
Limited Query Graph Connectivity Test

Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, Hung Nguyen
School of Computer and Mathematical Sciences, University of Adelaide, Australia
{mingyu.guo, j.li, aneta.neumann, frank.neumann, hung.nguyen}@adelaide.edu.au

Abstract

We propose a combinatorial optimisation model called Lim-
ited Query Graph Connectivity Test. We consider a graph
whose edges have two possible states (ON/OFF). The edges’
states are hidden initially. We could query an edge to reveal
its state. Given a source s and a destination t, we aim to test
s − t connectivity by identifying either a path (consisting of
only ON edges) or a cut (consisting of only OFF edges). We
are limited to B queries, after which we stop regardless of
whether graph connectivity is established. We aim to design a
query policy that minimizes the expected number of queries.
Our model is mainly motivated by a cyber security use case
where we need to establish whether attack paths exist in a
given network, between a source (i.e., a compromised user
node) and a destination (i.e., a high-privilege admin node).
Edge query is resolved by manual effort from the IT admin,
which is the motivation behind query minimization.
Our model is highly related to Stochastic Boolean Function
Evaluation (SBFE). There are two existing exact algorithms
for SBFE that are prohibitively expensive. We propose a sig-
nificantly more scalable exact algorithm. While previous ex-
act algorithms only scale for trivial graphs (i.e., past works
experimented on at most 20 edges), we empirically demon-
strate that our algorithm is scalable for a wide range of much
larger practical graphs (i.e., graphs representing Windows do-
main networks with tens of thousands of edges).
We also propose three heuristics. Our best-performing heuris-
tic is via limiting the planning horizon of the exact algo-
rithm. The other two are via reinforcement learning (RL) and
Monte Carlo tree search (MCTS). We also derive an algo-
rithm for computing the performance lower bound. Experi-
mentally, we show that all our heuristics are near optimal.
The heuristic building on the exact algorithm outperforms
all other heuristics, surpassing RL, MCTS and eight existing
heuristics ported from SBFE and related literature.

Introduction
Model Motivation
We propose a model called Limited Query Graph Connec-
tivity Test, which is mainly motivated by a cyber security
use case. We start by describing this use case to motivate
our model and also to better explain the model design ratio-
nales. The main focus of this paper is the theoretical model

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and the algorithms behind. Nevertheless, our design choices
are heavily influenced by the cyber security use case.

Microsoft Active Directory (AD) is the default security
management system for Windows domain networks. An
AD environment is naturally described as a graph where
the nodes are accounts/computers/groups, and the directed
edges represent accesses. There are many open source
and commercial tools for analysing AD graphs. BLOOD-
HOUND1 is a popular AD analysis tool that is able to enu-
merate attack paths that an attacker can follow through from
a source node to the admin node. IMPROHOUND2 is another
tool that is able to flag tier violations (i.e., this tool warns if
there exist paths that originate from low-privilege nodes and
reach high-privilege nodes). Existing tools like the above are
able to identify attack paths, but they do not provide directly
implementable fixes. In our context, a fix is a set of edges
(accesses) that can be safely removed to eliminate all attack
paths. Unfortunately, this cannot be found via minimum cut.
Some edges may appear to be redundant but their removal
could cause major disruptions (this is like refactoring legacy
code – it takes effort). Consistent with industry practise, we
assume that every edge removal is manually examined and
approved, which is therefore costly. Our vision is a tool that
acts like an “intelligent wizard” that guides the IT admin. In
every step, the wizard would propose one edge to remove.
The IT admin either approves it or rejects it. The wizard acts
adaptively in the sense that past proposals and their results
determine the next edge to propose. The wizard’s goal is to
minimize the expected number of proposals. Ultimately, the
goal is to save human effort during the algorithm-human
collaboration. We conclude the process if all attack paths
have been eliminated, or we have established that elimina-
tion is impossible.3 We also conclude if the number of pro-
posals reaches a preset limit.

Formal Model Description
Definition 1 (Limited Query Graph Connectivity Test).
The Limited Query Graph Connectivity Test problem in-

1https://github.com/BloodHoundAD/BloodHound
2https://github.com/improsec/ImproHound
3If we cannot eliminate all attack paths via access removal that

are safe, then the IT admin needs to resort to more “invasive” de-
fensive measures, such as banning accounts or splitting an account
into two — one for daily usage and one for admin tasks.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20718



s ta

x
b c

(a) Problem instance:
3 undirected edges {a, b, c}

Edge is ON with p = 0.5
B = 3 (no limit)

a

b

DONEc

DONEDONE

DONE

(b) Optimal policy tree:
Go left if query result is ON

Figure 1: Limited Query Graph Connectivity Test instance

volves a graph G = (V,E), either undirected or directed.
There is a single source s ∈ V and a single destination
t ∈ V . Every edge e ∈ E has two possible states (ON/OFF).
An edge is ON with probability p, where p is a constant
model parameter. The edges’ states are independent. An
edge’s state is hidden before we query it. By querying an
edge, we reveal its state, which will stay revealed and never
changes. We aim to design an adaptive query policy that
specifies the query order (i.e., past queries and their results
decide the next query). There are 3 terminating conditions:

• A path certificate is found: Among the already revealed
edges, the ON edges form a path from s to t.

• A cut certificate is found: Among the already revealed
edges, the OFF edges form a cut between s and t.

• We stop regardless after finishing B queries.

When there isn’t ambiguity, we omit the word “certifi-
cate” and simply use path/cut to refer to path/cut certificate.

Our optimisation goal is to design a query policy that min-
imizes the expected number of queries spent before reaching
termination. It should be noted that we are not searching for
the shortest path or the minimum cut. Any certificate will
do. If long paths/large cuts can be found using less queries,
then we prefer them as our goal is solely to minimize the
expected query count.

Example 1. Let us consider the example instance as shown
in Figure 1a. For this simple instance, the optimal query pol-
icy is given in Figure 1b, in the form of a binary policy tree.
The first step is to query edge a in the root position. If the
query result is ON, then we go left. Otherwise, we go right.
The left child of a is DONE, which indicates that if a is ON,
then the job is already done (a by itself forms a path). The
right child of a is b, which indicates that if a is OFF, then
we should query b next. If b’s query result is ON, then we
query c. Otherwise, we go right and reach DONE (both a
and b being OFF form a cut). After querying c, we reach
DONE regardless of c’s state. If c is ON, then we have a
path (b and c). If c is OFF, then we have a cut (a and c).
The expected number of queries under this optimal policy is
1 + 0.5 + 0.25 = 1.75 (we always query a; we query b with
50% chance; we query c with 25% chance).

Related Models, Key Differences and Rationales
Our model is highly related to the sequential testing prob-
lem originally from the operation research community. An
extensive survey can be found in (Ünlüyurt 2004). The se-
quential testing problem is best described via the following
medical use case. Imagine that a doctor needs to diagnose
a patient for a specific disease. There are 10 medical tests.
Instead of applying all 10 tests at once, a cost-saving ap-
proach is to test one by one adaptively – finished tests and
their results help pick the next test. Sequential testing has
been applied to iron deficiency anemia diagnosis (Short and
Domagalski 2013). (Yu et al. 2023) showed that 85% reduc-
tion of medical cost can be achieved via sequential testing.
In the context of our model, the “tests” are the edge queries.

Our model is also highly related to learning with attribute
costs in the context of machine learning (Sun, Chiu, and Cox
1996; Kaplan, Kushilevitz, and Mansour 2005; Golovin and
Krause 2011). Here, the task is to construct a “cheap” classi-
fication tree (i.e., shallow decision tree), under the assump-
tion that the features are costly to obtain. For example, at
the root node, we examine only one feature and pay its cost.
As we move down the classification tree, every node in the
next/lower layer needs to examine a new feature, which is
associated with an additional cost. The objective is to opti-
mize for the cheapest tree by minimizing the expected total
feature cost, weighted by the probabilities of different deci-
sion paths, subject to an accuracy threshold. In the context
of our model, the “features” are the edge query results.

The last highly relevant model is Stochastic Boolean
Function Evaluation (SBFE) (Allen et al. 2017; Desh-
pande, Hellerstein, and Kletenik 2014) from the theoret-
ical computer science community. A SBFE instance in-
volves a Boolean function f with multiple binary inputs and
one binary output. The input bits are initially hidden and
their values follow independent but not necessarily identical
Bernoulli distributions. Each input bit has a query cost. The
task is to query the input bits in an adaptive order, until there
is enough information to determine the output of f . The goal
is to minimize the expected query cost. In the context of our
model, the “input bits” are the edges.

All the above models are similar with minor differences
on technical details and they are all highly relevant to our
cyber-motivated graph-focused model. Here, we highlight
two key differences between our paper and past works.

1) We focus on empirically scalable exact algorithms.
There are two existing exact algorithms from SBFE lit-

erature, which are both prohibitively expensive. (Cox, Qiu,
and Kuehner 1989)’s exact algorithm treats the problem as
a MDP and uses the Bellman equation to calculate the value
function for all problem states. Under our model, with m
edges, the number of states is 3m (an edge is hidden, ON, or
OFF). (Allen et al. 2017) proposed an exact algorithm with
a complexity of O(n2k), where k is either the number of
paths or the number of cuts. Existing works on exact algo-
rithms only experimented on tiny instances with at most 20
edges (Fu et al. 2017; Ben-dov 1981; Reinwald and Soland
1966; Breitbart and Reiter 1975).

Past results mostly focused on heuristics and approxima-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20719



tion algorithms. (Ünlüyurt 2004)’s survey mentioned heuris-
tics from (Jedrzejowicz 1983; Cox, Qiu, and Kuehner 1989;
Sun, Chiu, and Cox 1996). Approximations algorithms were
proposed in (Allen et al. 2017; Deshpande, Hellerstein, and
Kletenik 2014; Kaplan, Kushilevitz, and Mansour 2005;
Golovin and Krause 2011).

We argue that for many applications involving this lineage
of models, algorithm speed is not an important evaluation
metric, which is why we focus on empirically scalable exact
algorithms. For example, for sequential medical tests, once
a policy tree for diagnosing a specific disease is generated
(however slow), the policy tree can be used for all future
patients. In our experiments, we allocate 72 hours to the ex-
act algorithm and we manage to exactly solve several fairly
large graph instances, including one depicting a Windows
domain network with 18795 edges. In comparison, going
over 318795 states is impossible if we apply the algorithm
from (Cox, Qiu, and Kuehner 1989).

Incidentally, while deriving the exact algorithm, we ob-
tain two valuable by-products: a lower bound algorithm and
a heuristic that outperforms all existing heuristics from liter-
ature (we ported 8 heuristics to our model). The exact algo-
rithm works by iteratively generating more and more expen-
sive policy that eventually converges to the optimal policy.
The lower bound algorithm is basically settling with the in-
termediate results. That is, if the exact algorithm does not
scale (i.e., too slow to converge), then we stop at any point
and whatever we have is a lower bound. Our best-performing
heuristic also builds on the exact algorithm, which is via lim-
iting the planning horizon of the exact algorithm.

2) We introduce a technical concept called query limit,
which enables many positive results.

The query limit has a strong implication on scalability.
Our exact algorithm builds on a few technical tricks for scal-
ability, including a systematic way to identify the relevant
edges that may be referenced by the optimal policy and a
systematic way to generate the optimal policy tree structure.
As mentioned earlier, without imposing a query limit, our al-
gorithm is already capable of optimally solving several fairly
large instances, including one with 18795 edges. Neverthe-
less, what really drives up scalability is the introduction of
the query limit. Without the query limit, our exact algorithm
is only scalable for special graphs. On the other hand, as
long as the query limit is small, our exact algorithm scales.
It should be noted that this paper is not on fixed-parameter
analysis – our algorithm is not fixed-parameter tractable
and the query limit is not the special parameter. The query
limit is a technical tool for improving empirical scalability.

The query limit is a useful technical tool even for settings
without query limit. Our lower bound algorithm is more scal-
able with smaller query limits. This is particularly nice be-
cause for settings without query limit, we could always arti-
ficially impose a query limit that is scalable and derive a per-
formance lower bound, as imposing a limit never increases
the query count. We are not aware of any prior work on lower
bound for this lineage of models.

Our best-performing heuristic is also based on imposing
an artificially small query limit on the exact algorithm (so

that it scales – and we simply follow this limited-horizon
exact algorithm). This way of constructing heuristic should
be applicable for settings without query limit.

The query limit is often not a restriction when it comes to
graph connectivity test. Our experiments demonstrate that
for a variety of large graphs, the expected query counts re-
quired to establish graph connectivity are tiny and the query
count distributions exhibit clear long-tail patterns. Essen-
tially, the query limit is not bounding most of the time.

Lastly, the query limit is practically well motivated. In the
context of our cyber-motivated model, the edge queries are
answered by human efforts. Imposing a query limit is prac-
tically helpful to facilitate this algorithm-human collabora-
tion. We prefer that the IT admin be able to specify the query
limit before launching the interactive session (i.e., “my time
allocation allows at most 10 queries”).

Summary of Results
• We propose a combinatorial optimisation model called

Limited Query Graph Connectivity Test, motivated by a
cyber security use case on defending Active Directory
managed Windows domain network.

• We show that query count minimization is #P-hard.
• We propose an empirically scalable exact algorithm. It

can optimally solve practical-scale large graphs when the
query limit is small. Even when we set the limit to infin-
ity, our algorithm is capable of optimally solving several
fairly large instances, including one with 18795 edges.
(Recall that past works on exact algorithms only experi-
mented on tiny instances with at most 20 edges/bits (Fu
et al. 2017; Ben-dov 1981; Reinwald and Soland 1966;
Breitbart and Reiter 1975).)

• Our exact algorithm iteratively generates more and more
expensive policy that eventually converges to the optimal
policy. When the exact algorithm is not scalable, its in-
termediate results serve as performance lower bounds.

• We propose three heuristics. Our best-performing heuris-
tic is via imposing an artificially small query limit on the
exact algorithm. The other two heuristics are based on re-
inforcement learning (RL) and Monte Carlo tree search
(MCTS), where the action space is reduced with the help
of query limit. We experiment on a wide range of practi-
cal graphs, including road and power networks, Python
package dependency graphs and Microsoft Active Di-
rectory graphs. We conduct a comprehensive survey on
existing heuristics and approximation algorithms on se-
quential testing, learning with attribute costs and stochas-
tic Boolean function evaluation. Our heuristic building
on the exact algorithm outperforms all, surpassing RL,
MCTS and 8 heuristics ported from literature.

• Our techniques have the potential to be applicable to
other models related to sequential testing, learning with
attribute costs and stochastic Boolean function evalua-
tion. The high-level idea of using query limit to derive
empirically scalable exact algorithm is general. Using the
query limit as the technical tool to derive high-quality
heuristic and performance lower bound is also general,
and it is applicable to settings without query limit.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20720



Scalable Exact Algorithm
We preface our exact algorithm with a hardness result.

Theorem 1. For the Limited Query Graph Connectivity Test
problem, it is #P-hard to compute the minimum expected
number of queries.

(Fu et al. 2017) already derived a #P-hardness proof for a
similar model. The assumption of exponential costs is core
to the authors’ hardness proof, which is restrictive and not
applicable for many practical applications. Our proof works
for unit cost, so our result is stronger.

Outer Loop: Identifying Paths/Cuts Worthy of
Consideration and Exactness Guarantee
We first propose a systematic way for figuring out which
paths/cuts are relevant to the optimal query policy. A path/-
cut is relevant if it is referenced by the query policy – the pol-
icy terminates after establishing the path/cut. In other words,
the policy tree’s leaf nodes correspond to the path/cut. Gen-
erally speaking, when the query limit is small, only a few
paths/cuts are relevant. As an extreme example, if the query
limit is 2, then at most there are 4 leaf nodes in the opti-
mal policy tree, which correspond to a total of 4 paths/cuts
ever referenced. The challenge is to identify, continuing on
the above example, which 4 are used among the exponential
number of paths/cuts. Restricting attention to relevant path-
s/cuts will greatly reduce the search space, as we only need
to focus on querying the edges that are part of them.
Key observation: Our terminating condition is to find a path,
or find a cut, or reach the query limit. Finding a path can be
reinterpreted as disproving all cuts. Similarly, finding a cut
can be reinterpreted as disproving all paths.

Suppose we have a path set P and a cut set C, we in-
troduce a cheaper (cheaper or equal, to be more accurate)
problem, which is to come up with an optimal query policy
that disproves all paths in P , or disproves all cuts in C, or
reach the query limit. We use π(P,C) to denote the optimal
policy for this cheaper task, and use c(P,C) to denote the
minimum number of queries in expectation under π(P,C).
We use π∗ to denote the optimal policy for the original prob-
lem, and use c∗ to denote the minimum number of queries
in expectation under π∗.

Proposition 1. Given P ⊂ P ′ and C ⊂ C ′, we must have
c(P,C) ≤ c(P ′, C ′), which also implies c(P,C) ≤ c∗.

Proof. The optimal policy π(P ′, C ′) can still be applied to
the instance with less paths/cuts to disprove. π(P ′, C ′) has
the potential to terminate even earlier when there are less to
disprove. Lastly, c∗ is just c(all paths, all cuts).

Suppose we have access to a subroutine that calculates
π(P,C) and c(P,C), which will be introduced soon in the
remaining of this section. Proposition 1 leads to the follow-
ing iterative exact algorithm. Our notation follow Figure 1.

1. We initialize an arbitrary path set P and an arbitrary cut
set C. In our experiments, we simply start with singleton
sets (one shortest path and one minimum cut).

2. Compute π(P,C) and c(P,C); c(P,C) becomes the best
lower bound on c∗ so far.

3. Go over all the leaf nodes of the policy tree behind
π(P,C) that terminate due to successfully disproving ei-
ther P or C. Suppose we are dealing with a node x that
has disproved all paths in P . At node x, we have the re-
sults of several queries (i.e., when going from the policy
tree’s root node to node x, any left turn corresponds to
an ON edge, and any right turn corresponds to an OFF
edge). We check whether the confirmed OFF edges at
node x form a cut. If so, then we have not just disproved
all paths in P , but also disproved all paths outside P
as well. If the confirmed OFF edges do not form a cut,
then that means we can find a path that has yet been dis-
proved. We add this path to P — our policy made a mis-
take (prematurely declared DONE) because we have not
considered this newly identified path.
We add new cuts to C using the same method.

4. If new paths/cuts were added, then go back to step 2 and
repeat. If no new paths/cuts were added, then that means
when π(P,C) terminates, it has found a path, or found
a cut, or reached the query limit. So π(P,C) is a feasi-
ble query policy for the original problem. Proposition 1
shows that c(P,C) never exceeds c∗, so π(P,C) must be
an optimal policy for the original problem.

Below we give an example illustrating that our proposed
approach is able to successfully pick out only a small num-
ber of relevant paths/cuts. We apply our exact algorithm on
a graph called EUROROAD (a road network with 1417 undi-
rected edges (Kunegis 2022)). For B = 10, when the exact
algorithm terminates, the final path set size is only 39 and
the final cut set size is only 18.

Inner Loop: Designing Policy Tree Structure
We now describe the subroutine that computes π(P,C) and
c(P,C) given the path set P and the cut set C as input.

This subroutine is further divided into two subroutines.
First, we need to come up with an optimal tree structure (i.e.,
the shape of the policy tree). After that, we need to decide
how to optimally place the queries into the tree structure.

We first focus on finding the optimal tree structure. Ev-
ery policy tree is binary, but it is generally not going to be
a complete tree of B layers (unless we hit the query limit
100% of the time). For example, for the optimal policy tree
in Figure 1b, the left branch has only one node, while the
right branch is deeper and more complex. The reason we
care about the tree structure is that a small tree involves less
decisions, therefore easier to design than a complete tree.

Given P and C, we define a policy tree to be correct if all
the DONE nodes are labelled correctly (i.e., it is indeed done
when the policy tree claims done). A correct policy tree does
not have to reach conclusion in every leaf node (we allow a
chain of queries to end up inconclusively). We also allow
DONE nodes to have children, but they must all be DONE.
We use the instance from Figure 1a as an example. Suppose
P is the set of all paths and C is the set of all cuts. Figure 2a
is a correct policy tree, because when it claims DONE, a is
ON, which correctly disproves every cut in C. As you can

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20721



see, we allow the right branch to contain a partial policy that
is inconclusive (after querying b, the remaining policy is not
specified). Figure 2b is an incorrect policy tree because the
DONE node on the right-hand side is a wrong claim. a being
OFF is not enough to disprove every path in P .

a

bDONE

DONEDONE

(a) A correct policy tree

a

DONEDONE

(b) An incorrect policy tree

Figure 2: We consider the instance in Figure 1a.
P = {(a), (b, c)} and C = {(a, b), (a, c)}

Any policy tree for the original problem must be a cor-
rect policy tree. The cost of a correct policy tree has the fol-
lowing natural definition. DONE nodes have no costs. Every
query node costs 1 and is weighted according to the proba-
bility of reaching the node. Given a tree structure S, we de-
fine T (S, P,C) to be the minimum cost correct policy tree,
as the result of optimally “filling in” queries and DONE into
the tree structure S, subject to the only constraint that the
resulting tree must be correct with respect to P and C. We
define c(S, P,C) to be the cost of T (S, P,C).
Proposition 2. For any tree structure S, path set P and cut
set C, we have c(S, P,C) ≤ c(P,C).

Proof. The policy tree T ∗ behind c(P,C) can be imposed
onto the tree structure S and results in a correct policy tree.
For example, Figure 2a is a correct policy tree as a result of
imposing Figure 1b to this new structure. Basically, any node
position in S that is not in T ∗ can be filled in with DONE
(since T ∗’s leave must be DONE or has already reached the
depth limit). Adding DONE does not incur any cost. Some
query nodes from T ∗ may be dropped if their positions are
not in S, which reduces cost. So T ∗ can be converted to a
correct policy tree with structure S that is not more expen-
sive.

Proposition 3. If S is a subtree of S′, then c(S, P,C) ≤
c(S′, P, C).

Proof. T (S′, P, C) can be imposed onto S. The resulting
tree is still correct and never more expensive.

We will discuss how to calculate T (S, P,C) and
c(S, P,C) (i.e., how to optimally fill in a given tree struc-
ture) toward the end of this section. Assuming access to
T (S, P,C) and c(S, P,C), Proposition 2 and 3 combined
lead to the following iterative algorithm for designing the
optimal tree structure:
1. We initialize an arbitrary tree structure S. In experiments,

we use a complete binary tree with 4 layers.
2. P and C are given by the algorithm’s outer loop. We cal-

culate c(S, P,C), which becomes the best lower bound
on c(P,C) so far.

3. Go over all the leaf nodes of T (S, P,C). If there is a leaf
node that is not conclusive (not DONE and not reaching
the query limit), then we expand this node by attaching
two child nodes to the tree structure. That is, in the next
iteration, we need to decide what queries to place into
these two new slots. The cost for the next iteration never
decreases according to Proposition 3.

4. If the tree was expanded, then go back to step 2
and repeat. If no new nodes were added, then that
means T (S, P,C) involves no partial decision. Its cost
c(S, P,C) must be at least c(P,C) as c(P,C) is sup-
posed to be the minimum cost for disproving either P or
C (or reach the query limit). This combined with Propo-
sition 2 imply that c(S, P,C) = c(P,C).

Earlier, we mentioned our algorithm’s running details on
a graph called EUROROAD with B = 10. For this instance,
under our exact algorithm, the final tree structure size is 91.
On the contrary, if we do not use the above “iterative tree
growth” idea and simply work on a complete tree, then the
number of slots is 210 − 1 = 1023. Our approach managed
to significantly reduce the search space.

In the above algorithm description, we separated the
“outer” and “inner” loops. This is purely for cleaner presen-
tation. In implementation, essentially what we do is to iter-
atively generate the best policy tree so far given the current
path set P , the current cut set C and the current tree struc-
ture S. If the resulting policy tree makes any wrong claims
(claiming DONE prematurely), then we expand the path/cut
set. If the tree goes into any inconclusive situation (reach-
ing the leave position and still cannot claim DONE), then
we expand the tree structure. During this iterative process,
we keep getting equal or higher cost based on Proposition 1
and 3. When the process converges, which is theoretically
guaranteed (not practically), we have the optimal query pol-
icy. The exact algorithm can be interrupted anytime and the
intermediate results serve as performance lower bounds.

Optimal Correct Tree via Integer Program
We now describe the last subroutine. Given a path set P , a
cut set C and a tree structure S, we aim to build the mini-
mum cost correct policy tree T (S, P,C).

Our technique is inspired by existing works on build-
ing optimal decision trees for machine learning classifica-
tion tasks using integer programming (Bertsimas and Dunn
2017; Verwer and Zhang 2019). The works on optimal deci-
sion trees studied how to select the features to test at the tree
nodes. The learning samples are routed down the tree based
on the selected features and the feature test results. The ob-
jective is to maximize the overall accuracy at the leaf nodes.
We are performing a very similar task. The objective is no
longer about learning accuracy but on minimizing tree cost
in the context of our model. Our model is as follows.

We first present the variables. Let ER be the set of edges
referenced in either P or C. For every tree node i ∈ S, for
every edge e ∈ ER, we define a binary variable ve,i. If ve,i
is 1, then it means we will perform query e at node i. We
introduce another variable vDONE,i, which is 1 if and only if
it is correct to claim DONE at node i.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20722



Next, we present constraints.
Every node is either a query node or DONE, which implies

∀i,
∑

e∈ER ve,i + vDONE,i = 1.
If a node is DONE, then all its descendants should be

DONE, which implies ∀i, vDONE,i ≥ vDONE,PARENT(i).
Along the route from root to any leaf, each edge should

be queried at most once. Let ROUTE(i) be the set of nodes
along the route from root to node i (inclusive). We have ∀i ∈
LEAVES, ∀e ∈ ER,

∑
j∈ROUTE(i) ve,j ≤ 1.

DONE claims must be correct. Let LNODES be the set
of tree nodes who are left children of their parents. If we
claim DONE at node i ∈ LNODES and PARENT(i) is not al-
ready DONE, then we must have disproved all cuts in C once
reaching i, since PARENT(i)’s query result is ON. To verify
that we have disproved all cuts in C, we only need to con-
sider the ON edges confirmed once reaching i. The queries
that resulted in ON edges are queried at the following nodes
N(i) = {PARENT(j)|j ∈ LNODES ∩ ROUTE(i)}. Given a
CUT (interpreted as a set of edges), to disprove it, all we need
is that at least one edge in the cut has been queried and has
returned an ON result, which is

∑
j∈N(i),e∈CUT ve,j ≥ 1.

We only need to verify that DONE is correctly claimed
when it is claimed for the first time, which would be for
nodes who satisfy that vDONE,i − vDONE,PARENT(i) = 1. In
combination, for node i ∈ LNODES, we have the follow-
ing constraint: ∀CUT ∈ C,

∑
j∈N(i),e∈CUT ve,j − (vDONE,i −

vDONE,PARENT(i)) ≥ 0. Note that vDONE,i− vDONE,PARENT(i) is 0
when we are not dealing with a node that claims DONE for
the first time, which would disable the above constraint as it
is automatically satisfied.

The above constraints only referenced cuts. We construct
constraints in a similar manner for disproving paths.

The objective is to minimize the tree cost. The cost of
node i is simply

∑
e∈ER ve,i. The probability of reaching a

node only depends on the input tree structure so it is a con-
stant. We use PROB(i) to denote the probability of reach-
ing node i. For example, if it takes 3 left turns (3 ON re-
sults) and 2 right turns (2 OFF results) to reach i, then
PROB(i) = p3(1− p)2.

Heuristics
There are a long list of existing heuristics and approxima-
tion algorithms from literature on sequential testing, learn-
ing with attribute costs and stochastic Boolean function
evaluation. (Ünlüyurt 2004)’s survey mentioned heuristics
from (Jedrzejowicz 1983; Cox, Qiu, and Kuehner 1989; Sun,
Chiu, and Cox 1996). Approximations algorithms were pro-
posed in (Allen et al. 2017; Deshpande, Hellerstein, and
Kletenik 2014; Kaplan, Kushilevitz, and Mansour 2005;
Golovin and Krause 2011). We select and port 8 heuristic-
s/approximation algorithms from literature for comparison.
Below, we present one heuristic, referred to as H1. H1 is
impressively elegant and experimentally it is the dominantly
better existing heuristic. The definition is worded in the con-
text of our graph model.
Definition 2 (H1 (Jedrzejowicz 1983), also independently
discovered in (Cox, Qiu, and Kuehner 1989)). We find the
path with the minimum number of hidden edges from s to t.

The path is not allowed to contain OFF edges. We also find
the cut with the minimum number of hidden edges between
s to t. The cut is not allowed to contain ON edges. The path
and the cut must intersect and the intersection must be a hid-
den edge. We query this edge.

Below we present three new heuristics for our model.
Heuristic based on the exact algorithm: We pretend that
there are only B′ queries left (B′ < B) and apply the exact
algorithm. B′ needs to be small enough so that the exact
algorithm is scalable. Once we have the optimal policy tree,
we query the edge specified in the tree root, and then re-
generate the optimal policy tree for the updated graph, still
pretending that there are only B′ queries left. We refer to
this heuristic as TREE.
Reinforcement learning: (Yu et al. 2023) applied rein-
forcement learning to sequential medical tests involving 6
tests. We cannot directly apply reinforcement learning to our
model, as we have a lot more than 6 queries to arrange. For
our case, the action space is huge, as large graphs contain
tens of thousands of edges. The key of our algorithm is a
heuristic for limiting the action space. We use H1 to heuris-
tically generate a small set of top priority edges to select
from. Specifically, we generate H1’s policy tree assuming
a query limit of B′. All edges referenced form the action
space. The action space size is at most 2B

′ − 1.
It is also not scalable to take the whole graph as observa-

tion. Fortunately, the query limit comes to assist. Our obser-
vation contains B − 1 segments as there are at most B − 1

past queries. Each segment contains 3 + (2B
′ − 1) bits. 3

bits are one hot encoding of query result (not queried yet,
ON, OFF). 2B

′ − 1 bits encode the action.
Since the action space always contains H1’s default ac-

tion, in experiments, when we apply Proximal Policy Op-
timization (PPO) (Schulman et al. 2017), the agent ended
up cloning H1 and we cannot derive better/new heuris-
tics. We instead apply Soft Actor-Critic for Discrete Ac-
tion (Christodoulou 2019), as it involves entropy maximi-
sation, which encourages the agent to deviate from H1. We
managed to obtain better policy than H1 on many occasions.
Monte Carlo tree search: We use the same heuristic to limit
the action space (same as RL). We apply standard epsilon-
greedy Monte Carlo tree search.

Experiments
We experiment on a wide range of practical graphs, in-
cluding road and power networks (Davis and Hu 2011;
Kunegis 2022; Rossi and Ahmed 2015; Watts and Strogatz
1998; Dembart and Lewis 1981), Python package depen-
dency graphs (pydeps 2022), Microsoft Active Directory
attack graphs (DBCreator 2022; Carolo 2022; Guo et al.
2022; Goel et al. 2022; Guo et al. 2023; Goel et al. 2023)
and more (Allard et al. 2019). For all experiments, we set
p = 0.5. Sources and destinations are selected randomly. For
Microsoft Active Directory attack graphs, the destination is
set to be the admin node representing the highest privilege.

Our results are summarized in Table 1. When B = 5,
our exact algorithm scales for all 25 graphs. The column
OTHER shows the best performance among 8 heuristics from

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20723



Size B = 5 B = 10

n m Exact Other Exact/LB Tree RL MCTS Other

Road networks - Undirected
USAIR97 333 2126 3.813 3.813 4.555 4.986 5.029 4.992 4.994
EUROROAD 1175 1417 1.938 1.938 2.109 2.109 2.109 2.109 2.109
MINNESOTA 2643 3303 3.938 3.938 4.785 5.506 5.525 5.506 5.477

Power networks - Undirected
POWER 4942 6594 3.625 3.625 4.367 4.615 4.617 4.615 4.615
BCSPWR01 40 85 3.125 3.125 3.541 3.541 3.547 3.541 3.541
BCSPWR02 50 108 2.625 2.625 3.178 3.178 3.207 3.229 3.178
BCSPWR03 119 297 3.938 3.938 4.883 5.816 5.895 5.887 5.912
BCSPWR04 275 943 3.938 3.938 5.188 6.074 6.096 6.086 6.080
BCSPWR05 444 1033 2.938 2.938 3.555 4.551 4.543 4.561 4.539
BCSPWR06 1455 3377 2.625 2.625 3.164 3.197 3.211 3.246 3.201
BCSPWR07 1613 3718 2.625 2.689 3.346 3.461 3.500 3.564 3.625
BCSPWR08 1625 3837 4.188 4.188 4.945 5.996 6.174 6.266 6.414
BCSPWR09 1724 4117 3.938 3.938 4.664 5.891 5.895 5.924 5.891
BCSPWR10 5301 13571 4.625 4.625 5.270 7.428 7.393 7.350 7.553
Miscellaneous small graphs - Directed except for Chesapeake
BUGFIX 13 28 2.438 2.438 2.715 2.715 2.715 2.715 2.715
FOOTBALL 36 118 1.750 1.750 1.750 1.750 1.750 1.750 1.750
CHESAPEAKE 40 170 3.813 3.813 4.594 5.090 5.152 5.199 5.113
CATTLE 29 217 2.875 2.875 3.721 4.131 4.166 4.158 4.188
Python dependency graphs - Directed
NETWORKX 423 908 2.000 2.000 2.078 2.078 2.078 2.078 2.078
NUMPY 429 1208 2.688 2.688 3.418 3.688 3.717 3.709 3.719
MATPLOTLIB 282 1484 2.188 2.188 2.520 2.520 2.520 2.539 2.537
Active Directory graphs - Directed
R2000 5997 18795 1.938 1.938 1.938 1.938 1.938 1.938 1.938
R4000 12001 45781 2.688 2.688 3.268 3.344 3.352 3.344 3.344
ADS5 1523 5359 2.688 2.688 3.287 3.391 3.402 3.391 3.391
ADS10 3015 12776 3.375 3.375 3.957 4.123 4.123 4.123 4.123

Table 1: Expected query count under different algorithms: EXACT=Exact algorithm; EXACT/LB=Either exact (bold) or lower
bound; OTHER=Best out of 8 heuristics from literature (those underlined are not achieved by H1); TREE=Heuristic based on
the exact algorithm; RL and MCTS are self-explanatory

literature. Besides H1 from Definition 2, the other 7 heuris-
tics are from (Kaplan, Kushilevitz, and Mansour 2005; Allen
et al. 2017; Deshpande, Hellerstein, and Kletenik 2014;
Golovin and Krause 2011; Fu et al. 2017). For B = 5,
H1 performs the best among all existing heuristics for ev-
ery single graph. Actually, H1 produces the optimal results
(confirmed by our exact algorithm) in all but one graph (BC-
SPWR07).

When B = 10, our exact algorithm produces the optimal
policy for 8 out of 25 graphs (indicated by bold numbers
in column EXACT/LB). For the remaining graphs, the exact
algorithm only produces a lower bound (we set a time out
of 72 hours). The achieved lower bounds have high quality
(i.e., close to the achievable results).

When B = 10, we compare our best-performing heuris-
tic TREE against the best existing heuristic (best among 8).
TREE wins for 11 graphs, loses for 2 graphs, and ties for 12
graphs. It should be noted that in the above, we are compar-
ing TREE against the best existing heuristic (best among 8).
If we are comparing against any individual heuristic, then

our “winning rate” would be even higher.
RL and MCTS perform worse than TREE. Nevertheless,

if we take the better between RL and MCTS, the results out-
perform the existing heuristics (best among 8). We suspect
that the “long-tail” pattern of the query costs causes diffi-
culty for both RL and MCTS. The real advantage of RL
and MCTS is that they are model-free. For example, model
generalisation involving interdependent edges can easily be
handled by RL and MCTS.

Lastly, our exact algorithm can find the optimal solution
for BUGFIX, R2000, FOOTBALL and NETWORKX even with-
out query limit. Among them, R2000 is the largest with
18795 edges.

To summarize, our exact algorithm can handle signifi-
cantly larger graphs compared to experiments from exist-
ing literature using at most 20 edges (Ben-dov 1981; Rein-
wald and Soland 1966; Breitbart and Reiter 1975). Even
when our exact algorithm does not terminate, it produces a
high-quality lower bound. Our heuristics, especially TREE,
outperforms all existing heuristics from literature.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20724



Acknowledgments
Frank Neumann has been supported by the Australian Re-
search Council (ARC) through grant FT200100536.

References
Allard, T.; Alvino, P.; Shing, L.; Wollaber, A.; and Yuen, J.
2019. A dataset to facilitate automated workflow analysis.
PloS one, 14(2): e0211486.
Allen, S. R.; Hellerstein, L.; Kletenik, D.; and Ünlüyurt, T.
2017. Evaluation of Monotone DNF Formulas. Algorith-
mica, 77(3): 661–685.
Ben-dov, Y. 1981. A branch and bound algorithm for mini-
mizing the expected cost of testing coherent systems. Euro-
pean Journal of Operational Research, 7(3): 284–289.
Bertsimas, D.; and Dunn, J. 2017. Optimal classification
trees. Machine Learning, 106(7): 1039–1082.
Breitbart, Y.; and Reiter, A. 1975. A Branch-and-Bound Al-
gorithm to Obtain an Optimal Evaluation Tree for Mono-
tonic Boolean Functions. Acta Inf., 4(4): 311–319.
Carolo, N. 2022. https://github.com/nicolas-
carolo/adsimulator.
Christodoulou, P. 2019. Soft actor-critic for discrete action
settings. arXiv preprint arXiv:1910.07207.
Cox, L. A.; Qiu, Y.; and Kuehner, W. 1989. Heuristic least-
cost computation of discrete classification functions with un-
certain argument values. Annals of Operations research,
21(1): 1–29.
Davis, T. A.; and Hu, Y. 2011. The University of Florida
Sparse Matrix Collection. ACM Trans. Math. Softw., 38(1).
DBCreator. 2022. https://github.com/BloodHoundAD
/BloodHound-Tools/tree/master/DBCreator.
Dembart, B.; and Lewis, J. 1981. BCSPWR: Power network
patterns. https://math.nist.gov/MatrixMarket/data/Harwell-
Boeing/bcspwr/bcspwr.html.
Deshpande, A.; Hellerstein, L.; and Kletenik, D. 2014. Ap-
proximation algorithms for stochastic boolean function eval-
uation and stochastic submodular set cover. In Proceedings
of the twenty-fifth annual ACM-SIAM Symposium on Dis-
crete Algorithms, 1453–1466. SIAM.
Fu, L.; Fu, X.; Xu, Z.; Peng, Q.; Wang, X.; and Lu, S. 2017.
Determining source–destination connectivity in uncertain
networks: Modeling and solutions. IEEE/ACM Transactions
on Networking, 25(6): 3237–3252.
Goel, D.; Neumann, A.; Neumann, F.; Nguyen, H.; and Guo,
M. 2023. Evolving Reinforcement Learning Environment
to Minimize Learner’s Achievable Reward: An Application
on Hardening Active Directory Systems. In Proceedings
of the Genetic and Evolutionary Computation Conference,
GECCO 2023, Lisbon, Portugal, July 15-19, 2023, 1348–
1356. ACM.
Goel, D.; Ward-Graham, M. H.; Neumann, A.; Neumann,
F.; Nguyen, H.; and Guo, M. 2022. Defending active direc-
tory by combining neural network based dynamic program
and evolutionary diversity optimisation. In GECCO ’22:
Genetic and Evolutionary Computation Conference, Boston,
Massachusetts, USA, July 9 - 13, 2022, 1191–1199. ACM.

Golovin, D.; and Krause, A. 2011. Adaptive submodularity:
Theory and applications in active learning and stochastic op-
timization. Journal of Artificial Intelligence Research, 42:
427–486.
Guo, M.; Li, J.; Neumann, A.; Neumann, F.; and Nguyen, H.
2022. Practical Fixed-Parameter Algorithms for Defending
Active Directory Style Attack Graphs. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, 9360–
9367. AAAI Press.
Guo, M.; Ward, M.; Neumann, A.; Neumann, F.; and
Nguyen, H. 2023. Scalable Edge Blocking Algorithms
for Defending Active Directory Style Attack Graphs. In
The 37th AAAI Conference on Artificial Intelligence (AAAI),
Washington DC, USA.
Jedrzejowicz, P. 1983. Minimizing the Average Cost of Test-
ing Coherent Systems: Complexity and Approximate Algo-
rithms. IEEE Transactions on Reliability, R-32(1): 66–70.
Kaplan, H.; Kushilevitz, E.; and Mansour, Y. 2005. Learn-
ing with attribute costs. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, 356–365.
Kunegis, J. 2022. http://konect.cc/networks.
pydeps. 2022. https://github.com/thebjorn/pydeps.
Reinwald, L. T.; and Soland, R. M. 1966. Conversion of
Limited-Entry Decision Tables to Optimal Computer Pro-
grams I: Minimum Average Processing Time. J. ACM,
13(3): 339–358.
Rossi, R. A.; and Ahmed, N. K. 2015. The Network Data
Repository with Interactive Graph Analytics and Visualiza-
tion. In AAAI.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
Short, M. W.; and Domagalski, J. E. 2013. Iron defi-
ciency anemia: evaluation and management. American fam-
ily physician, 87(2): 98–104.
Sun, X.; Chiu, S. Y.; and Cox, L. A. 1996. A hill-climbing
approach for optimizing classification trees. In Learning
from Data, 109–117. Springer.
Ünlüyurt, T. 2004. Sequential testing of complex systems: a
review. Discrete Applied Mathematics, 142(1-3): 189–205.
Verwer, S.; and Zhang, Y. 2019. Learning optimal classifica-
tion trees using a binary linear program formulation. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 33, 1625–1632.
Watts, D. J.; and Strogatz, S. H. 1998. Collective dynamics
of small-world networks. nature, 393(6684): 440–442.
Yu, Z.; Li, Y.; Kim, J.; Huang, K.; Luo, Y.; and Wang,
M. 2023. Deep Reinforcement Learning for Cost-Effective
Medical Diagnosis. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20725


