ar)∈G¬c

(
logD(Y | Xr, Ar)

)
︸ ︷︷ ︸

discriminator optimisation on real data

+
∑

(Xg,Ag)∈G(Gc)

(
I[Φ(Xg, Ag) ̸= c] logD(Y | Xg, Ag)

)
︸ ︷︷ ︸

discriminator optimisation on generated data

+
∑

(Xj ,Aj)∈Gc,

X̂j ,Aj+Âj=G(Xj ,Aj)

log

(
1− D(Y | X̂, Aj + Âj)

)
︸ ︷︷ ︸

generator optimisation
(5)
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Figure 1: RSGG-CE’s workflow during training (up) and inference (down) in a cyclic graph vs tree scenario. (Xj , Aj) ∈ Gcyclic
is fed to the generator, which produces counterfactual residuals. The discriminator is trained on both real (Xr, Ar) ∈ Gtree and
generated graphs (Xg, Ag). The generator optimisation is guided via Φ’s classification. The generator explains input instances
(X∗, A∗) at inference time by sampling edges according to a learned stochastic distribution of its latent space. In this scenario,
we highlight the critical edges forming a cycle the generator needs to break so that the returned counterfactual candidate does
not contain cycles. The sampled edges entail a counterfactual candidate that Φ needs to validate.

where G(Gc) = {G(X,A) | (X,A) ∈ G ∧ ¬I[Φ(X,A) ̸=
c]} is the set of all the generated graphs. Since sampling
instances from the data distribution might induce G to gen-
erate null residuals, integrating the accuracy of correct pre-
dictions from Φ - as shown in the second summation of Eq.
5 - steers the generator away from this behaviour, making
it produce realistic counterfactuals (Guyomard et al. 2022)
w.r.t. to an input graph G∗ = (X∗, A∗), i.e.,

E
(X,A)∈G,

Φ(X,A)=Φ(X∗,A∗)

[∣∣∣∣G(X∗, A∗)− (X,A)
∣∣∣∣2
2

]
(6)

where G = (X,A) is a graph belonging to the same class as
G∗. In other words, our approach produces counterfactuals
close to the examples the generator has been trained, thus
ensuring as little as possible perturbations w.r.t. G∗ (see Sec.
).

We train the generator exclusively on the graphs from
the class we aim to explain. In this way, the graphs from
the other classes are assigned as real instances for the dis-
criminator training. Hence, by training the discriminator to
differentiate between fake data (generated counterfactuals)
and real data (corresponding to true counterfactual classes),
the generator learns to produce counterfactuals conditioned
on the graphs from the explainee class. For example, sup-
pose we have a dataset containing acyclic (0) and cyclic (1)
graphs. If we want to generate counterfactuals for the cyclic
class, we feed the generator with cyclic instances. Mean-
while, we feed the discriminator with generated instances
(labelled as fake data) and real trees (labelled as real data).
Considering that the generator needs to fool the discrimi-

nator to maximise its objective function, it will learn how
to mutate a cyclic into a plausible acyclic graph (e.g., by
removing edges that form the cycles). This way, the genera-
tor’s latent space can be exploited to generate counterfactual
candidates for the input instance.

RSGG-CE can also be adapted for node classification
where the dataset, the oracle, and the optimisation function
(Eq. 5) must be modified accordingly. We invite the reader
to check Sec. G of the SM for further details.

Inference and partial order sampling Differently from
(Ma et al. 2022), we stochastically generate counterfactual
candidates by sampling edges with partial order guided by
the learned probabilities from the generator’s latent space.
The general sampling procedure is illustrated in Algorithm
1, where we sample the edges according to the order defined
by the partial order (line 3) function illustrated in Al-
gorithm 2. We invite the reader to note that this approach is
modular and that the function partial order(·,·) can
be specialised according to the application domain and pre-
diction scenario. In Algorithm 1 for each edge set E of each
partition group O, we sample each edge according to their
estimated probabilities and engender A′ (line 7) and assess
if it is a valid counterfactual (line 8) based on the verifica-
tion guard o. As in (Abrate and Bonchi 2021), we default to
the original input if we fail to produce a valid counterfactual
(line 13). In Algorithm 2, we induce a partial order on the
estimated edges, including non-existing ones in the original
input. In line 1, we get the edges of the input instance, while
in line 2, we get the set of non-existing ones. Afterward, in
line 3, we build the corresponding partition groups by setting
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Algorithm 1: Partial order sampling to produce a counter-
factual.
Require: G∗ = (X∗, A∗), G : G → G, Φ,

1: X̂∗, A∗ + Â∗ = G(X∗, A∗)

2: Xg, Ag ← X̂∗, A∗ + Â∗
3: P ← partial order(A∗)
4: A′ ← 0n×n

5: for O ∈ P do
6: for e = (u, v) ∈ O.E do
7: A′[u, v]← sample(e,Ag[u, v])
8: if O.o ∧ Φ(Xg, A

′) ̸= Φ(X∗, A∗) then
9: return (Xg, A

′)
10: end if
11: end for
12: end for
13: return (X∗, A∗)

Algorithm 2: Example of partial order

Require: A ∈ Rn×n

1: E ← positive edges(A) ▷ Get the set of edges
from the adjacency matrix A

2: ¬E ← negative edges(A) ▷ Get the set of
non-existing edges from the adjacency matrix A

3: P←{(E=E, o=0), (E=¬E, o=1)} ▷ Build the partial
order of the existing and non-existing edges with group
tuples consisting of edge set E , and oracle verification
guard o.

4: return P

the oracle verification guard o = 1 only for the non-existing
group. Thus, the oracle will be called only once sampling
finishes on the existing edge set.

Experimental Analysis
This section discusses three kinds of analyses3. First, we
discuss the performances of RSGG-CE w.r.t. other SoA ex-
plainers (see Sec. F of the SM for the used evaluation met-
rics). In the second, we conduct four ablation studies to
understand the robustness of RSGG-CE. In the third one,
we conduct a qualitative anecdotal inspection. Experimen-
tal analysis is done by applying 10-fold cross-validations on
real and synthetic datasets. We also analysed RSGG-CE’s
efficiency and convergence in Sec. E of the SM.

The Tree-Cycles (TC) (Ying et al. 2019) is an emblematic
synthetic dataset. Each instance constitutes a graph compris-
ing a central tree motif and multiple cycle motifs connected
through singular edges. The dataset encompasses two dis-
tinct classes: i.e., one for graphs without cycles (0) and an-
other for graphs containing cycles (1). The TC also allows
control of the number of nodes, the number of cycles, and
the number of nodes in them. For the performance compar-
ison to the other SoA explainers, due to the computational

3The original code is on https://github.com/MarioTheOne/G
RETEL. Newer versions of the project will be released on https:
//github.com/aiim-research/GRETEL.

complexity of some of them, we use 500 graphs with 28
nodes and randomly generate up to 3 cycles with varying
sizes that go up to 7 nodes. We vary all the parameters for
the ablation study as reported in Sec. . The hardness of this
dataset depends on changing the oracle prediction; the ex-
plainer needs to learn to apply two opposite actions (i.e., re-
move or add edges to the input to generate acyclic or cyclic
counterfactuals, respectively).

The Autism Spectrum Disorder (ASD) (Abrate and Bonchi
2021) is a real graph classification dataset obtained us-
ing functional magnetic resonance imaging (fMRI), where
nodes represent brain Regions of Interest (ROI), and edges
are co-activation between two ROIs. The two classes belong
to individuals with Autism Spectrum Disorder (ASD) and
Typically Developed (TD) individuals as the control group.
Here, the graph instances can be disconnected.

In Table 1, we report the performance of RSGG-CE com-
pared to other SoA learning-based explanation methods (i.e.,
MACCS (Wellawatte, Seshadri, and White 2022), CF2 (Tan
et al. 2022), CLEAR (Ma et al. 2022), and G-CounteRGAN
(Prado-Romero, Prenkaj, and Stilo 2023)) for the TC and
ASD datasets. Notably, a significant challenge arises when
it comes to counterfactual explainability through learning-
based explainers due to the inherent reliance on the over-
arching structure of the graph rather than specific nodes or
edges. In this context, RSGG-CE takes the spotlight as an
exceptional performer with a gain of 66.98% and 19.65% in
Correctness over the second-performing method in TC and
ASD, respectively. It outperforms all alternative methods,
standing as the sole technique that improves, by a large mar-
gin, the Correctness of all the datasets without sacrificing the
running time. Moreover, RSGG-CE also showcases superi-
ority in terms of Graph Edit distance (GED) w.r.t. the other
explainers. This further underscores RSGG-CE’s capabili-
ties in capturing the intricate structures in all the datasets
and its wanted ability (see Sec. and Eq. 5) to generate coun-
terfactual instances closer to the input one w.r.t. those gen-
erated by other explainers (see also Sec. ).

Ablation Experiments
To understand the robustness of RSGG-CE, we conduct four
ablation studies using the TC dataset by varying the number
of nodes in the cycles, the number of cycles, the number
of nodes in the graphs, and the number of instances in the
dataset. For all the ablations, we use a dataset with 500 in-
stances. We also include CF2 since it is the best-performing
learning-based explainer after RSGG-CE.

Robustness to the increasing number of nodes per cycle
In this study, we fix the number of nodes to 128 and the num-
ber of cycles to 4 to assess how the number of nodes (from
3 to 28) in each cycle affects RSGG-CE’s GED and Cor-
rectness (see Fig. 2). It is interesting to notice that the big-
ger the cycles become, the better RSGG-CE learns the edge
probabilities since now the motifs are more evident. This
means that, at inference time, the partial order sampling has
higher chances of breaking cycles containing more nodes
than those with a small number of them. For instance, if the
number of nodes in a cycle is 3, the probability of cutting the
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Methods

MEG † CF2 † CLEAR ‡ G-CounteRGAN ‡ RSGG-CE ‡
Runtime (s) ↓ 272.110 4.811 25.151 632.542 0.083
GED ↓ 159.700 27.564 61.686 182.414 11.000
Oracle Calls ↓ 0.000 0.000 4341.600 1321.000 121.660
Correctness ↑ 0.530 0.496 0.504 0.504 0.885
Sparsity ↓ 2.510 0.496 1.110 3.283 0.199
Fidelity ↑ 0.530 0.496 0.504 0.504 0.885

T
C

Oracle Acc. ↑ 1.000 1.000 1.000 1.000 1.000

Runtime (s) ↓ × 15.313 275.884 969.255 80.000
GED ↓ × 655.661 1479.114 3183.729 234.853
Oracle Calls ↓ × 0.000 5339.455 1182.818 794.805
Correctness ↑ × 0.463 0.554 0.529 0.603
Sparsity ↓ × 0.850 1.917 4.125 0.304
Fidelity ↑ × 0.287 0.319 0.265 0.287

A
SD

Oracle Acc. ↑ × 0.773 0.773 0.773 0.773

Table 1: Comparison of RSGG-CE with SoA methods. Metrics are reported on 10-fold cross-validations. Bold values are the
best overall; underlined are second-best; × represents no convergence; † depicts a learning-based explainer, and ‡ a generative
approach. Correctness and GED are most important metrics.

Figure 2: GED ↓ and Correctness ↑ trends when varying
the number of nodes in each cycle on TreeCycles with 128
nodes and 4 cycles per instance.

Figure 3: GED ↓ and Correctness ↑ trends when varying the
number of cycles per instance on TreeCycles with 128 nodes
and 3 nodes per cycle.

cycle is 2/3. Specularly, if the number of nodes in a cycle
tends to the number of nodes in the instance, the probability
of cutting the cycle is nearer to 1. Therefore, Correctness has
an increasing trend. Additionally, while RSGG-CE reaches
a correctness of 1 when the number of nodes in cycles in-
creases, it does not sacrifice the recourse cost (GED) needs
to engender valid counterfactuals (see Fig. 2.a). Contrarily,
since RSGG-CE’s partial order sampling favours the exist-
ing edges in the original instance, with the increase in cycle
sizes, the GED has a non-increasing trend. This is straight-
forward since finding a valid counterfactual can be done with
fewer sampling iterations. For example, if we have a single

Figure 4: The trend of GED ↓ normalised by the number n
of nodes instance, and the trend of Correctness ↑ when n
increases.

Figure 5: The trend of GED ↓ and Correctness ↑ when vary-
ing the number of instances in the dataset.

ring (cyclic graph) per instance, the number of operations to
engender a counterfactual is 1. Notice that CF2 entails a zig-
zag Correctness trend, leading us to believe it does not scale
with the increasing number of nodes in the cycle. This phe-
nomenon is also supported regarding GED since CF2 con-
verges to a local minimum and tries to engender the same
counterfactual regardless of the input instance (notice the
standard error equal to zero).

Robustness to the increasing number of cycles In this
investigation, we keep the cycle size fixed at 3 nodes and
assess the impact of cycle quantity (ranging from 2 to 32)
on RSGG-CE’s GED and Correctness metrics (Fig. 3). It
is interesting to notice that the GED (Fig. 3.a) is linearly
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Figure 6: Qualitative comparison (best viewed in colour) of
the counterfactuals candidate produced by CF2, CLEAR,
G-CounteRGAN, and RSGG-CE on the ASD real dataset.
Concerning the original graph, green edges are additions,
red are removals, and grey are maintained.

dependent on the number of cycles, thus reflecting the in-
creased hardness of the problem (i.e., the need to break a
higher number of cycles) but without slipping into an expo-
nential trend. Similarly, the Correctness is slightly affected
by the number of cycles in the graphs but maintains its lin-
ear trend. This plot indicates that RSGG-CE can cope with
complex topologies without sacrificing too much in terms
of performance. Additionally, CF2 has an increasing trend
in GED w.r.t. the change in the number of cycles also influ-
ences the Correctness (e.g., from 2 to 18).

Robustness to the number of nodes In this ablation, for
each graph, we randomly generated up to 3 cycles with a
varying size that goes up to 7 nodes, and we delve into the
impact of graph number of nodes (ranging from 28 to 512)
on RSGG-CE’s GED and Correctness metrics (refer to Fig.
3). To better catch the general trend, in this case, we reported
the recourse cost (GED) normalised by the number of nodes
of the graph. Fig. 4.a depicts an outstanding linear trend
w.r.t. the number of nodes of the graph. It must be noticed
that the Correctness - reported in Figure 4.b is not affected
by the increased dimensionality. Those results, in conjunc-
tion with the results obtained in the previous ablation study
(see Fig. 3.b), let us state that the performances are solely af-
fected by the complexity of the datasets. Similarly, CF2 has
a linear trend in normalised GED by n as RSGG-CE. Recall
that CF2 is a factual-based explainer that supports only edge
removal operations. Now, because the GED / n ratio tends
to 1, we argue that CF2 perturbs the entire adjacency matrix
of the original instance.

Robustness by the number of instances In this last ab-
lation, we randomly generated up to 3 cycles with varying
sizes that go up to 7 nodes for each graph. We delve into
the impact of varying the number of instances in the dataset
(ranging from 100 to 8000) on RSGG-CE’s GED and Cor-
rectness metrics (refer to Fig. 5). Notice that in Fig. 5.a, the
GED is unaffected by the number of instances by expos-
ing a linear constant trend for both RSGG-CE and CF2. As
expected, the Correctness of RSGG-CE increases at the be-
ginning and stabilises when the number of instances exceeds
250 (see Fig. 5.b). In general, the same Correctness trend is
also confirmed for CF2 with a lower value.

Qualitative Anecdotal Inspection

Here, we discuss anecdotally the quality of the counterfac-
tual graphs generated by RSGG-CE and the SoA methods
on the ASD dataset. Fig. 6 shows the counterfactual gen-
eration for CF2, CLEAR, G-CounteRGAN, and RSGG-CE
on two graphs belonging to the Autistic Spectrum Disor-
der and Typically Developed classes. For both instances, we
show the original edges and illustrate how they get modi-
fied by each method. For visualisation purposes, we colour
red the edge deletion operations, green the edge addition op-
erations, and grey the original edge maintenance operations.
CF2 clearly shows its behaviour of removing the factual sub-
graph in both instances regardless of the class on ASD. How-
ever, it is peculiar that the subgraph G̃ corresponds to the
original graph G, justifying the high GED reported in Ta-
ble 1. CLEAR is the only SoA method that, in this exam-
ple, evidently performs all three types of operations on the
original edges. Although not as naive as CF2’s edge pertur-
bation policy, CLEAR exposes a higher GED than CF2 and
RSGG-CE due to its tendency to over-generate non-existing
edges. Interestingly, CLEAR is the only method that esti-
mates self-loops (see instance of class Typically Developed)
among the rest. G-CounteRGAN, as shown in Table 1, is the
worst-performing strategy, exposing a tendency to produce
a densely connected graph by adding non-existing edges.
Lastly, RSGG-CE, although capable of edge addition/re-
moval operations, here exhibits only removal ones. We argue
that because RSGG-CE’s produced valid explanation has a
low GED, this dataset’s partial order sampling strategy en-
genders a valid counterfactual only by examining the orig-
inal edges. To this end, we believe that edge removals are
primarily needed to produce valid counterfactuals in ASD.

We extend this qualitative analysis via a comprehensive
visualisation technique that analyses the operations per-
formed on each edge (see Sec. D of the SM).

Conclusion
In this study, we introduced RSGG-CE, a novel
Robust Stochastic Graph Generator for Counterfactual
Explanations able to produce counterfactual examples from
the learned latent space considering a partially ordered
generation sequence. We showed, quantitatively and qual-
itatively, that RSGG-CE outperforms all SoA methods.
RSGG-CE produces counterfactuals – conditioned on
the input – from the learned latent space incorporating a
partially ordered generation sequence. Additionally, the
proposed partial order sampling offers an effective means
for discerning existing and non-existing edges, contributing
to the overall robustness of our model. One of the key
findings of our study is the resilience of RSGG-CE in
handling increasingly complex motifs within the graph
instances. In the future, we want to leverage the ability of
RSGG-CE to generate multiple counterfactual candidates
to produce cohesive candidate explanations. Lastly, incor-
porating counterfactual minimality into the loss function of
generative models might offer potential improvements in
interpreting the generated explanations.
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