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Abstract

Linear temporal logic (LTL) and ω-regular objectives—a su-
perset of LTL—have seen recent use as a way to express
non-Markovian objectives in reinforcement learning. We in-
troduce a model-based probably approximately correct (PAC)
learning algorithm for ω-regular objectives in Markov deci-
sion processes (MDPs). As part of the development of our
algorithm, we introduce the ε-recurrence time: a measure of
the speed at which a policy converges to the satisfaction of
the ω-regular objective in the limit. We prove that our algo-
rithm only requires a polynomial number of samples in the
relevant parameters, and perform experiments which confirm
our theory.

Introduction
Reinforcement learning (RL) (Sutton and Barto 2018) is a
sampling-based approach to learning a controller. Inspired
by models of animal behavior, the RL agent interacts with
the environment and receives feedback on its performance
in terms of a numerical reward, that either reinforces or
punishes certain behaviors. This learning approach has pro-
duced impressive results in recent years (Mnih et al. 2015;
Silver et al. 2016). However, failure to precisely capture
designer’s intent in reward signals can lead to the agent
learning unintended behavior (Amodei et al. 2016). As a
response, formal languages—in particular linear temporal
logic (LTL) and ω-regular languages—have been proposed
to unambiguously capture learning objectives. While these
languages have enjoyed practical success (Hahn et al. 2019;
Bozkurt et al. 2020), their theoretical complexity is rela-
tively underexplored. In this paper we propose and study a
model-based probably approximately correct RL algorithm
for LTL and ω-regular languages.

Probably approximately correct (PAC) learning (Valiant
1984) is a framework for formalizing guarantees of a learn-
ing algorithm: a user selects two parameters, ε > 0 and
δ > 0. A learning algorithm is then (efficient) PAC if it re-
turns a solution that is ε close to optimal with probability at
least 1 − δ using a polynomial number of samples. In RL,
many PAC learning algorithms have been proposed for both
discounted and average reward (Kakade 2003; Brafman and
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Tennenholtz 2003). These algorithms usually provide sam-
ple bounds in terms of the sizes of the state and action spaces
of the Markov decision process (MDP) that describes the en-
vironment. Finite-horizon and discounted reward both have
the property that small changes to the transition probabili-
ties result in small changes to the value of the objective. This
means that the sample complexity is independent of the tran-
sition probabilities of the MDP. However, infinite-horizon,
undiscounted objectives, like average reward and the sat-
isfaction of LTL properties, are sensitive to small changes
in probabilities, and their sample complexity is dependent
on some knowledge of the transition probabilities. Hence,
if only the number of state/action pairs is allowed, along-
side 1/ε and 1/δ, as parameters, creating a PAC learning al-
gorithm for undiscounted, infinite-horizon properties is not
possible. Specifically for LTL, this has been observed by
Yang, Littman, and Carbin (2021) and Alur et al. (2022).
Example 1 (Intractability of LTL). Figure 1 is an example
adopted from (Alur et al. 2022) that shows the number of
samples required to learn safety properties is dependent on
some property of the transition structure. The objective in
this example is to stay in the initial state s0 forever. This
can be specified with average reward (a reward of 1 in s0
and 0 otherwise) and in LTL (φ = Gs0). The transition
from s0 to s1 under action b must be observed in order to
distinguish action a from action b and produce an ε-optimal
policy for any ε < 1. The number of samples required to see
this transition with high probability is affected by the value
of p. Smaller values of p means it takes longer for a policy’s
finite behavior to match its infinite behavior.

This non-PAC-learnability may motivate using discounted
versions of LTL (Littman et al. 2017; Alur et al. 2023),
which, however, have significantly different semantics from

s0 s1
b

a

1− p

p
a, b

Figure 1: Example adopted from (Alur et al. 2022). The ob-
jective is to remain in s0 forever.
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the undiscounted logic. One may argue instead that the com-
plexity of the dynamics of an MDP is not entirely captured
by the number of state-action pairs. For example, for aver-
age reward, Kearns and Singh (2002) use the ε-return mixing
time, a measure of how fast the average reward is achieved in
a particular system, for this purpose. They argue that in order
to know the learning speed of an algorithm, one must know
the speed at which the policy achieves the limit average re-
ward. The R-MAX algorithm of Brafman and Tennenholtz
(2003) also utilizes the ε-return mixing time.

The ε-return mixing time is defined based off of a given
reward function, which we do not have in our context.
Therefore, we require an alternative notion. We propose the
ε-recurrence time as a way to reason about the speed at
which an ω-regular objective is achieved. Informally, the ε-
recurrence time is the expected time for a set of recurring
states to be visited twice. In Figure1, the ε-recurrence time
increases when p decreases. We will show that this addi-
tional parameter is sufficient for defining a PAC algorithm
for ω-regular objectives.

Contributions. We introduce a model-based PAC learn-
ing algorithm for LTL and ω-regular objectives in Markov
decision processes. For our algorithm, we introduce the ε-
recurrence time: a measure of the speed at which a policy
converges to the satisfaction of the ω-regular objective in
the limit. We show that the number of samples required by
our algorithm is polynomial in the relevant input parameters.
Our algorithm only requires the ability to sample trajectories
of the system, and does not require prior knowledge of the
exact graph structure of the MDP. Finally, we demonstrate
the practicality of our algorithm on a set of case studies.

Related work. A PAC learning algorithm for LTL was in-
troduced by Fu and Topcu (2014) that uses sampled trajec-
tories to learn, but requires knowledge of the graph structure
of the MDP, i.e., which transitions occur with nonzero prob-
ability. Brázdil et al. (2014) propose an algorithm with PAC
guarantees for unbounded reachability by using the mini-
mum nonzero transition probability, and describe how to ex-
tend their method to LTL. Ashok, Kretinsky, and Weininger
(2019) utilize the minimum nonzero transition probability
to develop an anytime statistical model-checking algorithm
for unbounded reachability. Although they do not discuss
it, in principle their method can extended to LTL similarly.
Voloshin et al. (2022) provide an algorithm with PAC guar-
antees for LTL which assumes access to a generative model
of the system.

Daca et al. (2017) describe a PAC algorithm capable of
checking the satisfaction of LTL on a Markov chain. They
observe that “some information about the Markov chain is
necessary for providing statistical guarantees.” The afore-
mentioned works of Alur et al. (2022) and Yang, Littman,
and Carbin (2021) formalize this observation.

Alur et al. (2023) study model-free RL for discounted
LTL, while we do not assume discounting. Hahn et al.
(2022) show that Rabin automata are unsuitable for model-
free RL of ω-regular objectives. We can use Rabin automata
because our algorithm is model-based.

Preliminaries
A Markov decision process (MDP) is a tuple M =
(S,A, P, s0) where S is the set of states, A is the set of ac-
tions, P : S ×A× S → [0, 1] is the transition function, and
s0 ∈ S is the initial state. A run of an MDP is an infinite se-
quence s0, a0, s1, a1, . . . such that P (si, ai, si+1) > 0 for
all i ≥ 0. A Markov chain M = (S, P, s0) is an MDP
where the set of actions is singleton, i.e. S is the set of states,
P : S × S → [0, 1] is the transition function, and s0 ∈ S
is the initial state. A bottom strongly connected component
(BSCC) of a Markov chain is a bottom strongly connected
component of the graph formed by the positive probabil-
ity edges of the Markov chain. Equivalently, a BSCC of a
Markov chain is a set of states B ⊆ S where for all s, s′ ∈ B
the probability of reaching s′ from s is positive and the prob-
ability of reaching a state s′′ ∈ S \ B is zero. A policy is a
recipe for selecting actions. A policy is positional if it is of
the form π : S → A. A policy π induces a probability dis-
tribution over runs. We denote the probabilities under this
distribution by PrMπ (·).

Let AP be the set of atomic propositions. An LTL formula
has the following grammar

φ := ⊤ | b ∈ AP | ¬φ | φ ∨ φ | Xφ | φUφ

We write ⊥ := ¬⊤, φ ∧ φ := ¬(¬φ ∨ ¬φ), the finally
operator as Fφ := ⊤Uφ, and the globally operator Gφ :=
¬F¬φ. For a formula φ and an infinite word σ = σ0σ1 . . . ∈
(2AP )ω we write w ⊨ φ to denote that σ satisfies φ. We
write σi:∞ = σiσi+1 . . . for the substring of σ starting at
position i. The semantics of LTL are defined as

σ ⊨ ⊤
σ ⊨ a iff a ∈ σ0

σ ⊨ ¬φ iff σ ⊭ φ

σ ⊨ φ1 ∨ φ2 iff σ ⊨ φ1 or σ ⊨ φ2

σ ⊨ Xφ iff σ ⊨ σ1:∞

σ ⊨ φ1Uφ2 iff ∃j ≥ 0 s.t. σj:∞ ⊨ φ2

and σi:∞ ⊨ φ1, ∀ 0 ≤ i < j .

Omega-regular languages are a generalization of regular
languages for infinite strings. Like regular languages are
accepted by finite automata, ω-regular languages are ac-
cepted by ω-automata. An ω-automaton is a tuple A =
(Q,Σ, δ, q0, F ) where Q is a finite set of states, Σ is the
input alphabet, δ : Q × Σ → 2Q is the (nondeterminis-
tic) transition function, q0 ∈ Q is an initial state, and F is
an acceptance condition over states. The Büchi acceptance
condition is F ⊆ Q, a subset of accepting states. A Büchi
automaton accepts an infinite word σ if there exists a run
in A that visits accepting states infinitely often. We denote
the acceptance of an infinite word σ by A as σ ⊨ A. It is
well known that LTL expresses a subset of the ω-regular
languages. There exists many translations from LTL to ω-
automata (Duret-Lutz et al. 2016).

LetM = (S,A, P, s0, AP, L) be an MDP equipped with
atomic propositions AP and a labeling function L : S →
2AP , and let A = (Q,Σ, δ, q0, F ) be an ω-automaton. The
probability of satisfaction of A under a policy π in M is

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21511



pMπ = PrMπ (L(s0)L(s1) . . . ⊨ A). The optimal probability
of satisfaction is pM = supπ p

M
π . If pMπ = pM then we say

that π is optimal. For some ε > 0, if pMπ ≥ pM − ε then π
is ε-optimal.

One can form the product MDP M× =
(S×, A×, P×, (s0, q0), F ) by synchronizing the states
of M and A, i.e. S× = S × Q, A× = A × Q, and
P×((s, q), (a, q), (s′, q′)) = P (s, a, s′) if q′ ∈ δ(q, L(s))
and P×((s, q), (a, q), (s′, q′)) = 0 otherwise. Note that
we can form the product on-the-fly, i.e., we can sample
trajectories from M× by simply updating the states of M
and A separately, and concatenating them at the end. Note
that the nondeterminism in the automaton is resolved as
actions in the product. IfA is good-for-MDPs (GFM) (Hahn
et al. 2020), then the optimal probability of satisfaction in
the product M× is the same as the optimal probability of
satisfaction of A in M. Deterministic ω-regular automata
are always GFM. One can lift the policy computed inM×

to a memoryful policy in M that uses A as memory. We
note that for the popular acceptance conditions Büchi,
parity, and Rabin, computing optimal policies can be done
in polynomial time in the size ofM× . We refer the reader
to (Baier and Katoen 2008) for further details.

Main Results
For generality, we examine the setting in which we are given
an MDPM = (S,A, P, s0, F ) equipped with an acceptance
condition F on states. To avoid unneeded complexity, we
assume that the acceptance condition F is such that there
are positional optimal policies. This is true for the popular
acceptance conditions Büchi, parity, and Rabin.1

Recall that if one begins with an MDP M =
(S,A, P, s0, AP, L) equipped with atomic propositions AP
and a labeling function L : S → 2AP , and a suitable GFM
ω-automaton—which may have been constructed from an
LTL formula—then one can form the product MDP. The pol-
icy produced on the product MDP can be lifted to a memory-
ful strategy on the original MDP with the same guarantees.
Additionally, recall that the product MDP construction can
be done on-the-fly for unknown MDPs. Thus, our problem
formulation is general enough to capture producing policies
for LTL and ω-regular objectives on MDPs with its states
labeled by atomic propositions.

We begin by defining the ε-recurrence time in Markov
chains.
Definition 1. The ε-recurrence time in a Markov chain M =
(S, P, s0) is the smallest time T such that with probability at
least 1 − ε a trajectory of length T starting from the initial
state s0 visits every state in some BSCC twice.

Intuitively, the ε-recurrence time T is the time needed
so that the recurrent behavior of a trajectory of length T
matches the recurrent behavior of an infinite extension of
that trajectory with probability at least 1 − ε. It may be
that the ε-recurrence time is unknown, but other parame-
ters, like the minimum positive transition probability pmin

1The results that follow can extended to a Muller condition by
replacing instances of “positional” with “deterministic finite mem-
ory with memory N” where N is a property dependent constant.

are known. In such a case, the following lemma provides an
upper bound.

Lemma 1. Let M = (S, P, s0) be a Markov chain and
pmin = min{s,s′|P (s,s′)>0} P (s, s′) be the minimum posi-
tive transition probability in M . Then the ε-recurrence time
T satisfies T ≤ 2|S| log(ε/2)

log(1−p
|S|
min)

.

Proof. In the worst case, every state in the Markov chain
must be seen at least twice and visiting every state in the
Markov chain requires taking a path of length |S| that oc-
curs with probability p

|S|
min. Attempting this path k times, the

probability of succeeding at least once is 1− (1− p
|S|
min)

k. If
k ≥ log(ε/2)

log(1−p
|S|
min)

then 1 − (1 − p
|S|
min)

k ≥ 1 − ε/2. A lower

bound on succeeding twice in 2k attemps is (1− ε) ≤ (1−
ε/2)(1−ε/2). Finally, each of the k attempts takes |S| steps
in the worst case to yield T ≤ |S|2k = 2|S| log(ε/2)

log(1−p
|S|
min)

.

We define the ε-recurrence time in MDPs so that we can
reason about all positional policies in an MDP, as the optimal
policies of interest are positional.

Definition 2. The ε-recurrence time of an MDP M =
(S,A, P, s0) is the maximum ε-recurrence time amongst all
Markov chains induced by positional policies inM.

The ε-recurrence time provides a measure of the speed
at which finite trajectories converge to their infinite behav-
ior, i.e., eventually dwell in a BSCC forever. To demon-
strate the intuition behind the ε-recurrence time being suf-
ficient to understand long term behavior from finite trajec-
tories, we will sketch a simple model-free algorithm for es-
timating the probability of satisfaction p in a Markov chain
M = (S, P, s0, F ). We will not use this algorithm when
we consider MDPs, but it shows that the ε-recurrence time
provides sufficient information to learn long term behavior.

Our algorithm samples C trajectories of length T from the
initial state and observes the fraction of trajectories that are
winning. As we will show, this algorithm has two sources of
estimation error: the first since we sample finite length tra-
jectories, and the second since we only sample finitely many
times. To analyze the first type of error, we will utilize the
definition of the ε-recurrence time. The second type follows
from standard statistical results.

Fix ε > 0 and δ > 0, and let T be the ε-recurrence time
in M . Let p be the probability of satisfaction in M . Given
a trajectory, we can form the trajectory graph by adding an
edge from state s to state s′ in the graph if a transition from s
to s′ was observed in the trajectory. Note that if we sampled
infinite length trajectories, then the BSCC in the trajectory
graph would correspond to a BSCC of the Markov chain. We
identify a sampled trajectory as winning if the BSCC in the
trajectory graph is winning. The proportion of infinite length
trajectories identified as winning is exactly p. We now need
to determine the error we accumulate from using trajectories
of finite length T .

If we sample trajectories of length T then the BSCC in
the trajectory graph is also a BSCC in the Markov chain
with probability at least 1 − ε, from the definition of the
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ε-recurrence time. This means that at least 1 − ε of the tra-
jectories are identified as if we had access to an oracle. Thus,
our first type of error is at most ε.

Let p̂ be the proportion of trajectories of length T that
are identified as winning in expectation. We have that |p̂ −
p| ≤ ε. Sampling trajectories of length T thus gives us a
coin biased by p̂ to toss. For the second type of error, we can
give a statistical guarantee on estimating the weight of this
coin from finite samples within some bound ε′ > 0 of its
true value. By using Hoeffding’s inequality, we get that by
sampling C trajectories

P (|p̂− E[p̂]| ≤ ε′) ≥ 1− 2 exp(−2ε′2C)

P (|p̂− p| ≤ ε′ + ε) ≥ 1− 2 exp(−2ε′2C)

For simplicity, we can set ε′ = ε, and then select C ≥
− ln(δ/2)

2ε2 so that 1 − 2 exp(−2ε2C) ≥ 1 − δ. In summary,
this algorithm is a model-free PAC algorithm for identifying
the probability of satisfaction in Markov chains, i.e., it re-
turns an estimated probability of satisfaction that is within
2ε of the true value p with probability at least 1 − δ after
polynomially-many samples.

We have shown that the ε-recurrence time is sufficient
to reason about LTL and ω-regular properties in Markov
chains. We now turn our attention to MDPs, where we
will develop a model-based PAC algorithm that uses the ε-
recurrence time.

The ω-PAC Algorithm
For MDPs, we will develop a model-based PAC algorithm
inspired by R-MAX (Brafman and Tennenholtz 2003) that
utilizes the ε-recurrence time T of M = (S,A, P, s0, F ).
We call our algorithm ω-PAC.

The general approach of our algorithm is to learn the tran-
sition probabilities of the MDP with high accuracy (within

ε
|S|T of their true values) and high confidence. We show that
this implies that optimal policies on the learned MDP are 6ε-
optimal on the real MDP with high confidence (cf. Lemma 4
and Theorem 1). To obtain our polynomial sample complex-
ity results, we design our learned MDP to be optimistic: one
that provides an upper bound of the probability of satisfac-
tion. This ensures that we continue to explore edges that we
do not yet know with high accuracy sufficiently often (cf.
Lemma 5 and Theorem 2).

Specifically, our approach keeps track of an estimate M̂
of the real system. State-action pairs in M̂ are kept in two
categories: known and unknown. Known edges are edges we
have sampled at least k times, while unknown edges we
have sampled less than k times. Intuitively, we select k so
that known edges are edges we know with high accuracy
(within ε

|S|T ) and high confidence. For known edges, we
use the observed transition distribution. For unknown edges,
we set them as transitions to an accepting sink.2 By setting
the values of unknown edges optimistically high, an optimal

2For Büchi, one can add the sink state to the accepting set. For
parity, one can give this sink state an overriding winning priority
(the largest odd priority for max odd semantics). For Rabin, one
can add another pair that wins by visiting this sink state forever.

Algorithm 1: ω-PAC
Input: |S|, |A|, T , 1

ε , 1
δ , and threshold k > 0

Output: 6ε-optimal policy π

1: Initialize M̂, policy π, and visit counts c
2: while M̂ not known do
3: Compute optimal positional policy π in M̂
4: Sample with π for T steps from initial state inM
5: Update M̂ with threshold k
6: end while
7: return π

positional policy π in M̂ naturally explores the MDP. The
algorithm computes an optimal positional policy π in M̂,
samples trajectories of length T from s0 with π, and then
updates M̂ from these samples. When all edges that π can
visit in T steps in M̂ are known, the algorithm stops and
returns π.

We now present some more details of the ω-PAC al-
gorithm (see Algorithm 1). We initialize the visit counts
c(s, a, s′) ←− 0 for all s, s′ ∈ S and a ∈ A, and π
to an arbitrary positional policy (Line 1). Let c(s, a) =∑

s′∈S c(s, a, s′). An edge is unknown if c(s, a) < k
and is known if c(s, a) = k. After sampling a tra-
jectory τ ∼ {(s0, a0), . . . , (sT−1, aT−1)} (Line 4), for
each i ∈ {0, 1, . . . , T − 1} we update c(si, ai, si+1) ←−
c(si, ai, si+1) + 1 only if c(si, ai) < k. Once c(si, ai) = k,
we do not continue incrementing the visit counts. We use
M̂ = (Ŝ, A, P̂ , s0, F̂ ) where Ŝ = S ∪ {sink},

P̂ (s, a, s′) =

{
1s′=sink c(s, a) < k ∨ s = sink
c(s,a,s′)
c(s,a) c(s, a) = k ∧ s ̸= sink

and

F̂ (s) =

{
F (s) s ̸= sink

accepting s = sink

for all instances of M̂ (Lines 1 and 5), where 1s′=sink is the
indicator function for s′ = sink. Note that these updates
can be performed without knowing S, A, or F apriori as we
only update P̂ to something nontrivial for states that have
been visited.

A naive stopping condition (Line 2) would be to stop only
when all edges are marked as known. Instead, we will use a
more general condition, that all of the edges reachable in T
steps under π are known. Formally, let ST ⊆ S be the set of
states reachable in T steps with positive probability under π
in M̂ from s0. The condition on line 2 holds if c(s, a) = k
for all s ∈ ST and a ∈ A.

We have presented ω-PAC as an algorithm that returns
a single policy π. The same algorithm can also be phrased
as producing an infinite sequence of policies πi for all
timesteps i ≥ 0 where πi be the policy π in the ω-PAC learn-
ing loop after i samples of the system have been taken. If i is
greater than the number of samples ω-PAC takes, we define
πi as the policy returned by ω-PAC.
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We show that for a selection of k that is polynomial in
the input parameters, the policy π returned by the ω-PAC
algorithm is 6ε-optimal with probability at least 1− δ (The-
orem 1). We will also show our algorithm has a polynomial
sample complexity, i.e., the policy π while the algorithm is
running is not 9ε-optimal at most some polynomial number
of times with probability at least 1−2δ (Theorem 2). We will
now introduce the machinery required to prove these results.

We begin by defining an (α, T )-approximation. This is
an approximation of an MDP where the probabilities of all
transitions up to a depth T are known within α.

Definition 3. An (α, T )-approximation of an MDP M =
(S,A, P, s0, F ) is an MDP M′ = (S,A, P ′, s0, F ) such
that for all s, s′ ∈ ST and a ∈ A, |P (s, a, s′) −
P ′(s, a, s′)| ≤ α and, if P (s, a, s′) = 0, then P ′(s, a, s′) =
0, where ST ⊆ S are the states reachable with positive prob-
ability in T steps from s0 under some strategy.

Note that an (α, T )-approximation of an MDP can be
obtained by averaging samples of observed trajectories of
length T to produce an estimate of the transition probabil-
ities P ′(s, a, s′). If P (s, a, s′) = 0 then that transition is
never observed, so P ′(s, a, s′) = 0. Additionally, enough
samples will yield |P (s, a, s′)− P ′(s, a, s′)| ≤ α with high
probability. We show this explicitly in the following lemma.

Lemma 2. Let 0 < δ < 1, α > 0, and M = (S, P, s0, F ) be
a Markov chain. Let P̂ (s, s′) = c(s,s′)

k where c(s, s′) is the
number of observed transitions from s to s′ obtained after
sampling transitions from a state s, k ≥

⌈− ln(δ/2)
2α2

⌉
times.

Then with probability at least 1−δ, |P̂ (s, s′)−P (s, s′)| ≤ α

and P̂ (s, s′) = 0 if P (s, s′) = 0 for all s′ ∈ S.

Proof. Fix s′ ∈ S. Since P (s, s′) = 0 implies that
c(s, s′) = 0 and thus P̂ (s, s′) = 0, all we need to show
is that |P̂ (s, s′) − P (s, s′)| ≤ α with probability at least
1− δ. We apply Hoeffding’s inequality to get

Pr(|P̂ (s, s′)− P (s, s′)| ≤ α) ≥ 1− 2 exp(−2α2k).

Substituting, we get that

1− 2 exp(−2α2k) ≥ 1− δ.

This lemma is helpful for giving a bound on the number
of samples required to learn an (α, T )-approximation. In or-
der to determine the appropriate α to select, we’d like to
give a bound on the change in the probability of satisfaction
between an MDPM and its (α, T )-approximationM′. To
provide such a bound, we use the following result.

Lemma 3. Let M = (S, P, s0, F ) be a Markov chain,
M ′ = (S, P ′, s0, F ) be an (α, T )-approximation of M ,
N = |S| denote the size of the state space. If the proba-
bility to reach s′ ∈ S from s ∈ S in at most T steps in M is
p, then the probability to reach s′ from s in at most T steps
in M ′ is at least p− αNT .

Proof. Let Ri and R′
i be the events that we reached s′ from

s in at most i steps in M and M ′ respectively. We’d like
to show that Pr(R′

i) ≥ Pr(Ri) − αNi for all i ≥ 0. We

show this by induction. For the base case, it is clear that
Pr(R′

0) = Pr(R0).
For convenience, we define pi = Pr(Ri) and p′i =

Pr(R′
i). We also define pi|i−1 = Pr(Ri|¬Ri−1) and

p′i|i−1 = Pr(R′
i|¬R′

i−1). Since there are N total transi-
tions, the worst case reduction in the single step transition
probabilities between states is at most αN . Thus, p′i|i−1 ≥
pi|i−1 − αN . For the inductive step, we can write for i > 0

Pr(R′
i) = Pr(R′

i|¬R′
i−1) Pr(¬R′

i−1) + Pr(R′
i−1)

= p′i|i−1(1− p′i−1) + p′i−1

≥ p′i|i−1(1− pi−1) + (pi−1 − αN(i− 1))

≥ (pi|i−1 − αN)(1− pi−1) + (pi−1 − αN(i−1))
≥ pi|i−1(1− pi−1) + pi−1 − αNi

= Pr(Ri)− αNi

We are now ready to bound the difference in the prob-
ability of satisfaction between a Markov chain M and its
(α, T )-approximation M ′.

Lemma 4. Let M = (S, P, s0, F ) be a Markov chain,
N = |S| denote the size of the state space, ε > 0, and T be
the ε-recurrence time in M . Let M ′ = (S, P ′, s0, F ) be an
( ε
NT , T )-approximation of M , and T ′ be the 2ε-recurrence

time in M ′. Let p and p′ be the probability of satisfaction
from s0 in M and M ′, respectively. Then,

1. T ′ ≤ T

2. |p′ − p| ≤ 3ε .

Proof. We begin by defining the unrolling of a Markov
chain and the associated set of lasso states. The unrolling
of a Markov chain M = (S, P, s0, F ) is a Markov chain
Mx = (Sx, Px, (s0,0), Fx) that has the same dynamics as
M , but keeps track of the visitation counts of each state. The
set of lasso states L of Mx is the set of states such that there
exists a BSCC B in M such that all the visitation counts
are greater than or equal to 2 for all s ∈ B. Given a state
s ∈ L, we define L−1(s) = B as the function that returns
the BSCC B in M corresponding to that state in Mx.

Consider the unrolled Markov chains Mx and M ′
x, and

their lasso states L and L′, for M and M ′, respectively. The
probability of visiting a state s ∈ L from (s0,0) in Mx in
T steps is at least 1 − ε, by definition. By Lemma 3, the
probability of visiting a state s ∈ L from (s0,0) in M ′

x in T
steps is at least 1 − 2ε. Let X ⊆ L be the set of states in L
that are reached with positive probability in T steps in M ′

x,
and let B = {L−1(x) : x ∈ X}. For each B ∈ B, all states
s ∈ B can reach each other in M ′ with positive probability
in T steps by definition, and thus are part of the same SCC
in M ′. Since P ′(s, s′) = 0 if P (s, s′) = 0, these states form
a BSCC in M ′.

In summary, every BSCC B ∈ B is a BSCC in M and
M ′, and the probability of reaching a state s ∈ B in T steps
from s0 in M ′ is at least 1− 2ε. Thus, T is an upper bound
on the 2ε-recurrence time in M ′, proving part 1. Finally, let
pB and p′B be the probability of reaching a winning BSCC
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B ∈ B in T steps from s0 in M and M ′, respectively. Then,

|p′ − p| ≤ |p′B − pB|+ 2ε (1)
≤ ε+ 2ε = 3ε (2)

where (1) follows from the fact that the BSCCs in B are
reached with probability at least 1 − 2ε in M ′, and (2) fol-
lows from applying Lemma 3. This proves part 2.

Since Definition 2 is concerned with positional policies,
and optimal policies are positional, Lemma 4 applies di-
rectly to an MDP M and its ( ε

NT , T )-approximation M′,
producing the same bounds. This motivates selecting the
number of samples k to mark an edge as known in the
ω-PAC algorithm to be such that we are highly confident
that we have an ( ε

NT , T )-approximation ofM. We can use
Lemma 2 to select such a k. We are now ready to show the
correctness of the ω-PAC algorithm under the appropriate
selection of k.

Theorem 1 (Correctness). Let 0 < δ < 1, ε > 0, M =
(S,A, P, s0, F ) be an MDP, N = |S| denote the size of the
state space, K = |A| denote the size of the action space,
and T be the ε-recurrence time of M. Let ε′ = ε

NT and

δ′ = δ
NK . For k =

⌈− ln(δ′/2)
2ε′2

⌉
, the policy π returned by

ω-PAC is 6ε-optimal with probability at least 1− δ.

Proof. LetM′ be some ( ε
NT , T )-approximation ofM. Let

σ be an optimal positional policy inM′. Let p be the opti-
mal probability of satisfaction in M, and let pσ and p′σ be
the probability of satisfaction inM andM′ under σ, respec-
tively. By Lemma 4, we have that

|p− pσ| ≤ |p− p′σ|+ |p′σ − pσ|
≤ 3ε+ 3ε = 6ε.

Thus, all we need to show is that with probability at least
1−δ there exists an ( ε

NT , T )-approximationM′ ofM such
that π is optimal inM′.

Let M̂ denote the optimistic MDP when ω-PAC termi-
nates. We say that a state-action pair s ∈ S, a ∈ A in M̂ is
α-accurate if for all s′ ∈ S, |P̂ (s, a, s′) − P (s, a, s′)| ≤ α

and if P (s, a, s′) = 0 then P̂ (s, a, s′) = 0. By Lemma 2,
a state-action pair marked as known is ε

NT -accurate with
probability at least 1 − δ′. Since there are NK total state-
action pairs, the probability that all state-action pairs marked
as known are ε

NT -accurate is at least (1−δ′)NK ≥ 1−δ. Let
M′ = (S,A, P̂ ′, s0, F

′) be an MDP such that the transition
probabilities for all known state-action pairs are identical to
M̂, are ε

NT -accurate for unknown state-action pairs that are
reachable in T steps from s0 with positive probability un-
der some strategy, and are accepting sinks otherwise. With
probability at least 1 − δ, M′ is a ( ε

NT , T )-approximation
ofM. Finally, note that the probability of satisfaction in M̂
andM′ under π is the same since ω-PAC terminates when
π only visits known state-action pairs in T steps. Therefore,
since the optimal probability of satisfaction p̂ in M̂ is an
upper bound on the probability of satisfaction inM′, by the
construction of M̂, π is optimal inM′.

Note that k = Õ(|S|2T 2/ε2) selected in the previous the-
orem is bounded by a polynomial in the input parameters.
For Theorem 1, we assume we run the algorithm until ter-
mination, which occurs with probability 1: if it has not ter-
minated, π visits an unknown state-action pair with positive
probability in T steps, and there can only be k|S||A| such
visits before all state-action pairs are marked as known. We
now show sample complexity bounds for the ω-PAC algo-
rithm by showing that the number of timesteps that π is not
9ε-optimal is bounded by a polynomial in |S|, |A|, T , 1

ε , and
1
δ with probability at least 1 − 2δ. For such a sample com-
plexity result, we need to reason about how often unknown
state-action pairs are visited. We show this in the following
lemma.
Lemma 5. Let M = (S,A, P, s0, F ) be an MDP. Let
M̂ = (S ∪ {sink}, A, P̂ , s0, F̂ ) be identical to M ex-
cept some arbitrary set U of state-action of pairs are con-
verted into transitions to the accepting sink. Let π be a po-
sitional optimal policy in M̂, α > 0, ε > 0, and T be the
ε-recurrence time ofM. Then at least one of the following
holds:
1. π is α-optimal from s0 inM, or
2. a trajectory in M̂ of length T from s0 under π visits a

state-action pair in U with probability at least α− ε.

Proof. To prove this lemma, it is sufficient to show that if
π is not α-optimal from s0 inM, then a trajectory in M̂ of
length T from s0 under π visits a state-action pair in U with
probability at least α − ε. Let pπ and p̂π be the probability
of satisfaction that π obtains from s0 inM and M̂, respec-
tively. Let p be the maximum probability of satisfaction in
M. We begin by noting that p̂π ≥ p by the construction
of M̂. If π is not α-optimal from s0 in M , this means that
p − pπ ≥ α, which implies p̂π − pπ ≥ α. As the values p̂π
and pπ only differ due to π reaching state-action pairs in U

in M̂, this means that π must reach a state-action pair in U

in M̂ from s0 with probability at least α.
Finally, note that T + 1 is an upper bound on the ε-

recurrence time in M̂. This is because any policy π in
M̂ that takes a state-action pair in U will visit the BSCC
formed by the sink after one additional timestep. For rea-
soning about reaching a state-action pair in U once, this ad-
ditional timestep due to the sink state has no effect. Thus, if
the probability to reach a state-action pair in U in M̂ from s0
under π is at least α, it must be at least α− ε in T steps.

We are now able to show the sample complexity of our al-
gorithm. Note that the bound in Theorem 2 on the number of
samples C = Õ(|S|3|A|T 3/ε4) is bounded by a polynomial
in |S|, |A|, T , 1

ε , and 1
δ .

Theorem 2 (Sample Complexity). Let 0 < δ < 1, ε > 0,
M = (S,A, P, s0, F ) be an MDP, N = |S| denote the size
of the state space, K = |A| denote the size of the action,
and T be the ε-recurrence time of M. Let ε′ = ε

NT and
δ′ = δ

NK . Let πi be an infinite sequence of policies pro-

duced by ω-PAC. For k =
⌈− ln(δ′/2)

2ε′2

⌉
, πi is not 9ε-optimal
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s
g

Figure 2: The gridworld example. The red cell is a trap. The
goal is to visit the two states s and g repeatedly.

for at most C = T
⌈
max

(
kNK

ε , kNK−ln(δ)
2ε2

) ⌉
steps with

probability at least 1− 2δ.

Proof. From the proof of Theorem 1, all of the state-action
pairs marked as known in M̂ are ε

NT -accurate with proba-
bility at least 1− δ. For ease of presentation, we will assume
that this occurs and incorporate its probability at end of the
proof.

LetM′ be an ( ε
NT , T )-approximation ofM that matches

M̂ for all of the state-action pairs marked as known at the
end of training. By Lemma 4, the 2ε-recurrence time inM′

is at most T . The maximum number of visits to unknown
state-action pairs is kNK, since all NK state-action pairs
will be marked as known after this. By Lemma 5, if the pol-
icy πi is not 3ε-optimal inM′, the algorithm will visit an un-
known state-action pair with probability at least ε. Let m be
the number of steps that πi is not 3ε-optimal inM′ over the
course of training. We now show that Pr(m ≤ C) ≥ 1− δ.
Let S be the number of successes of a binary random vari-
able that occurs with probability ε sampled C/T times.
Since kNK ≤ εC

T , we can apply Hoeffding’s inequality
to get that

Pr(m ≤ C) ≥ Pr(S > kNK)

≥ 1− exp(− 2C
T (ε− kNKT

C )2)

≥ 1− δ.

From the proof of Theorem 1, since M′ is an ( ε
NT , T )-

approximation, πi is 6ε-optimal in M. Recalling that we
assumed that all state-action pairs in M̂ are ε

NT -accurate,
which occurs with probability 1 − δ, we have that the over-
all probability of producing a 9ε-optimal strategy is at least
(1− δ)(1− δ) ≥ 1− 2δ.

Experiments
We implemented ω-PAC inside of the tool Mungojer-
rie (Hahn et al. 2023).3 Mungojerrie can compute optimal
policies with respect to a parity automaton in MDPs and
is written in C++. All experiments were run on a computer
with an Intel i7-8750H processor and 16 GB of memory.

Gridworld example. Figure 2 shows a gridworld exam-
ple. In this example, the agent has four actions, north-east,
north-west, south-east, and south-west. For a given direc-
tion, the agent moves in one of the corresponding cardinal
directions with probability 0.4, in the other corresponding
cardinal direction with probability 0.4, and does not move

3Available at https://plv.colorado.edu/mungojerrie/omega-pac.
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Figure 3: The distribution of the probability of satisfaction
of learned policies for different values of k for the chain ex-
ample. We also show the optimal probability of satisfaction
p and the threshold for 6ε-optimality.

with probability 0.2. If the agent would move into a wall,
it does not move. In the trap state denoted in red, the agent
becomes stuck and all actions cause the agent to not move.
The property is to visit the states s and g infinitely often,
which is expressible in LTL as φ = GFs ∧ GFg. We set
ε = 1/20, and δ = 1/10. The product contains |S| = 12
states, |A| = 4 actions, and has a ε-recurrence time of
T = 19. Our implementation of the ω-PAC algorithm takes
approximately 40 minutes to terminate on this example, un-
der the parameter selection for k suggested by Theorem 1.
We did not observe a run where the resulting policy pro-
duced was not optimal under this parameter selection, sug-
gesting that the k in Theorem 1 may be needlessly large in
practice.

Chain example. To investigate the effect of different val-
ues of k on the performance of ω-PAC, we examined a sim-
ple MDP consisting of a chain of states with two actions:
one action continues, and the other goes to an accepting
sink with probability 1/2s for the sth state. In this exam-
ple, |S| = 8, |A| = 2, T = 8, ε = 1/60, and δ = 1/10.
Figure 3 shows the distribution of probabilities of satisfac-
tion of the policies produced by ω-PAC for 20 runs under
different k, up to the k used in Theorem 1. We see that in
practice, a small k typically suffices, and that results of this
example are in line with Theorem 1.

Conclusion
We introduced ω-PAC, a PAC learning algorithm for LTL
and ω-regular objectives in MDPs. For this algorithm, we in-
troduced the notion of the ε-recurrence time. Intuitively, the
ε-recurrence time measures the time it takes for finite trajec-
tories to match the recurrent behavior of infinite trajectories
with high probability. We proved that the ω-PAC algorithm
has a sample complexity that is polynomial in the relevant
parameters, the size of the state space |S|, the size of the ac-
tion space |A|, the ε-recurrence time T , 1

ε , and 1
δ . Finally,

we performed experiments with ω-PAC that suggest that the
bounds of our theory can be tightened as part of future work.
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