
Learning to Stop Cut Generation for Efficient Mixed-Integer Linear Programming

Haotian Ling, Zhihai Wang, Jie Wang*

University of Science and Technology of China
{haotianling,zhwangx}@mail.ustc.edu.cn

jiewangx@ustc.edu.cn

Abstract
Cutting planes (cuts) play an important role in solving mixed-
integer linear programs (MILPs), as they significantly tighten
the dual bounds and improve the solving performance. A
key problem for cuts is when to stop cuts generation, which
is important for the efficiency of solving MILPs. However,
many modern MILP solvers employ hard-coded heuristics to
tackle this problem, which tends to neglect underlying pat-
terns among MILPs from certain applications. To address this
challenge, we formulate the cuts generation stopping prob-
lem as a reinforcement learning problem and propose a novel
hybrid graph representation model (HYGRO) to learn effec-
tive stopping strategies. An appealing feature of HYGRO is
that it can effectively capture both the dynamic and static fea-
tures of MILPs, enabling dynamic decision-making for the
stopping strategies. To the best of our knowledge, HYGRO
is the first data-driven method to tackle the cuts generation
stopping problem. By integrating our approach with modern
solvers, experiments demonstrate that HYGRO significantly
improves the efficiency of solving MILPs compared to com-
petitive baselines, achieving up to 31% improvement.

1 Introduction
Mixed-Integer Linear Programming (MILP) is a widely-
used mathematical optimization model employed to solve
various real-world problems, such as production planning
(Pochet and Wolsey 2010), vehicle routing (Laporte 2009),
project scheduling (Berthold et al. 2010), and facility loca-
tion (Abend 2016). A MILP aims to find the values of the
decision variables, including integer and continuous, to op-
timize a linear objective function while satisfying all the lin-
ear constraints. A standard MILP takes the form of

min
x

{cTx|Ax ≤ b, xj ∈ Z, ∀j ∈ I}, (1)

where c ∈ Rn,b ∈ Rm and A ∈ Rm×n. x ∈ Rn repre-
sents a vector of decision variables, where a subset denoted
as {xj |j ∈ I, I ⊆ {1, 2, . . . , n}} consists of integer decision
variables, while the remaining decision variables are contin-
uous. MILP solving initiates with its Linear Programming
(LP) relaxation, where the integer decision variables in Def-
inition (1) are treated as continuous. The specific form of LP
relaxation can be found in the Definition (2).

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A key component in modern MILP solvers is the cutting
plane method. The cutting plane method aims to generate
valid linear constraints—known as cutting planes (cuts)—
that are able to tighten the LP relaxation of the original prob-
lem. They are usually repeatedly generated and added to the
original problem in multiple rounds, as illustrated in Figure
1, which has a significant impact on the efficiency of solving
MILPs (Achterberg 2009; Wesselmann and Stuhl 2012).

Recently, using machine learning (ML) to improve the
cutting plane method in modern MILP solvers has been an
active topic of significant interest. Many existing methods
(Tang, Agrawal, and Faenza 2020; Huang et al. 2022; Paulus
et al. 2022; Turner et al. 2022; Wang et al. 2023a) intro-
duced machine learning into the selection of cuts. Besides,
Berthold, Francobaldi, and Hendel (2022) proposed to dy-
namically determine whether to use local cuts. As for the
theoretical analysis, Balcan et al. (2021) provided provable
guarantees for learning high-performing cuts. They have
demonstrated the strong ability to enhance MILP solvers via
incorporating ML into the cutting plane method.

However, the stopping strategy for the cutting plane
method—which significantly impacts the efficiency of solv-
ing MILPs (see Section 3)—has received limited attention.
On one hand, stopping cuts generation too early often strug-
gles to effectively tighten the LP relaxation, making it dif-
ficult for the solver to efficiently find optimal solutions
(Nemhauser and Wolsey 2020). On the other hand, adding
too many cuts leads to a significant increase in the size of
MILPs, posing a computational problem and thus degrad-
ing the solving efficiency (Wesselmann and Stuhl 2012).
Although many modern solvers employ stopping strategies
based on hard-coded heuristics, they often tend to neglect
underlying patterns among MILPs from certain applications
(Bengio, Lodi, and Prouvost 2021; Gupta et al. 2022).

To address this challenge, we propose a novel hybrid
graph representation model (HYGRO) to learn intelligent
stopping strategies based on a novel transformed reinforce-
ment learning formulation. To the best of our knowledge,
HYGRO is the first data-driven approach to tackle the cuts
generation stopping problem, which significantly improves
the efficiency of solving MILPs. Specifically, we first trans-
form the stopping strategy learning problem into a reinforce-
ment learning problem to learn simple and efficient stop-
ping conditions, which can significantly reduce the action

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20759

space and thus improve the performance of learned models
(see Section 5.2). Then, we propose a novel hybrid graph
representation model (HYGRO) to learn effective stopping
conditions, which captures the underlying patterns among
MILPs by integrating their dynamic graph embeddings with
their static intrinsic features. We incorporate our proposed
HYGRO into the open-source state-of-the-art MILP solver,
namely SCIP (Bestuzheva et al. 2021). Extensive experi-
ments demonstrate that HYGRO significantly improves the
efficiency of solving MILPs, achieving up to 31% improve-
ment, on six challenging MILP problem benchmarks com-
pared to eight competitive baselines.

We summarize our major contributions as follows. (1) We
propose a novel hybrid graph representation model (HY-
GRO) to learn intelligent stopping strategies based on a
novel transformed reinforcement learning formulation. (2)
To the best of our knowledge, HYGRO is the first approach
to learn cuts generation stopping strategies, which signifi-
cantly improves the efficiency of solving MILPs. (3) Exper-
iments demonstrate that HYGRO significantly improves the
efficiency of solving MILPs compared to eight competitive
baselines on six challenging MILP benchmarks.

2 Background

2.1 Cutting Plane Method

The cutting plane method (Gomory 1958) is employed by
modern MILP solvers to iteratively add valid cutting planes
to the original MILP problem. Let’s start by considering the
LP relaxation of the MILP problem. where we treat the de-
cision variables in Definition (1) as continuous, leading to:

min
x

{cTx|Ax ≤ b,x ∈ Rn}, (2)

where x represents a vector of continuous decision vari-
ables. The optimal value of the LP relaxation is termed the
dual bound. Specifically, if we find an optimal solution xlp

for the relaxation problem, the term cTxlp is referred to
as the dual bound. Besides, the optimal achievable objec-
tive function value during the solving process of the original
MILP problem is called the primal bound. More precisely,
denoting the current optimal solution that satisfies all con-
straints as x∗, then cTx∗ represents the primal bound.

In the cutting plane method, valid inequalities are gen-
erated from the constraints of the original MILP problem
using algorithms like Gomory Cuts (Gomory 1958), added
to strengthen the relaxation (Achterberg 2009), resulting in
tighter LP relaxation. The process of cut generation and ad-
dition (G&A) is performed iteratively until a stopping con-
dition is triggered. A cut is represented as:

∑
j∈S ajxj ≤ d,

where aj denotes the coefficients in the cut, S represents a
set of decision variable indices, and d is the right-hand side
of the cut. The set of all cuts generated in a single iteration
is denoted as C. From C, we select a subset C∗ to be added to
the original MILP problem. Commonly, in modern solvers
like SCIP (Bestuzheva et al. 2021), a method called “Branch
and Cut” (B&C) (Padberg and Rinaldi 1991) is employed.

Branch and Cut Tree

Sub-
MILP

Original
MILP

Root Generation Selection

At Each Node for Cut

Adding

Current
MILP

Next Node

Stop

Start
N

Y

Figure 1: The right gray dashed box illustrates main steps
related to cutting planes that each node needs to undergo.

2.2 Stopping Strategies in Cutting Plane Method
We denote πS as a cutting plane stopping strategy. In mod-
ern solvers, within a B&C tree of an MILP instance, at node
i, the G&A of cutting planes occurs iteratively. In each it-
eration, πS decides whether to proceed to the next iteration.
If an iteration is interrupted by πS , the process will move to
the next node j. Related illustrations can be found in Figure
1. Here are several classical heuristic stopping strategies.

Fixed Cut Numbers (FCN) The strategy will stop the cut
generation after a specific number of cuts have been added,
ensuring that the total number of added cuts doesn’t exceed
the predefined limit. Assuming we set the number of cuts to
be added as k, then at each node, we add a maximum of k
cuts. Specifically, let Ci represent the set of cuts added at
node i, then the FCN will have |Ci| ≤ k, where |Ci| repre-
sents the number of cuts added at node i.

Fixed Cut Rounds (FCR) SCIP uses a round-based ap-
proach to add multiple cuts to the original problem. Under
the fixed cutting plane rounds strategy, a finite number of
rounds for cut generation are executed at each node. Assum-
ing we set a threshold t, then at each node, we will perform
a maximum of t rounds for cut generation. To be precise,
denoting the actual round for cut generation at node i as ti,
this stopping strategy follows the constraint: ti ≤ t.

Stagnation Round Detection (SRD) The two aforemen-
tioned strategies have the advantage of simplicity, yet their
drawbacks become apparent due to their inability to consider
the dynamic factors during the solving process.

Let Ct
i be the set of cutting planes generated in the tth

round at node i. Define O∗(Ct
i) as the objective value result-

ing from the tth round of cutting plane generation. Further-
more, a threshold ϵ is set to determine whether the objective
value improvement is significant. If we have:

|O∗(Ct
i)−O∗(Ct+1

i)|
|O∗(Ct

i)|
≤ ϵ, (3)

then we consider that the solving process has stagnated at
the (t + 1)th round. We define the number of consecutive
stagnation rounds at node i in the round tth round as sti,
and we set s0i = 0. If the stagnation persists into the (t +
2)th round, we update st+2

i = st+1
i + 1; otherwise, st+2

i =
0. Let si be the maximum allowed consecutive stagnation
rounds at node i. The stagnation round detection strategies is
formulated as: sri ≤ si, where r represents any given round.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20760

0 20 40 60 80 100

Rounds
0.2

0.4

0.6

0.8

1.0
Pe

rf
or

m
an

ce
Dataset Level

Knapsack
MIK
Anonymous

0 20 40 60 80 100

Rounds
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PD
I

Instance-Anonymous

20
82
4
88

Figure 2: Lower values indicate better performance on the
figures. Data for both figures was normalized. The legend
in the right figure represents the instance numbers in the
Anonymous dataset.

3 Motivation Results
Empirically, different stopping strategies significantly affect
the solving performance of MILP problems. We conducted
carefully designed experiments to evaluate this impact.

3.1 Setup
To visually demonstrate the impact of stopping strategies
on the solving efficiency of MILPs using the cutting plane
method, we conducted exhaustive search experiments within
a specified range on three datasets: Anonymous, MIK, and
Knapsack, using the SCIP solver. For detailed descriptions
of the datasets, please refer to Section 5.1. We employ the
Fixed Cut Round strategy, adding cutting planes only at the
root node for each instance, with a fixed number of iterations
as mentioned in Section 2.2. For each instance, we perform
100 runs. In the jth run, for every instance I, we execute a
maximum of j iterations for the G&A of cutting planes at
the root node. The Anonymous dataset employs primal-dual
bound gap integral (PDI) (Wang et al. 2023a), while other
datasets represent solving performance using solving time.

3.2 Results
From Figure 2 (Left), it is evident that as the number of cut-
ting plane G&A rounds varies, the trend in solving perfor-
mance varies across different datasets. This indicates that
different types of MILP problems need diverse stopping
strategies to achieve enhanced performance. Furthermore,
Figure 2 (Right) demonstrates that even within a single
dataset, the performance trends across different instances
vary significantly, which emphasizes the requirement for
instance-specific stopping strategies instead of solely relying
on predefined hardcoded strategies. The analyses conducted
on both the dataset level and individual MILP instances
clearly demonstrate the importance of using learning-based
methods to develop more effective stopping strategies.

4 Method
4.1 Motivation
Our primary task involves dynamically determining the opti-
mal moment to stop the G&A of cutting planes at each node
within the B&C tree, enabling efficient solving of MILP.
Achieving this goal necessitates a more intelligent stopping
strategy. A more intuitive approach is to allow the model to

decide, after each G&A of cutting planes, whether to pro-
ceed to the next iteration. However, this method presents
two notable drawbacks. Firstly, direct decision-making re-
garding stopping would result in an increased frequency
of invoking the trained model, resulting in elevated com-
putational costs that cannot be disregarded (Gupta et al.
2020). Additionally, if the model were to directly determine
whether to stop, given a maximum of k iterations of cutting
plane G&A at the current node, the potential action space
would exponentially increase to 2k, making it challenging
for the model to learn effective stopping strategies.

To address the aforementioned challenges, we innova-
tively transformed our approach, shifting from directly
learning whether to stop to indirectly learning simple and ef-
ficient stopping conditions. This transformation draws inspi-
ration from the SRD strategy mentioned in Section 2.2, in-
corporating prior knowledge that if cutting planes are unable
to effectively tighten the LP relaxations, their G&A should
be stopped. Specifically, at each node, the model learns to
dynamically determine the stopping condition, which is a
threshold for the maximum number of consecutive stagna-
tion rounds, instead of relying on a predetermined value.
The above transformation significantly improves the perfor-
mance of learned models while also greatly lowering com-
putational overhead. The effectiveness of this transformation
is demonstrated through experiments in Section 5.2.

4.2 Problem Formulation
Reinforcement learning excels at decision-making tasks,
achieving a series of successes (Zhou, Li, and Wang 2020;
Yang et al. 2022; Haarnoja et al. 2018; Wang et al. 2022,
2023b; Kuang et al. 2022; Liu et al. 2023; Zhou et al. 2020)
and finding increasing applications in specific tasks (Adri-
aensen et al. 2022). We consider the stopping strategy as a
reinforcement learning problem as well.

To learn the aforementioned stopping strategy, we for-
mulate the stopping problem as a Markov Decision Process
(MDP) (Bellman 1957; Sutton and Barto 1998). Specifically,
we define the state space S , action space A, reward function
r, state transition function f , and terminal state T as follows.

State Space We employ a four-tuple {C,V, E ,S∗} to de-
note the state space S of the current node, where C, V , and E
correspond to the dynamic part of S , capturing the features
of constraints, variables, and coefficients, respectively. We
model these dynamic components using a bipartite graph.
S∗ signifies the static part, consisting of the intrinsic at-
tributes of the MILP problem, and we represent these at-
tributes using a vector. The schematic diagram illustrating
these four components is presented in Figure 3, and their
specific forms will be elaborated upon in Section 4.3.

Action Space The formulation of our action space, repre-
sented as A, is based on the discussions regarding method
transformation in Section 4.1. At node i, a single action
ai ∈ [0, tA) is taken, where ai is an integer representing
the learned stopping condition, i.e., maximum consecutive
stagnation rounds for node i. The value of tA corresponds
to the size of the action space A. This action ai guides the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20761

V C Static

Figure 3: The red, blue, and yellow circles represent vari-
able, constraint, and static features, respectively.

solver to iteratively generate and add cutting planes at node
i until the stopping condition indicated by ai is triggered.

State Transition A state transition takes place when the
number of consecutive stagnation rounds at node i exceeds
the threshold set by action ai, or when other specific con-
ditions are triggered at node i. The state transition func-
tion ft outlines the process of transiting from state Si at
node i to state Sj at node j within the Branch and Cut tree:
Sj = ft(Si, ai). As illustrated in Figure 1, the blue dashed
curved line indicates the successor in the state transition,
which corresponds to the node where the subsequent iter-
ation of cutting plane G&A takes place.

Terminal State Upon completing the full solving process
for the instance I, which could involve achieving the opti-
mal feasible solution or reaching a predefined time limit, we
define this occurrence as a transition to the terminal state T .

Reward For a given MILP instance I, the agent performs
sequential decision-making at multiple nodes, generating a
sequence of actions. Before transiting to the terminal state,
the immediate rewards for each action are set to 0. Upon
transiting to the terminal state, we compute the reward sig-
nal r to holistically assess the quality of these actions. Here,
a value v quantifies the effectiveness of these actions, as-
sociated with solving performance metrics, such as solving
time and PDI. The exact approach for computing the reward
signal will be elaborated upon in Section 4.3.

4.3 Learning to Stop
In this section, we will present the framework of HYGRO
and our strategy for training HYGRO.

Hybrid Graph Representation Model An MILP prob-
lem I, corresponding to a node i in the B&C tree, has un-
derlying patterns that can be represented using the four-tuple
{C,V, E ,S∗}. The bipartite graph comprising C, V , and E is
an effective model for representing MILP problems, widely
employed in MILP research (Gasse et al. 2019). In fact,
static intrinsic attributes S∗, such as the scale of I, also
play a vital role in the node-level representation of MILP
(Berthold, Francobaldi, and Hendel 2022). In order to com-
prehensively encode I, we propose a novel HYGRO that
integrates dynamic graph embeddings with static intrinsic
features to learn efficient stopping conditions.

Specifically, assuming there are n constraints each with
d1 features, m variables each with d2 features, and e non-
zero coefficients, we can represent the {C,V, E}. using ma-
trices Cn×d1 , Vm×d2 , and Ee×1, collectively forming the

bipartite graph of Figure 3. The bipartite graph formed by
these three components undergoes internal interactions, thus
we term it the dynamic part. As for intrinsic attributes of
I, such as its scale, total d3 in count. To represent these at-
tributes, we employ a vector sd3 . Since sd3 remains inde-
pendent throughout the state encoding procedure, we term it
the static part. Then we proceed to perform a linear trans-
formation on {Cn×d1 ,Vm×d2 ,Ee×1, sd3}. This transfor-
mation uniformly embeds these four components into a d-
dimensional space, resulting in {Cn×d,Vm×d,Ee×d, sd}.

For the bipartite graph part, we define the graph con-
volution (Kipf and Welling 2017; Defferrard, Bresson, and
Vandergheynst 2016) operation as : h(l)

θg (left, right, edge),
where θg represents the parameters of h, h denote the in-
formation propagation between the two sides on layer l,
and edge represents the associations between left and
right. Then, the flow of information can be described
as: h

(1)
θg (Cn×d,Vm×d,Ee×d), h

(2)
θg (Vm×d,Cn×d,Ee×d).

Then we leverage the Principal Neighbourhood Aggrega-
tion (PNA) (Corso et al. 2020) to aggregate the Cn×d and
Vm×d into vectors c4da and v4d

a respectively. Specifically,
let [·] represent the concatenation between different vectors,
our aggregation method can be described as:

d4d
a = [max(Dq×d),min(Dq×d), avg(Dq×d), std(Dq×d)],

where the four terms in [·] respectively denote taking the
maximum value, the minimum value, the average value, and
the standard deviation along the columns of matrix Dq×d.

Finally, we employ a Multilayer Perceptron (MLP)
(Rosenblatt 1963), denoted as M, serving as the output
module, we use: ratio = 0.5 ∗ σ(M([v4d

a , c4da , sd])) + 0.5
to compute the output scalar ratio, where σ is the tanh ac-
tivation function (Rumelhart, Hinton, and Williams 1986;
Goodfellow, Bengio, and Courville 2016), mapping any real
number to the interval (-1, 1). Thus, we will have ratio ∈
(0, 1). The HYGRO’s architecture is illustrated in Figure 4.
Additionally, if the current node is not the root node, then
ratio = ratio × γ, where γ is a constant less than 1. This
is based on prior knowledge that cutting planes added at the
root node are often more critical. Finally, we let the action
at node i to be ai = ⌊ratio · tA⌋, where ⌊·⌋ represents the
floor operation, tA represents the size of the action space.

Training We use the Evolutionary Strategies (ES)
(Rechenberg 1973) to train HYGRO. We opted for ES due to
its simplicity in training, circumventing the need for explicit
gradient computations, enabling us to exploit training paral-
lelism to its fullest extent (Salimans et al. 2017). We treat
the training process of HYGRO as a black-box optimiza-
tion problem, where we input the parameters θ0 of HYGRO
and obtain perturbations ε along with the corresponding re-
ward signals r induced by them (Tang, Agrawal, and Faenza
2020). Specifically, for the HYGRO H0, we generate k per-
turbations ε: {ϵ1, ϵ2, ..., ϵk}, and then introduce them into
H0 to create: {Hϵ1

0 ,Hϵ2
0 , ...,Hϵk

0 }. Subsequently, we inte-
grate these new models into the SCIP solver respectively,
obtaining the solving performance, such as solving time, p
of each new model: {p1, p2, ..., pk}. Then, we compute the
reward ri for each perturbation ϵi using r = softmax(p),

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20762

Features Embedding Graph
Convolution

Aggregate

PNA

PNA

Linear
Embedding

Two Layer
Graph Convolution

Output

Hybrid
Network

𝑒௜௝

𝑑ଶ

𝑑ଵ

1

𝑑ଷ

ratio
Variable

Coefficient
Static

Feature

Constraint

𝑒௜௝

𝒉𝜽𝒈
(𝟏)

𝐜௔
ସௗ

v௔
ସௗ

𝐬ௗ

𝒉𝜽𝒈
(𝟐)

MLP

Figure 4: Diagram illustrating the structure of HYGRO. First, it employs a two-layer graph neural convolutional network to
encode the dynamic part. Then, it aggregates the dynamic part with the static part and finally outputs the ratio. In summary,
HYGRO takes the four features shown in the diagram as inputs and generates the ratio value for the current node as output.

leveraging r and ε to approximate implicit gradient ĝθ, iter-
atively adjusting the parameters θ0 of HYGRO.

5 Experiment
We designed experiments to evaluate the effectiveness of
our approach and assess the efficiency of stopping condi-
tions learned by HYGRO. Our experiments mainly focus
on the following four aspects. Here is a brief introduction:
(1) Solving Performance: We conducted experiments com-
paring the solving performance of our method with eight
competitive baselines on six NP-hard datasets. (2) Ablation
Study: As mentioned earlier in Section 4.1, we designed ab-
lation experiments to validate the effectiveness of the trans-
formation. (3) Generalization Study: We evaluate the abil-
ity of HYGRO to generalize across different sizes of MILPs.
(4) Visualization: We compared the solving performance
achieved by the HYGRO with the optimal performance ob-
tained through an exhaustive search and depicted the results.

5.1 Experiment Details
Dataset We employed six NP-hard problem datasets as
benchmarks, which are categorized into two groups.

Classical NP-hard combinatorial optimization problems
widely served as benchmarks, including Multiple Knapsack
Problem (Kellerer, Pferschy, and Pisinger 2004), Maximum
Independent Set (MIS) (Hartmanis 1982), and Set Covering
(Balas and Ho 1980). These datasets are artificially gener-
ated using the methods provided by (Prouvost et al. 2020).

Harder datasets, including Corlat (Atamtürk 2003), MIK
(Gomes, van Hoeve, and Sabharwal 2008), and Anonymous
(Gasse et al. 2022) dataset. These datasets are related to
real-world optimization problems, often employed as bench-
marks in MILP research (Nair et al. 2021).

Setup We integrate HYGRO into SCIP, a widely utilized
backend for MILP research (Gasse et al. 2019; Paulus et al.
2022; Wang et al. 2023a), and one of the state-of-the-art
open-source solvers. During solving, we set a 300-second
time limit for each MILP instance. HYGRO’s training uti-
lizes the ADAM optimizer (Kingma and Ba 2014) through

PyTorch (Paszke et al. 2019). To ensure fairness and replica-
bility, we maintain default SCIP parameter settings, except
for those pertaining to the cutting plane stopping strategy.
We divided each dataset into training and testing sets with
75% and 25% of instances, respectively, and selected the
best model trained on the training set for testing.

In the formulation presented in Section 4.2, we consider
making decisions in each node. In fact, many studies con-
centrate primarily on decisions made at the root node (Tang,
Agrawal, and Faenza 2020). On one hand, this approach will
reduce computational overhead; on the other hand, cutting
planes added at the root node tend to have a greater impact
on solving efficiency. However, for experimental complete-
ness, in the method HYGRO I, we make decisions for cut-
ting plane stopping at multiple nodes (up to a depth of 2) –
whereas all other methods only focus on the root node.

Performance metrics In this study, we assess each
method’s performance using two key metrics: solving time
and PDI. We employ the metric of average improvement to
assess the overall performance of each method. Specifically,
we calculated the average percentage performance improve-
ment of a method across all datasets in this experiment.

Baseline In our experiments, we employed several base-
line strategies, including: (1) Default: The default cutting
plane stopping strategy offered by the SCIP solver, utilizing
the Stagnation Round Detection strategy. (2) No Cuts: This
strategy disables the G&A of cuts. (3) Always: This strat-
egy performs G&A of cuts without any conditions until a
specific event of SCIP is triggered. (4) FCN: As discussed
in Section 2.2, this strategy ensures that the number of cuts
added in each run does not exceed 200. (5) FCR: As ex-
plained in Section 2.2, this strategy ensures that the number
of cutting plane rounds in each run does not exceed 100. (6)
Immediate: This strategy involves setting the value of ϵ in
Inequality (3) to a very small value of 10−5, and as soon as it
becomes smaller than ϵ, cutting plane G&A is immediately
stopped. (7) Random I: This strategy incorporates a 0.5%
probability of instantly stopping the G&A of cutting planes
before each iteration. (8) Random II: This strategy involves

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20763

Classical Dataset
Set Covering (1000V, C=500) Max Independent Set (500V, C≈2000) Knapsack (1000V, C≈200) Imprv.

Avg.(%)Method Time(s)↓ PDI↓ Imprv.(%)↑ Time(s)↓ PDI↓ Imprv.(%)↑ Time(s)↓ PDI↓ Imprv.(%)↑
HYGRO* 3.91(3.0) 41.94(27.2) 24.08 5.78(3.8) 31.75(21.5) 10.53 9.12(12.6) 17.67(14.3) 31.63 22.08
HYGRO I* 3.99(2.3) 47.75(26.4) 22.52 5.61(3.4) 29.18(19.9) 13.16 10.34(12.5) 19.23(16.3) 22.48 19.39
Default 5.15(3.5) 55.23(29.4) N/A 6.46(4.1) 33.62(23.4) N/A 13.34(15.6) 22.17(18.9) N/A N/A
No Cuts 4.04(2.8) 43.86(26.1) 21.55 9.71(8.4) 74.29(59.8) -50.31 11.56(13.5) 20.14(16.8) 13.34 -5.14
Always 9.56(4.9) 89.01(50.7) -85.63 6.64(4.5) 34.44(23.5) -2.79 40.25(49.3) 37.27(22.6) -201.72 -96.71
FCN 9.58(4.9) 87.84(51.5) -86.02 6.53(4.5) 32.33(21.8) -1.08 32.74(37.8) 34.39(18.7) -145.43 -77.15
FCR 9.81(5.2) 88.31(49.4) -90.48 6.66(4.3) 33.14(22.7) -3.10 16.25(16.0) 23.84(14.2) -21.81 -38.46
Immediate 7.10(4.1) 70.64(40.3) -37.86 6.63(4.3) 35.46(25.2) -2.63 7.74(13.3) 16.89(10.8) 41.97 0.49
Random I 9.08(5.0) 84.07(48.6) -76.31 7.04(6.8) 37.52(39.6) -8.98 28.25(28.9) 26.57(13.8) -111.77 -65.69
Random II 8.56(4.8) 81.85(49.5) -66.21 6.81(4.4) 35.73(24.2) -5.42 13.93(15.4) 19.05(12.1) -4.42 -25.35

Harder Dataset
Corlat MIK Anonymous Imprv.

Avg.(%)Method Time(s)↓ PDI↓ Imprv.(%)↑ Time(s)↓ PDI↓ Imprv.(%)↑ Time(s)↓ PDI↓ Imprv.(%)↑
HYGRO* 37.7(77.5) 1235(2893) 17.3 9.5(14.0) 59.0(82.8) 7.4 241(102) 14973(7984) 1.6 8.8
HYGRO I* 40.3(82.3) 1035(3313) 11.8 8.5(12.0) 51.6(70.8) 16.9 237(109) 14126(8054) 3.1 10.6
Default 45.6(85.8) 1234(4078) N/A 10.2(14.3) 64.3(87.8) N/A 245(96) 16247(8624) N/A N/A
No Cuts 123.7(138.3) 3228(6788) -171.1 108.5(132.1) 337.6(427.3) -961.3 238(108) 15701(8763) 3.0 -376.5
Always 32.8(65.9) 889(1259) 28.1 25.9(26.1) 88.7(84.4) -153.4 253(91) 16704(8766) -3.2 -42.8
FCN 41.8(82.7) 1141(2108) 8.4 41.4(69.3) 110.3(120.9) -305.1 252(92) 17313(9730) -3.0 -99.9
FCR 51.5(100.4) 1742(4901) -12.9 23.5(26.2) 88.9(94.7) -129.5 253(86) 15410(7715) -3.4 -48.6
Immediate 52.7(91.8) 1410(4401) -15.5 13.9(20.7) 73.6(95.4) -36.2 238(108) 16245(9151) 3.0 -16.2
Random I 42.6(83.6) 1106(3553) 6.7 22.6(23.5) 88.1(90.4) -121.3 261(84) 16195(7991) -6.4 -40.3
Random II 41.9(85.4) 995(2280) 8.3 19.2(24.1) 84.0(88.6) -88.0 245(103) 15235(8780) -0.0 -26.6

Table 1: We presented the data for Experiments 1 and 2, which involve evaluations on classical datasets and harder datasets.
The top two performances are highlighted in bold. The performance metrics are presented as average (standard deviation) for
each test. Solving time improvement (Imprv.) over the default SCIP’s stopping strategy and average solving time improvement
(Imprv. Avg.) are listed. V and C denote variable and constraint counts, respectively. * represents our approach.

MIK Imprv.(%)Metrics Direct Indirect (ours)
Solving Time(s)↓ 21.5(15.3) 10.9(5.4) 49.32
Extra Time(s)↓ 7.0(5.8) 1.9(2.6) 72.70
PDI↓ 403.0(458.4) 239.2(262.7) 40.62
Call Times↓ 116.1(108.7) 1.0(0.0) 99.14

MIS Imprv.(%)Metrics Direct Indirect (ours)
Solving Time(s)↓ 9.2(4.6) 7.1(4.7) 22.18
Extra Time(s)↓ 2.9(2.4) 1.1(2.2) 63.44
PDI↓ 55.4(36.2) 45.0(34.0) 18.82
Call Times↓ 24.4(2.7) 1.0(0.0) 95.90

Table 2: The experimental results of the Ablation Study, the
best-performing results are highlighted in bold.

generating a random integer t within the range of [0, 30) to
serve as the threshold for consecutive stagnation rounds.

Baseline strategies (1)-(5) are provided by SCIP, while the
strategies (6)-(8) are designed by us.

5.2 Results
Experiment 1: Classical Datasets Performance Experi-
ment To evaluate HYGRO’s ability to find efficient stop-
ping conditions for classical MILP problems, we conducted
performance comparison experiments with eight baseline

strategies. Our HYGRO strategies, including HYGRO I,
consistently demonstrate remarkably superior performance,
outperforming other strategies in the majority of tests. Al-
though there were two occurrences where baseline strategies
slightly outperformed HYGRO, our methods exhibited sub-
stantial performance improvements over these two strategies
on other datasets. It is worth noting that the default strategy
of SCIP, based on the SRD strategy, also proves to be highly
effective as a stopping strategy, showing distinct advantages
over other baseline strategies. Nevertheless, in comparison
to this default strategy, HYGRO achieved an average im-
provement of approximately 22%, with the highest observed
improvement reaching up to 31% on specific datasets.

Experiment 2: Harder Datasets Performance Experi-
ment To assess HYGRO’s performance on more challeng-
ing MILP problems related to real-world applications, we
conducted comparative experiments with baseline strategies.
Our HYGRO strategies consistently demonstrate the highest
overall performance. Relative to the SCIP default strategy,
which represents one of the best-performing baseline strate-
gies, our methods achieved performance improvement of ap-
proximately 8% and 10%, along with a notable peak im-
provement of 17% on specific datasets. HYGRO exhibited
a greater capacity for efficiently solving real-world MILP
problems on more challenging datasets.

Experiment 3: Ablation Study In the previous Section
4.1, we transformed the problem of learning stopping strate-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20764

HYGRO (ours) Default Imprv.
%(Time)Datasets Time(s)↓ PDI↓ Time(s)↓ PDI↓

Set Covering I
(1000V, 1000C)

11.28
(29.99)

102.83
(180.20)

14.42
(24.69)

133.28
(155.80)

21.77

Set Covering II
(1500V, 1000C)

26.74
(45.93)

239.19
(348.32)

29.61
(47.69)

257.52
(337.41)

9.69

Set Covering III
(2000V, 1000C)

59.76
(84.28)

504.76
(669.90)

64.23
(84.52)

550.48
(671.31)

6.96

MIS I
(750V, 3200C)

28.05
(24.95)

105.93
(84.28)

27.08
(24.70)

102.80
(82.50)

-3.58

MIS II
(1000V, 4200C)

141.13
(128.76)

394.57
(393.85)

147.68
(126.69)

409.31
(391.22)

4.43

MIS III
(1500V, 6400C)

724.34
(172.01)

1965.79
(807.40)

728.61
(162.21)

1972.64
(802.92)

0.58

Table 3: The generalization ability of HYGRO, the best-
performing results are highlighted in bold. In the MIS
dataset, the count of constraints (C) is an approximate value.

gies. We refer to the methods before and after this trans-
formation as “Direct” and “Indirect”, respectively. To val-
idate the effectiveness of this transformation, we compared
the performance of these two methods when using HYGRO.

Specifically, in the Direct method, we determine whether
to continue the G&A of cutting planes based on the output of
HYGRO. If the ratio surpasses 0.5, the iteration stops im-
mediately; otherwise, it continues. We evaluated the perfor-
mance of these two methods on the MIK and MIS datasets.
It is crucial to compare the extra computational costs of the
two methods, thus we introduce the metric “Extra Time”
to measure the total runtime of HYGRO during the solving
process, and “Call times” to indicate the frequency of invok-
ing HYGRO. It’s worth noting that the hardware utilized in
this experiment differs from that of the other experiments,
resulting in slight performance deviations. Nevertheless, the
experimental setup maintains its consistency and fairness.

The results are presented in Table 2, from which we can
find that the Indirect method exhibits notable advantages in
terms of Extra Time metrics, significantly reducing the in-
creased computational overhead from using HYGRO. It still
maintains a substantial advantage in overall runtime, indi-
cating that through the transformation, we have learned a
more efficient stopping strategy. Even considering only the
pure MILP solving time (excluding the Extra Time), the In-
direct method still holds a significant advantage. These facts
strongly validate the effectiveness of our transformation.

Experiment 4: Generalization Ability To evaluate the
ability of HYGRO to generalize across various sizes
of MILPs, we conducted generalization experiments. We
trained HYGRO on the dataset used in Experiment 1 and
then assessed the performance of HYGRO and SCIP’s de-
fault strategy on more challenging datasets within the same
domain. Similar settings are commonly employed to eval-
uate the generalization ability of data-driven models for
MILP, as seen in studies like (Gasse et al. 2019; Wang et al.
2023a). Each instance has an 800-second time limit.

The results of these experiments are elaborated in Table

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

R 25

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

R 50

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

R 75

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

R 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: The y-axis shows HYGRO’s solving time, and the
x-axis indicates the best performance within the specified
range of rounds (R). Points below the gray dashed line sig-
nify superior performance for HYGRO.

3. It is evident that, apart from one occurrence where the de-
fault strategy of SCIP slightly outperformed our approach,
HYGRO consistently performed better, achieving up to a
21% improvement in performance. As evident from the re-
sults, our approach significantly surpasses the heuristic de-
fault stopping strategy when applied to larger datasets. This
highlights the robust generalization capacity of HYGRO.

Experiment 5: Visualization for Strategy Performance
To present an intuitive portrayal of the performance of
HYGRO, we conducted visualization experiments. For in-
stances in the MIK test dataset, we conducted 100 solving
runs. These run data were divided into four distinct sets:
S1, S2, S3, and S4. Each set employs a maximum number
of cutting plane rounds set at 25, 50, 75, and 100, corre-
spondingly. For example, S2 encompasses the solving per-
formance data for all instances with cutting plane rounds
varying from 1 to 50. MILPs in the MIK test dataset are rep-
resented by four data points {(PH , P ∗

Si
), i ∈ {1, 2, 3, 4}},

plotted on four individual scatter plots, respectively. Here,
PH denotes the solving time of HYGRO, while P ∗

Si
repre-

sents the best solving time within Si.
The results are visualized in Figure 5. It is evident that in

most cases, the scatter plots cluster around the vicinity of the
gray dashed line, indicating that even when expanding the
search range to 100, the performance achieved by HYGRO
remains comparable to the optimal values obtained through
exhaustive search. Moreover, in certain instances, HYGRO
even demonstrates notable advantages. It is important to note
that conducting such exhaustive searches comes with a sub-
stantial computational cost. This clearly illustrates that HY-
GRO has effectively learned an efficient stopping condition.

6 Conclusion

In this paper, we focus on the stopping strategy for the cut-
ting plane method. Motivational experiments demonstrate
the significance of stopping strategies and highlight the cru-
cial role of learning-based methods. To learn more intelli-
gent stopping strategies, we introduce an innovative trans-
formation to learn a simple and efficient stopping condition
and propose HYGRO to learn such conditions. Extensive ex-
periments demonstrate the remarkable performance of HY-
GRO and provide evidence for the effectiveness of our trans-
formation. We believe HYGRO offers a new perspective on
improving the solving efficiency of MILP.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20765

Acknowledgements
The authors would like to thank the associate editor and
all the anonymous reviewers for their insightful comments.
This work was supported in part by National Key R&D Pro-
gram of China under contract 2022ZD0119801, National
Nature Science Foundations of China grants U19B2026,
U19B2044, 61836011, 62021001, and 61836006.

References
Abend, F. 2016. Facility Location Concepts Models Algo-
rithms And Case Studies.
Achterberg, T. 2009. Constraint Integer Programming.
Ph.D. thesis.
Adriaensen, S.; Biedenkapp, A.; Shala, G.; Awad, N. H.;
Eimer, T.; Lindauer, M. T.; and Hutter, F. 2022. Automated
Dynamic Algorithm Configuration. J. Artif. Intell. Res., 75:
1633–1699.
Atamtürk, A. 2003. On the facets of the mixed–integer knap-
sack polyhedron. Mathematical Programming, 98(1): 145–
175.
Balas, E.; and Ho, A. 1980. Set covering algorithms using
cutting planes, heuristics, and subgradient optimization: A
computational study, 37–60. Berlin, Heidelberg: Springer
Berlin Heidelberg. ISBN 978-3-642-00802-3.
Balcan, M.-F. F.; Prasad, S.; Sandholm, T.; and Vitercik,
E. 2021. Sample Complexity of Tree Search Configura-
tion: Cutting Planes and Beyond. In Ranzato, M.; Beygelz-
imer, A.; Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds.,
Advances in Neural Information Processing Systems, vol-
ume 34, 4015–4027. Curran Associates, Inc.
Bellman, R. 1957. A Markovian Decision Process. Indiana
University Mathematics Journal, 6: 679–684.
Bengio, Y.; Lodi, A.; and Prouvost, A. 2021. Machine
learning for combinatorial optimization: A methodological
tour d’horizon. European Journal of Operational Research,
290(2): 405–421.
Berthold, T.; Francobaldi, M.; and Hendel, G. 2022. Learn-
ing to use local cuts. arXiv preprint arXiv:2206.11618.
Berthold, T.; Heinz, S.; Lübbecke, M. E.; Möhring, R. H.;
and Schulz, J.-U. 2010. A Constraint Integer Programming
Approach for Resource-Constrained Project Scheduling. In
Integration of AI and OR Techniques in Constraint Program-
ming.
Bestuzheva, K.; Besançon, M.; Chen, W.-K.; Chmiela, A.;
Donkiewicz, T.; van Doornmalen, J.; Eifler, L.; Gaul, O.;
Gamrath, G.; Gleixner, A.; Gottwald, L.; Graczyk, C.; Hal-
big, K.; Hoen, A.; Hojny, C.; van der Hulst, R.; Koch, T.;
Lübbecke, M.; Maher, S. J.; Matter, F.; Mühmer, E.; Müller,
B.; Pfetsch, M. E.; Rehfeldt, D.; Schlein, S.; Schlösser, F.;
Serrano, F.; Shinano, Y.; Sofranac, B.; Turner, M.; Vigerske,
S.; Wegscheider, F.; Wellner, P.; Weninger, D.; and Witzig,
J. 2021. The SCIP Optimization Suite 8.0. Technical report,
Optimization Online.
Corso, G.; Cavalleri, L.; Beaini, D.; Liò, P.; and Veličković,
P. 2020. Principal neighbourhood aggregation for graph
nets. Advances in Neural Information Processing Systems,
33: 13260–13271.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional Neural Networks on Graphs with Fast Local-
ized Spectral Filtering. In Lee, D.; Sugiyama, M.; Luxburg,
U.; Guyon, I.; and Garnett, R., eds., Advances in Neural
Information Processing Systems, volume 29. Curran Asso-
ciates, Inc.
Gasse, M.; Bowly, S.; Cappart, Q.; Charfreitag, J.; Charlin,
L.; Chételat, D.; Chmiela, A.; Dumouchelle, J.; Gleixner,
A.; Kazachkov, A. M.; Khalil, E.; Lichocki, P.; Lodi, A.;
Lubin, M.; Maddison, C. J.; Christopher, M.; Papageorgiou,
D. J.; Parjadis, A.; Pokutta, S.; Prouvost, A.; Scavuzzo, L.;
Zarpellon, G.; Yang, L.; Lai, S.; Wang, A.; Luo, X.; Zhou,
X.; Huang, H.; Shao, S.; Zhu, Y.; Zhang, D.; Quan, T.; Cao,
Z.; Xu, Y.; Huang, Z.; Zhou, S.; Binbin, C.; Minggui, H.;
Hao, H.; Zhiyu, Z.; Zhiwu, A.; and Kun, M. 2022. The
Machine Learning for Combinatorial Optimization Compe-
tition (ML4CO): Results and Insights. In Kiela, D.; Cic-
cone, M.; and Caputo, B., eds., Proceedings of the NeurIPS
2021 Competitions and Demonstrations Track, volume 176
of Proceedings of Machine Learning Research, 220–231.
PMLR.
Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; and Lodi,
A. 2019. Exact Combinatorial Optimization with Graph
Convolutional Neural Networks. In Neural Information Pro-
cessing Systems.
Gomes, C. P.; van Hoeve, W.-J.; and Sabharwal, A. 2008.
Connections in Networks: A Hybrid Approach. In Perron,
L.; and Trick, M. A., eds., Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Op-
timization Problems, 303–307. Berlin, Heidelberg: Springer
Berlin Heidelberg. ISBN 978-3-540-68155-7.
Gomory, R. 1958. Outline of an Algorithm for Integer So-
lutions to Linear Programs. Bulletin of the American Math-
ematical Society, 64: 275–278.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.
Gupta, P.; Gasse, M.; Khalil, E.; Mudigonda, P.; Lodi, A.;
and Bengio, Y. 2020. Hybrid Models for Learning to
Branch. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Bal-
can, M.; and Lin, H., eds., Advances in Neural Information
Processing Systems, volume 33, 18087–18097. Curran As-
sociates, Inc.
Gupta, P.; Khalil, E. B.; Chetélat, D.; Gasse, M.; Bengio, Y.;
Lodi, A.; and Kumar, M. P. 2022. Lookback for learning to
branch. arXiv preprint arXiv:2206.14987.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor. In Dy, J.; and
Krause, A., eds., Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, 1861–1870. PMLR.
Hartmanis, J. 1982. Computers and Intractability: A Guide
to the Theory of NP-Completeness (Michael R. Garey and
David S. Johnson). SIAM Review, 24(1): 90–91.
Huang, Z.; Wang, K.; Liu, F.; Zhen, H.-L.; Zhang, W.; Yuan,
M.; Hao, J.; Yu, Y.; and Wang, J. 2022. Learning to se-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20766

lect cuts for efficient mixed-integer programming. Pattern
Recognition, 123: 108353.
Kellerer, H.; Pferschy, U.; and Pisinger, D. 2004. Knapsack
Problems. ISBN 978-3-540-40286-2.
Kingma, D.; and Ba, J. 2014. Adam: A Method for Stochas-
tic Optimization. International Conference on Learning
Representations.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In Interna-
tional Conference on Learning Representations.
Kuang, Y.; Lu, M.; Wang, J.; Zhou, Q.; Li, B.; and Li, H.
2022. Learning Robust Policy against Disturbance in Transi-
tion Dynamics via State-Conservative Policy Optimization.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 36: 7247–7254.
Laporte, G. 2009. Fifty Years of Vehicle Routing. Transp.
Sci., 43: 408–416.
Liu, Q.; Zhou, Q.; Yang, R.; and Wang, J. 2023. Robust Rep-
resentation Learning by Clustering with Bisimulation Met-
rics for Visual Reinforcement Learning with Distractions. In
Proceedings of the Thirty-Seventh AAAI Conference on Arti-
ficial Intelligence and Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence and Thirteenth Sym-
posium on Educational Advances in Artificial Intelligence,
AAAI’23/IAAI’23/EAAI’23. AAAI Press. ISBN 978-1-
57735-880-0.
Nair, V.; Bartunov, S.; Gimeno, F.; von Glehn, I.; Lichocki,
P.; Lobov, I.; O’Donoghue, B.; Sonnerat, N.; Tjandraat-
madja, C.; Wang, P.; Addanki, R.; Hapuarachchi, T.; Keck,
T.; Keeling, J.; Kohli, P.; Ktena, I.; Li, Y.; Vinyals, O.; and
Zwols, Y. 2021. Solving Mixed Integer Programs Using
Neural Networks. arXiv:2012.13349.
Nemhauser, G. L.; and Wolsey, L. A. 2020. Integer Pro-
gramming.
Padberg, M.; and Rinaldi, G. 1991. A Branch-and-Cut Al-
gorithm for the Resolution of Large-Scale Symmetric Trav-
eling Salesman Problems. SIAM Review, 33(1): 60–100.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Köpf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Neural Information
Processing Systems.
Paulus, M. B.; Zarpellon, G.; Krause, A.; Charlin, L.; and
Maddison, C. 2022. Learning to cut by looking ahead: Cut-
ting plane selection via imitation learning. In International
conference on machine learning, 17584–17600. PMLR.
Pochet, Y.; and Wolsey, L. A. 2010. Production Planning by
Mixed Integer Programming.
Prouvost, A.; Dumouchelle, J.; Scavuzzo, L.; Gasse, M.;
Chételat, D.; and Lodi, A. 2020. Ecole: A Gym-like Li-
brary for Machine Learning in Combinatorial Optimization
Solvers. In Learning Meets Combinatorial Algorithms at
NeurIPS2020.

Rechenberg, I. 1973. Evolutionsstrategie : Optimierung
technischer Systeme nach Prinzipien der biologischen Evo-
lution.
Rosenblatt, F. 1963. PRINCIPLES OF NEURODYNAM-
ICS. PERCEPTRONS AND THE THEORY OF BRAIN
MECHANISMS. American Journal of Psychology, 76: 705.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning representations by back-propagating errors. Na-
ture, 323(6088): 533–536.
Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; and Sutskever, I.
2017. Evolution Strategies as a Scalable Alternative to Re-
inforcement Learning. arXiv:1703.03864.
Sutton, R.; and Barto, A. 1998. Reinforcement Learning: An
Introduction. IEEE Transactions on Neural Networks, 9(5):
1054–1054.
Tang, Y.; Agrawal, S.; and Faenza, Y. 2020. Reinforce-
ment Learning for Integer Programming: Learning to Cut.
In III, H. D.; and Singh, A., eds., Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, 9367–9376.
PMLR.
Turner, M.; Koch, T.; Serrano, F.; and Winkler, M. 2022.
Adaptive cut selection in mixed-integer linear programming.
arXiv preprint arXiv:2202.10962.
Wang, Z.; Li, X.; Wang, J.; Kuang, Y.; Yuan, M.; Zeng,
J.; Zhang, Y.; and Wu, F. 2023a. Learning Cut Selection
for Mixed-Integer Linear Programming via Hierarchical Se-
quence Model. In The Eleventh International Conference on
Learning Representations.
Wang, Z.; Pan, T.; Zhou, Q.; and Wang, J. 2023b. Efficient
Exploration in Resource-Restricted Reinforcement Learn-
ing. Proceedings of the AAAI Conference on Artificial In-
telligence, 37(8): 10279–10287.
Wang, Z.; Wang, J.; Zhou, Q.; Li, B.; and Li, H. 2022.
Sample-Efficient Reinforcement Learning via Conservative
Model-Based Actor-Critic. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 36(8): 8612–8620.
Wesselmann, F.; and Stuhl, U. 2012. Implementing cutting
plane management and selection techniques. University of
Paderborn, Tech. Rep.
Yang, R.; Wang, J.; Geng, Z.; Ye, M.; Ji, S.; Li, B.; and
Wu, F. 2022. Learning Task-Relevant Representations for
Generalization via Characteristic Functions of Reward Se-
quence Distributions. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD ’22, 2242–2252. New York, NY, USA: Asso-
ciation for Computing Machinery. ISBN 9781450393850.
Zhou, Q.; Kuang, Y.; Qiu, Z.; Li, H.; and Wang, J. 2020.
Promoting Stochasticity for Expressive Policies via a Sim-
ple and Efficient Regularization Method. In Larochelle, H.;
Ranzato, M.; Hadsell, R.; Balcan, M.; and Lin, H., eds.,
Advances in Neural Information Processing Systems, vol-
ume 33, 13504–13514. Curran Associates, Inc.
Zhou, Q.; Li, H.; and Wang, J. 2020. Deep Model-Based Re-
inforcement Learning via Estimated Uncertainty and Con-
servative Policy Optimization. Proceedings of the AAAI
Conference on Artificial Intelligence, 34: 6941–6948.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20767

