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Abstract

There has been significant progress in improving the perfor-
mance of graph neural networks (GNNs) through enhance-
ments in graph data, model architecture design, and train-
ing strategies. For fairness in graphs, recent studies achieve
fair representations and predictions through either graph data
pre-processing (e.g., node feature masking, and topology
rewiring) or fair training strategies (e.g., regularization, ad-
versarial debiasing, and fair contrastive learning). How to
achieve fairness in graphs from the model architecture per-
spective is less explored. More importantly, GNNs exhibit
worse fairness performance compared to multilayer percep-
tion since their model architecture (i.e., neighbor aggrega-
tion) amplifies biases. To this end, we aim to achieve fair-
ness via a new GNN architecture. We propose Fair Message
Passing (FMP) designed within a unified optimization frame-
work for GNNs. Notably, FMP explicitly renders sensitive
attribute usage in forward propagation for node classification
task using cross-entropy loss without data pre-processing.
In FMP, the aggregation is first adopted to utilize neigh-
bors’ information and then the bias mitigation step explic-
itly pushes demographic group node presentation centers to-
gether. In this way, FMP scheme can aggregate useful infor-
mation from neighbors and mitigate bias to achieve better
fairness and prediction tradeoff performance. Experiments on
node classification tasks demonstrate that the proposed FMP
outperforms several baselines in terms of fairness and accu-
racy on three real-world datasets. The code is available at
https://github.com/zhimengj0326/FMP.

Introduction
Graph neural networks (GNNs) (Kipf and Welling 2017;
Veličković et al. 2018; Wu et al. 2019; Ling et al. 2023a;
Han et al. 2022a,b) are widely adopted in various domains,
such as social media mining (Hamilton, Ying, and Leskovec
2017), knowledge graph (Hamaguchi et al. 2017) and rec-
ommender system (Ying et al. 2018), due to remarkable per-
formance in learning representations. Graph learning, a topic
with growing popularity, aims to learn node representation
containing both topological and attribute information in a
given graph. Despite the outstanding performance in various
tasks, GNNs often inherit or even amplify societal bias from
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input graph data (Dai and Wang 2021). The biased node rep-
resentation largely limits the application of GNNs in many
high-stake tasks, such as job hunting (Mehrabi et al. 2021)
and crime ratio prediction (Suresh and Guttag 2019). Hence,
bias mitigation that facilitates the research on fair GNNs is in
urgent need and we aim to achieve fair prediction for GNNs.
Data, model architecture, and training strategy are the

most popular aspects to improve deep learning performance.
For fairness in graphs, many existing works achieving fair
prediction in graphs either rely on graph pre-processing
(e.g., node feature masking(Köse and Shen 2021), and topol-
ogy rewiring (Dong et al. 2022)) or fair training strategies
(e.g., regularization (Jiang et al. 2022), adversarial debias-
ing (Dai and Wang 2021), or contrastive learning (Zhu et al.
2020, 2021b; Agarwal, Lakkaraju, and Zitnik 2021; Ling
et al. 2023b)). The GNNs architecture perspective to im-
prove fairness in graphs is less explored. More importantly,
GNNs are notorious in terms of fairness since GNN aggrega-
tion amplifies bias compared to multilayer perception (MLP)
(Dai and Wang 2021). From the GNNs architecture perspec-
tive, message passing is a critical component to improve fair-
ness in graphs. Therefore, a natural question is raised:

Can we achieve fairness via fair message passing using
vanilla training loss 1 without graph pre-processing?

In this work, we provide a positive answer by design-
ing a fair message-passing scheme guided by a unified opti-
mization framework 2 for GNNs. The key idea of achieving
fair message passing is aggregation first and then conduct-
ing bias mitigation via explicitly chasing consistent demo-
graphic group representation centers. Specifically, we first
formulate an optimization problem that integrates fairness
and smoothness objectives for graph data. Then, we solve
the formulated problem via Fenchel conjugate and gradi-
ent descent to generate fair and informative representations,
where the property of softmax function is adopted to accel-
erate the gradient calculation over primal variables. We also
interpret the optimization problem solver as two main steps

1The sensitive attributes are not adopted in vanilla training loss.
We only consider node classification tasks and vanilla loss is cross-
entropy loss in this paper.

2Many aggregations in popular GNNs can be interpreted as gra-
dient descent step for specific optimization problem with specific
step size and initialization (Ma et al. 2021; Zhu et al. 2021b).
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(e.g., aggregation first and then debiasing). Finally, we in-
tegrate FMP in graph neural networks to achieve fair and
accurate prediction for node classification tasks. We demon-
strate the superiority of FMP by examining its effectiveness
and efficiency on various real-world datasets.
In short, the contributions can be summarized as follows:
• We demonstrate proof-of-concept that a meticulously
crafted GNN architecture can improve fairness for graph
data. Our work offers a fresh outlook in comparison
to conventional approaches that focus on data pre-
processing and fair training strategy design.

• We propose FMP to achieve fairness via explicitly in-
corporating sensitive attribute information in message
passing, guided by a unified optimization framework.
Additionally, we introduce an acceleration method
based on softmax property to reduce gradient compu-
tational complexity.

• The effectiveness and efficiency of FMP are experimen-
tally evaluated on three real-world datasets. The results
show that compared to the state-of-the-art, our FMP ex-
hibits a comparable or superior trade-off between pre-
diction performance and fairness with negligibly com-
putation overhead.

Preliminaries

Notations

We adopt bold upper-case letters to denote matrix such as
X, bold lower-case letters such as x to denote vectors, and
calligraphic font such as X to denote sets. Given a matrix
X 2 Rn⇥d, the i-th row and j-th column are denoted as
Xi and X·,j , and the element in i-th row and j-th column
is Xi,j . We use the Frobenius norm, l1 norm of matrix X

as ||X||F =
qP

i,j
X2

i,j
and ||X||1 =

P
ij
|Xij |, respec-

tively. Given two matrices X,Y 2 Rn⇥d, the inner product
is defined as hX,Yi = tr(X>Y), where tr(·) is the trace
of a square matrix. SF (X) represents softmax function with
a default normalized column dimension. Let G = {V, E} be
a graph with the node set V = {v1, · · · , vn} and the undi-
rected edge set E = {e1, · · · , em}, where n,m represent
the number of node and edge, respectively. The graph struc-
ture G can be represented as an adjacent matrix A 2 Rn⇥n,
where Aij = 1 if existing edge between node vi and node
vj . N (i) denotes the neighbors of node vi and Ñ (i) =
N (i) [ {vi} denotes the self-inclusive neighbors. Suppose
that each node is associated with a d-dimensional feature
vector and a (binary) sensitive attribute, the feature for all
nodes and sensitive attribute is denoted as Xori = Rn⇥d

and s 2 {�1, 1}n 3. Define the sensitive attribute incident
vector as �s = 1>0(s)

||1>0(s)||1 � 1>0(�s)
||1>0(�s)||1 to normalize each

sensitive attribute group, where 1>0(s) is an element-wise
indicator function.

3The sensitive attribute s is not included in node features matrix
Xori.

GNNs as Graph Signal Denoising
AGNNmodel is usually composed of several stacking GNN
layers. Given a graph G withN nodes, a GNN layer typically
contains feature transformationXtrans = ftrans(Xori) and
aggregation Xagg = fagg(Xtrans), where Xori 2 Rn⇥din ,
Xtrans,Xagg 2 Rn⇥dout represent the input and output fea-
tures. The feature transformation operation transforms the
node feature dimension, and feature aggregation, updates
node features based on neighbors’ features and graph topol-
ogy. Recent works (Ma et al. 2021; Zhu et al. 2021a) have
established the connections between many feature aggrega-
tion operationsAGG(·) in representative GNNs and a graph
signal denoising problem with Laplacian regularization, i.e.,
recovering a clean signalF 2 Rn⇥dout fromXtrans with the
smooth assumption over graph G. Here, we introduce several
popular GNN architectures, including GCN/SGC, GAT, and
PPNP/APPNP, as examples to show the connection from the
perspective of graph signal denoising.

GCN/SGC. Feature aggregation in Graph Convolutional
Network (GCN) or Simplifying Graph Convolutional Net-
work (SGC) is given by Xagg = ÃXtrans, where Ã =

D̃� 1
2 ÂD̃� 1

2 is a normalized self-loop adjacency matrix
Â = A + I, and D̃ is degree matrix of Ã. Recent works
(Ma et al. 2021; Zhu et al. 2021a) provably demonstrate that
such feature aggregation can be interpreted as one-step gra-
dient descent to minimize tr(F>�I� Ã)F

�
with initializa-

tion F = Xtrans.

GAT. Feature aggregation in GAT applies the nor-
malized attention coefficient to compute a linear
combination of neighbor’s features as Xagg,i =P

j2N (i) ↵ijXtrans,j , where ↵ij = softmaxj(eij),
eij = LeakyReLU(X>

trans,i
wi +X>

trans,j
wj), and wi and

wj are learnable column vectors. Prior study (Ma et al.
2021) demonstrates that one-step gradient descent with
adaptive stepsize 1P

j2Ñ(i)(ci+cj)
for the following objective

problem:

min
F

X

i2V
||Fi �Xtrans,i||2F +

1

2

X

i2V
ci

X

j2Ñ (i)

||Fi � Fj ||2F .

is actually an attention-based feature aggregation, which is
equivalent to GAT if ci+cj is equivalent to eij , where ci is a
node-dependent coefficient that measures the local smooth-
ness.

PPNP / APPNP. Feature aggregation in PPNP and
APPNP adopt the aggregation rules as Xagg = ↵

⇣
I� (1�

↵)Ã
⌘�1

Xtrans and Xk+1
agg

= (1 � ↵)ÃXk
agg

+ ↵Xtrans.
It is shown that they are equivalent to the exact solution and
one gradient descent step with stepsize ↵

2 to minimize the
following objective problem:

min
F

||F�Xtrans||2F + (
1

↵
� 1)tr

⇣
F>(I� Ã)F

⌘
.
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Fair Message Passing
In this section, we propose a new fair message-passing
scheme to aggregate useful information from neighbors
while debiasing representation bias. In this way, fair predic-
tion can be achieved from a model backbone perspective.
Specifically, we formulate fair message passing as an opti-
mization problem to pursue smoothness and fair node rep-
resentation simultaneously 4. Together with an effective and
efficient optimization algorithm, we derive the closed-form
fair message passing. Finally, the proposed FMP is shown
to be integrated into fair GNNs at three stages, including
transformation, aggregation, and debiasing step, as shown
in Figure 1. These three stages adopted node feature, graph
topology, and sensitive attributes respectively.

The Optimization Framework
Most of the existing works rely on hand-craft architecture
(e.g., JKNet (Xu et al. 2018)) design for specific tasks, and
thus lack of theoretical understanding how such architecture
is designed. In our paper, starting from this unified optimiza-
tion framework for GNNs, we design a new objective, in-
cluding smoothness and fairness objective, and then derive
the proposed FMP to explicitly chase the new objective via
fair message passing.
In previous work (Ma et al. 2021), a general and univer-

sal framework is developed to understand aggregation op-
erations in GNNs. Building on top of this framework, we
formulate an optimization problem to achieve fair message
passing operation (replace aggregation operations in GNNs).
To achieve graph smoothness prior and fairness in the same
process, a reasonable message passing should be a good so-
lution for the following optimization problem:

min
F

�s

2
tr(FT L̃F) +

1

2
||F�Xtrans||2F

| {z }
hs(F)

+�f ||�sSF (F)||1| {z }
hf

�
�sSF (F)

�
. (1)

where L̃ represents normalized Laplacian matrix, hs(·) and
hf (·) denotes the smoothness and fairness objectives 5, re-
spectively, and Xtrans 2 Rn⇥dout is the transformed dout-
dimensional node features and F 2 Rn⇥dout is the aggre-
gated node features of the same matrix size. The first two
terms preserve the similarity of connected node representa-
tion and thus enforce graph smoothness. The last term en-
forces fair node representation so that the average predicted
probability between groups of different sensitive attributes
can remain constant. The regularization coefficients �s and
�f adaptively control the trade-off between graph smooth-
ness and fairness.

4Fair message passing is an alternative operation to replace
GNNs aggregations.

5Such smoothness objective is the most common-used one in
existing methods (Ma et al. 2021; Belkin and Niyogi 2001; Kalofo-
lias 2016). The various other smoothness objectives could be con-
sidered to improve the performance of FMP and we leave it for
future work.

Smoothness Objective hs(·). The adjacent matrix in ex-
isting graph message passing schemes is normalized for
improving numerical stability and achieving superior per-
formance. Similarly, the graph smoothness term requires
normalized Laplacian matrix, i.e., L̃ = I � Ã, Ã =
D̂� 1

2 ÂD̂� 1
2 , and Â = A + I. From an edge-centric view,

the smoothness objective enforces connected node represen-
tation to be similar since

tr(FT L̃F) =
X

(vi,vj)2E

|| Fip
di + 1

� Fjp
dj + 1

||2
F
, (2)

where di =
P

k
Aik represents the degree of node vi.

Fairness Objective hf (·). The fairness objective mea-
sures the bias for node representation after aggregation. Re-
call sensitive attribute incident vector�s indicates the sensi-
tive attribute group and group size via the sign and absolute
value summation. Recall that the sensitive attribute incident
vector as

�s =
1>0(s)

||1>0(s)||1
� 1>0(�s)

||1>0(�s)||1
, (3)

and SF (F) represents the predicted probability for node
classification task, where SF (F)ij = P̂ (yi = j|X). Fur-
thermore, we can show that our fairness objective is actually
equivalent to demographic parity, i.e.,

⇣
�sSF (F)

�⌘

j

=

P̂ (yi = j|si = 1,X) � P̂ (yi = j|si = �1,X). Please see
proof in Appendix . In other words, our fairness objective,
l1 norm of �sSF (F) characterizes the predicted probabil-
ity difference between two groups with different sensitive
attributes. Therefore, our proposed optimization framework
can pursue graph smoothness and fairness simultaneously.

Optimization Problem Solver
For smoothness objective, many existing popular message
passing schemes can be derived based on gradient descent
with appropriate step size choice (Ma et al. 2021; Zhu et al.
2021a). In this paper, we consider smoothness objective
hs(F) and fairness objective hf (�SF (F)) simultaneously
for chasing fair and accurate prediction. However, directly
solving the optimization problem (1) is much more chal-
lenging due to the nonsmoothness of the fairness objective,
and the non-separability of smoothness objective hs(F) and
fairness objective hf (�SF (F)) due to incident vector �s.

Bi-level Optimization Problem Formulation In the lit-
erature, many optimization algorithms are developed for op-
timization problems with l1 norm, such as Alternating Di-
rection Method of Multipliers (ADMM) and Newton type
algorithms (Ghadimi et al. 2014; Varma et al. 2019). How-
ever, these algorithms require non-trivial sub-problem solv-
ing for each iteration. Therefore, computation complexity
is high and is infeasible to integrate deep learning mod-
els. Fortunately, Fenchel conjugate (a.k.a. convex conju-
gate) (Rockafellar 2015) can transform the original prob-
lem as an equivalent saddle point problem using a primal-
dual algorithm (Liu et al. 2021). In this way, the computa-
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tion complexity can be reduced and compatible with back-
propagation training. Similarly, to solve optimization prob-
lem 1 in a more effective and efficient manner, Fenchel
conjugate (Rockafellar 2015) is introduced to transform the
original problem into a bi-level optimization problem. For
the general convex function h(·), its conjugate function is
defined as h⇤(U)

4
= sup

X
hU,Xi � h(X). Based on Fenchel

conjugate, the fairness objective can be transformed as vari-
ational representation hf (p) = sup

u
hp,ui � h

⇤
f
(u), where

p = �sSF (F) 2 R1⇥dout is a predicted probability vec-
tor for classification. Furthermore, the original optimization
problem is equivalent to

min
F

max
u

hs(F) + hp,ui � h
⇤
f
(u) (4)

where u 2 R1⇥dout and h
⇤
f
(·) is the conjugate function of

fairness objective hf (·).

Problem Solution Motivated by Proximal Alternating
Predictor-Corrector (PAPC) (Loris and Verhoeven 2011;
Chen, Huang, and Zhang 2013), the min-max optimization
problem (4) can be solved by the following fixed-point equa-
tions with per iteration low computation complexity and
convergence guarantee

(
F = F�rhs(F)� @hp,ui

@F ,

u = prox
h⇤
f

�
u+�sSF (F)

�
.

(5)

where prox
h⇤
f
(u) = argmin

y
||y � u||2

F
+ h

⇤
f
(y). Fortu-

nately, the proximal operators can be obtained with a close
form, which makes deep learning model integration feasi-
ble. Specifically we provide the close form of the proximal
operators in the following proposition:
Proposition 0.1 (Proximal Operators). The proximal oper-
ators prox

�h⇤
f
(u) satisfies

prox
�h⇤

f
(u)j = sign(u)j min

�
|uj |,�f

�
, (6)

where sign(·) and �f are element-wise sign function and
hyperparameter for fairness objective. In other words, such
a proximal operator is an element-wise projection into l1
ball with radius �f .

Similar to “predictor-corrector” algorithm (Loris and Ver-
hoeven 2011), we adopt an iterative algorithm to find the
saddle point for the min-max optimization problem. Specif-
ically, starting from (Fk

,uk), we adopt a gradient descent
step on the primal variable F to arrive (F̄k+1

,uk) and then
followed by a proximal ascent step in the dual variable u.
Finally, a gradient descent step on a primal variable in point
(F̄k+1

,uk) to arrive at (Fk+1
,uk). In short, the iteration

can be summarized as
8
>><

>>:

F̄k+1 = Fk � �rhs(Fk)� �
@hp,uki

@F

���
Fk

,

uk+1 = prox
�h⇤

f

�
uk + ��sSF (F̄k+1)

�
,

F̄k+1 = Fk � �rhs(Fk)� �
@hp,uk+1i

@F

���
Fk

.

(7)

MLP

Input Prediction Propagation Debiasing

!!"# !$"%&' !%((

Softmax

Male Perturbation                  Female Perturbation

Jacobian

Figure 1: The model pipeline consists of three steps: MLP
(feature transformation), propagation with skip connection,
and debiasing in probability space.

where � and � are the step size for primal and dual vari-
ables. Note that the close-form for @hp,ui

@F 2 Rn⇥dout and
prox

�h⇤
f
(·) are still not clear, we will provide the solution

one by one.

FMP Scheme. Similar to works (Ma et al. 2021; Liu et al.
2021), choosing � = 1

1+�s
and � = 1

2� , we have

Fk � �rhs(F
k) =

⇣
(1� �)I� ��sL̃

⌘
Fk + �Xtrans

= �Xtrans + (1� �)ÃFk
, (8)

Therefore, we can summarize the proposed FMP as two
phases, including propagation with skip connection (Step ∂)
and bias mitigation (Steps ∑-∫). For bias mitigation, Step ∑
updates the aggregated node features for fairness objective;
Steps ∏ and π aim to learn and “reshape” perturbation vec-
tor in probability space, respectively. Step ∫ explicitly miti-
gates the bias of node features based on gradient descent on
the primal variable. The mathematical formulation is given
as follows:
8
>>>>>>><

>>>>>>>:

Xk+1
agg

= �Xtrans + (1� �)ÃFk
, Step ∂

F̄k+1 = Xk+1
agg

� �
@hp,uki

@F

���
Fk

, Step ∑

ūk+1 = uk + ��sSF (F̄k+1), Step ∏

uk+1 = min
⇣
|ūk+1|,�f

⌘
· sign(ūk+1), Step π

Fk+1 = Xk+1
agg

� �
@hp,uk+1i

@F

���
Fk

. Step ∫

where Xk+1
agg

represents the node features with normal ag-
gregation and skip connection with the transformed input
Xtrans.

Gradient Computation Acceleration The softmax prop-
erty is also adopted to accelerate the gradient computation.
Note that p = �sSF (F) and SF (·) represents softmax
over column dimension, directly computing the gradient
@hp,ui
@F based on chain rule involves the three-dimensional

tensor @p
@F with gigantic computation complexity. Instead,

we simplify the gradient computation based on the property
of softmax function in the following theorem.
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Theorem 0.2 (Gradient Computation). The gradient over
primal variable @hp,ui

@F satisfies

@hp,ui
@F

= Us � SF (F)� Sum1(Us � SF (F))SF (F).

where Us

4
= �>

s
u, � represents the element-wise product

and Sum1(·) represents the summation over column dimen-
sion with preserved matrix shape.

Discussion on FMP
In this section, we provide the interpretation and analyze
the efficiency, and white-box usage for sensitive attribute
of the proposed FMP scheme. Furthermore, we also discuss
how FMP identifies the influence of sensitive attributes from
model forward propagation.

FMP Interpretation Note that the gradient of fair-
ness objective over node features F satisfies @hp,ui

@F =
@hp,ui
@SF (F)

@SF (F)
@F and @hp,ui

@SF (F) = �>
s
u, such gradient calcu-

lation can be interpreted as three steps: Softmax transforma-
tion, perturbation in probability space, and debiasing in rep-
resentation space. Specifically, we first map the node repre-
sentation into probability space via softmax transformation.
Subsequently, we calculate the gradient of fairness objective
in probability space. It is seen that the perturbation�>

s
u ac-

tually poses low-rank debiasing in probability space, where
the nodes with different sensitive attributes embrace oppo-
site perturbations. In other words, the dual variable u repre-
sents the perturbation direction in probability space. Finally,
the perturbation in probability space will be transformed into
representation space via Jacobian transformation @SF (F)

@F .

Efficiency. FMP is an efficient message-passing scheme.
The computation complexity for the aggregation (sparse ma-
trix multiplications) is O(mdout), where m is the num-
ber of edges in graph. For FMP, the extra computation are
the perturbation calculation, as shown in Theorem 0.2, with
the computation complexity O(ndout). The extra computa-
tion complexity is negligible in that the number of nodes
n is far less than the number of edges m in the real-world
graph. Additionally, if directly adopting backward propa-
gation to calculate the gradient, we have to calculate the
three-dimensional tensor @p

@F with computation complexity
O(n2

dout). In other words, thanks to the softmax property,
we achieve an efficient fair message-passing scheme.

White-box Usage for Sensitive Attribute. The proposed
FMP explicitly achieves graph smoothness and fairness ob-
jectives via alternative gradient descent. In other words, the
usage of sensitive attributes in propagation to mitigate bias
is in a white-box manner. Note that such white-box usage
of sensitive attributes is a promising property to understand
how sensitive attribute usage forces fairness, which is not
achieved by previous fairness methods in GNNs. For exam-
ple, fair training loss utilizes sensitive attributes to regularize
the behavior of model prediction and obtain fairer model pa-
rameters via rectifying gradients w.r.t. model parameters. In
other words, the sensitive attribute information is implicitly

encoded in the well-trained model parameters, which makes
it hard to understand how sensitive attribute usage helps
fair prediction. Pre-processing fairness methods adopt sen-
sitive attributes to revise data (e.g., node masking and topol-
ogy rewiring) either in a learnable way or via pre-defined
several operations (e.g., node masking and edge deletions).
Similarly, the sensitive attribute information is implicitly en-
coded in the processed data. The understanding of fairness
prediction achievement is infeasible. Our FMP can provide
a white-box usage for sensitive attributes since we can di-
rectly identify that the usage of sensitive attributes is to force
the demographic group node representation centers together
during forward propagation.

Experiments
In this section, we conduct experiments to validate the effec-
tiveness and efficiency of the proposed FMP. We firstly vali-
date that graph data with large sensitive homophily enhances
bias in GNNs via synthetic experiments. Moreover, for ex-
periments on real-world datasets, we introduce the experi-
mental settings and then evaluate our proposed FMP com-
pared with several baselines in terms of prediction perfor-
mance and fairness metrics.

Experimental Settings
Datasets. We conduct experiments on real-world datasets
Pokec-z, Pokec-n 6, and NBA (Dai and Wang 2021). Pokec-
z and Pokec-n are sampled, based on province information,
from a larger Facebook-like social network Pokec (Takac
and Zabovsky 2012) in Slovakia, where region information
is treated as the sensitive attribute and the predicted label is
the working field of the users. NBA dataset is extended from
a Kaggle dataset 7 consisting of around 400 NBA basketball
players. The information of players includes age, national-
ity, and salary in the 2016-2017 season. The players’ link
relationships are from Twitter with the official crawling API.
The binary nationality (U.S. and overseas player) is adopted
as the sensitive attribute and the prediction label is whether
the salary is higher than the median.

Evaluation Metrics. We adopt accuracy to evaluate the
performance of node classification tasks. As for fairness
metrics, we adopt two quantitative group fairness metrics to
measure the prediction bias. According to works (Louizos
et al. 2015; Beutel et al. 2017), we adopt demographic par-
ity�DP = |P(ŷ = 1|s = �1)�P(ŷ = 1|s = 1)| and equal
opportunity �EO = |P(ŷ = 1|s = �1, y = 1) � P(ŷ =
1|s = 1, y = 1)|, where y and ŷ represent the ground-truth
label and predicted label, respectively.

Baselines. We compare our proposed FMP with represen-
tative GNNs, such as GCN (Kipf and Welling 2017), GAT
(Veličković et al. 2018), SGC (Wu et al. 2019), and APPNP
(Klicpera, Bojchevski, and Günnemann 2019), JKNet (Xu
et al. 2018), and MLP. We also compared with method
“ML1” directly using the gradient of Eq. (1) during model

6Pokec-z and Pockec-n datasets are available at https://github.
com/EnyanDai/FairGNN/tree/main.

7https://www.kaggle.com/noahgift/social-power-nba
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Models
Pokec-z Pokec-n NBA

Acc (%) " �DP (%) # �EO (%) # Acc (%) " �DP (%) # �EO (%) # Acc (%) " �DP (%) # �EO (%) #

MLP 70.48 ± 0.77 1.61 ± 1.29 2.22 ± 1.01 72.48 ± 0.26 1.53 ± 0.89 3.39 ± 2.37 65.56 ± 1.62 22.37 ± 1.87 18.00 ± 3.52

GAT 69.76 ± 1.30 2.39 ± 0.62 2.91 ± 0.97 71.00 ± 0.48 3.71 ± 2.15 7.50 ± 2.88 57.78 ± 10.65 20.12 ± 16.18 13.00 ± 13.37

GCN 71.78 ± 0.37 3.25 ± 2.35 2.36 ± 2.09 73.09 ± 0.28 3.48 ± 0.47 5.16 ± 1.38 61.90 ± 1.00 23.70 ± 2.74 17.50 ± 2.63

SGC 71.24 ± 0.46 4.81 ± 0.30 4.79 ± 2.27 71.46 ± 0.41 2.22 ± 0.29 3.85 ± 1.63 63.17 ± 0.63 22.56 ± 3.94 14.33± 2.16

APPNP 66.91 ± 1.46 3.90 ± 0.69 5.71 ± 1.29 69.80 ± 0.89 1.98 ± 1.30 4.01 ± 2.36 63.80 ± 1.19 26.51 ± 3.33 20.00 ± 4.56

JKNet 66.89 ± 3.79 1.28 ±0.96 1.79 ± 0.82 63.59 ± 6.36 1.91 ± 2.14 0.70 ± 0.92 67.94 ± 2.73 27.80 ± 8.41 20.33 ± 7.52

ML1 70.42 ± 0.40 2.35 ± 0.83 2.00 ± 0.50 72.36 ± 0.26 1.47 ± 1.12 3.03 ± 1.77 72.70 ± 1.19 26.46 ± 4.93 25.50 ± 8.38

FMP 70.50 ± 0.50 0.81 ± 0.40 1.73 ± 1.03 72.16 ± 0.33 0.66 ± 0.40 1.47 ± 0.87 73.33 ± 1.85 18.92 ± 2.28 13.33 ± 5.89

Table 1: Comparative Results with Baselines on Node Classification.

forward propagation. For all models, we train 2 layers of
neural networks with 64 hidden units for 300 epochs. Addi-
tionally, We also compare adversarial debiasing and adding
demographic regularization methods to show the effective-
ness of the proposed method 8.

Implementation Details. We run the experiments 5 times
and report the average performance for each method. We
adopt Adam optimizer with 0.001 learning rate and 10�5

weight decay for all models. For adversarial debiasing,
we adopt the train classifier and adversary with 70 and
30 epochs, respectively. The hyperparameter for adver-
sary loss is tuned in {0.0, 1.0, 2.0, 5.0, 8.0, 10.0, 20.0, 30.0}.
For adding regularization, we adopt the hyperparameter set
{0.0, 1.0, 2.0, 5.0, 8.0, 10.0, 20.0, 50.0, 80.0, 100.0}.

Experimental Results
Comparison with Existing GNNs. The accuracy, demo-
graphic parity, and equal opportunity metrics of proposed
FMP for Pokec-z, Pokec-n, NBA datasets are shown in Ta-
ble 1 compared with MLP, GAT, GCN, SGC, and APPNP.
The detailed statistical information for these three datasets
is shown in Table 3. From these results, we can obtain the
following observations:
• Many existing GNNs underperform MLP model on all
three datasets in terms of fairness metric. For instance, the
demographic parity of MLP is lower than GAT, GCN, SGC
and APPNP by 32.64%, 50.46%, 66.53% and 58.72% on
Pokec-z dataset. The higher prediction bias comes from the
aggregation within the same sensitive attribute nodes and
topology bias in graph data.

• Our proposed FMP consistently achieves the lowest pre-
diction bias in terms of demographic parity and equal op-
portunity on all datasets. Specifically, FMP reduces de-
mographic parity by 49.69%, 56.86%, and 5.97% com-
pared with the lowest bias among all baselines in Pokec-
z, Pokec-n, and NBA datasets. Meanwhile, our proposed
FMP achieves the best accuracy in NBA dataset, and com-

8Please see the comparison with Fair Mixup (Chuang and
Mroueh 2021) in Appendix

parable accuracy in Pokec-z and Pokec-n datasets. In a nut-
shell, the proposed FMP can effectively mitigate prediction
bias while preserving the prediction performance.

Comparison with Adversarial Debiasing and Regular-
ization. To validate the effectiveness of the proposed FMP,
we also show the prediction performance and fairness metric
trade-off compared with fairness-boosting methods, includ-
ing adversarial debiasing (Fisher et al. 2020) and adding reg-
ularization (Chuang and Mroueh 2020). Similar to (Louppe,
Kagan, and Cranmer 2017), the output of GNNs is the in-
put of the adversary and the goal of the adversary is to pre-
dict the node sensitive attribute. We also adopt several back-
bones for these two methods, including MLP, GCN, GAT,
and SGC. We randomly split 50%/25%/25% for training,
validation, and test dataset. Figure 2 shows the Pareto opti-
mality curve for all methods, where the right-bottom corner
point represents the ideal performance (highest accuracy and
lowest prediction bias). From the results, we list the follow-
ing observations as follows:
• Our proposed FMP can achieve better DP-Acc trade-off
compared with adversarial debiasing and adding regular-
ization for many GNNs and MLP. Such observation vali-
dates the effectiveness of the key idea in FMP: aggregation
first and then debiasing. Additionally, FMP can reduce de-
mographic parity with negligible performance cost due to
transparent and efficient debiasing.

• Message passing in GNNs does matter. For adding reg-
ularization or adversarial debiasing, different GNNs em-
brace huge distinctions, which implies that an appropriate
message passing manner potentially leads to better trade-
off performance. Additionally, many GNNs underperforms
MLP in low-label homophily coefficient dataset, such as
NBA. The rationale is that aggregation may not always
bring benefit in terms of accuracy when the neighbors have
low probability with the same label.

Related Works
Graph Neural Networks. GNNs generalizing neural net-
works for graph data show great success in various real-
world applications. There are two streams in GNNs model

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21219



Pokec-n Pokec-z NBA

Figure 2: DP and Acc trade-off performance on three real-world datasets compared with adding regularization (Top) and
adversarial debiasing (Bottom). The trade-off curve close to the right bottom corner means better trade-off performance. The
units for x- and y-axis are percentages (%).

design, i.e., spectral-based and spatial-based. Spectral-based
GNNs provide graph convolution definition based on graph
theory, which is utilized in GNN layers together with fea-
ture transformation (Bruna et al. 2013; Defferrard, Bresson,
and Vandergheynst 2016; Henaff, Bruna, and LeCun 2015).
Graph convolutional networks (GCN) (Kipf and Welling
2017) simplify spectral-based GNN model into spatial ag-
gregation scheme. Since then, many spatial-based GNNs
variant is developed to update node representation via ag-
gregating its neighbors’ information, including graph at-
tention network (GAT) (Veličković et al. 2018), Graph-
SAGE (Hamilton, Ying, and Leskovec 2017), SGC (Wu
et al. 2019), APPNP (Klicpera, Bojchevski, and Günnemann
2019), et al (Gao, Wang, and Ji 2018; Monti et al. 2017).
Graph signal denoising is another perspective to understand
GNNs. Recently, there are several works show that GCN is
equivalent to the first-order approximation for graph denois-
ing with Laplacian regularization (Henaff, Bruna, and Le-
Cun 2015; Zhao and Akoglu 2019). The unified optimiza-
tion framework is provided to unify many existing message
passing schemes (Ma et al. 2021; Zhu et al. 2021a).

Fairness-aware Learning on Graphs. Many works have
been developed to achieve fairness in machine learning com-
munity (Jiang et al. 2022; Han et al. 2023; Jiang et al. 2023;
Chuang and Mroueh 2020; Zhang, Lemoine, and Mitchell
2018; Du et al. 2021; Yurochkin and Sun 2020; Creager
et al. 2019; Feldman et al. 2015). A pilot study on fair node
representation learning is developed based on random walk
(Rahman et al. 2019). Additionally, adversarial debiasing is
adopted to learn fair prediction or node representation so that
the well-trained adversary can not predict the sensitive at-
tribute based on node representation or prediction (Dai and

Wang 2021; Bose and Hamilton 2019; Fisher et al. 2020).
A Bayesian approach is developed to learn fair node rep-
resentation via encoding sensitive information in the prior
distribution in (Buyl and De Bie 2020). Work (Ma, Deng,
and Mei 2021) develops a PAC-Bayesian analysis to con-
nect subgroup generalization with accuracy parity. (Laclau
et al. 2021; Li et al. 2021) aims to mitigate prediction bias
for link prediction. Fairness-aware graph contrastive learn-
ing is proposed in (Agarwal, Lakkaraju, and Zitnik 2021;
Köse and Shen 2021; Ling et al. 2023b). Graph data prepro-
cessing, such as node feature masking and graph topology
rewire, are also developed in (Laclau et al. 2021; Li et al.
2021; Dong et al. 2021; Wang et al. 2022; Zha et al. 2023)
for node classification and link prediction tasks. However,
the aforementioned works ignore the requirement of trans-
parency in fairness. In this work, we develop an efficient
and transparent fair message passing scheme explicitly ren-
dering sensitive attribute usage.

Conclusion
In this work, we improve fairness in graphs from the model
architecture perspective. We design a fair message-passing
scheme to achieve fair prediction for node classification us-
ing vanilla training loss without data pre-processing. Specif-
ically, motivated by the unified optimization framework for
GNNs, FMP is designed as aggregation first and then bias
mitigation to chase smoothness and fairness objectives. We
provide a comprehensive discussion of FMP from model ar-
chitecture interpretation, efficiency, and the white-box usage
of sensitive attributes aspects. Experimental results on real-
world datasets demonstrate the effectiveness of FMP com-
pared with several baselines in node classification tasks.
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