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Abstract

Center-based clustering has attracted significant research in-
terest from both theory and practice. In many practical ap-
plications, input data often contain background knowledge
that can be used to improve clustering results. In this work,
we build on widely adopted k-center clustering and model its
input background knowledge as must-link (ML) and cannot-
link (CL) constraint sets. However, most clustering problems
including k-center are inherently NP-hard, while the more
complex constrained variants are known to suffer severer ap-
proximation and computation barriers that significantly limit
their applicability. By employing a suite of techniques includ-
ing reverse dominating sets, linear programming (LP) integral
polyhedron, and LP duality, we arrive at the first efficient ap-
proximation algorithm for constrained k-center with the best
possible ratio of 2. We also construct competitive baseline
algorithms and empirically evaluate our approximation algo-
rithm against them on a variety of real datasets. The results
validate our theoretical findings and demonstrate the great ad-
vantages of our algorithm in terms of clustering cost, cluster-
ing quality, and running time.

Introduction
Center-based clustering is a fundamental unsupervised task
in machine learning that aims to group similar data points
into subsets or clusters based on different distance met-
rics. Classical clustering problems such as k-means (Lloyd
1982), k-center (Gonzalez 1985; Hochbaum and Shmoys
1985), and k-median (Charikar et al. 1999) are all NP-
hard. Among those, the k-center formulation stands out in
the perspectives of robustness to outliers, guaranteed low
approximation ratio, and computational efficiency and scal-
ability. In addition, unlike k-means, k-center produces de-
terministic clustering results and seeks distance-balanced
clusters. Its objective is to minimize the maximum dis-
tance between any data point and its closest cluster cen-
ter, or equivalently, minimize the maximum covering ra-
dius of the clusters. Extended from this basic k-center
objective, there has been significant research interest in
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devising k-center based applications and their associated
optimization models, including but not limited to capac-
itated k-center (Khuller and Sussmann 2000), k-center
with outliers (Charikar et al. 2001), minimum coverage k-
center (Lim et al. 2005), connected k-center (Ester et al.
2006), fault-tolerant k-center (Khuller, Pless, and Sussmann
2000), and recently fair k-center (Chierichetti et al. 2017;
Kleindessner, Awasthi, and Morgenstern 2019; Bera et al.
2022) and distributed k-center (Huang et al. 2023).

In various machine learning applications (Zhang et al.
2013; Liu, Li, and Li 2017), there is often an abundance of
unlabeled data and limited labeled data due to the cost of
labeling. Even worse, the ground truth information can be
completely missing or hidden (Basu, Banerjee, and Mooney
2004), while we may obtain some background knowledge
among the data points to be clustered, that is, whether pairs
of data points should belong to the same cluster or not. Un-
surprisingly, utilizing such background knowledge achieves
improved results on center-based clustering (Basu, David-
son, and Wagstaff 2008). However, this requires more com-
plex clustering models with instance-level must-link (ML)
and cannot-link (CL) constraints to encode the auxiliary in-
put background knowledge. Clustering with instance-level
constraints was first introduced in (Wagstaff and Cardie
2000), where pairwise ML and CL constraints between data
instances were considered. Instances of data points with an
ML constraint must belong to the same cluster, while with a
CL constraint must be placed into different clusters.

Problem Formulation
Formally, given an input dataset P = {p1, . . . , pn} in the
metric space, k-center aims to locate a cluster center set
C ⊆ P such that the maximum distance between points
in P and their assigned cluster centers in C is minimized.
Furthermore, if we denote the distance function between
any two data points as d(·, ·), then the distance between
a point p ∈ P and a center set C can be defined as
d(p, C) = minc∈C d(p, c). Hence, the objective of k-center
is to seek an optimal C∗ with min-max radius or solution
cost of r∗ = maxp∈P d(p, C∗), i.e., to seek

C∗ = argmin
C⊆P

max
p∈P

d(p, C).
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Built on the k-center’s min-max optimization objective,
our considered constrained k-center adds predefined ML and
CL constraints over a subset of input data points as the back-
ground knowledge. Without loss of generality, we adopt an
equivalent set formulation of ML and CL constraints, in-
stead of the usual setting of pairwise instance-level con-
straints (Wagstaff et al. 2001). Specifically, we treat the ML
constraints as a family of point sets X = {X1, . . . , Xh}
where every Xi ⊆ P is a maximal ML set of points bounded
together by mutual ML sets. Similarly, the CL constraints
are treated as Y = {Y1, . . . , Yl} with every Yi ⊆ P and
|Yi| ≤ k comprised of mutual CL sets. Now let σ(p) denote
the cluster center of a point p is assigned to in the cluster-
ing result, then the ML and CL constraints are essentially
the clustering conditions to be met on σ(·) such that each
X ∈ X satisfies ∀(p, q) ∈ X iff σ(p) = σ(q) and each
Y ∈ Y satisfies ∀(p, q) ∈ Y iff σ(p) ̸= σ(q). In addition,
ML sets in X are mutually disjoint by construction since
otherwise any two intersected ML sets can be merged into a
single ML set due to the transitivity of ML sets.

Whereas the more interesting CL sets in Y can have arbi-
trary intersection or disjointness, for a reduced mutually dis-
joint setting Y , we have Yi ∩ Yj = ∅ for ∀Yi, Yj ∈ Y . Note
that intersected CL constraints can be reduced to disjoint via
a process of (i) equivalent data points reduction/merging; or
(ii) intersected data points removal. For instance, w.r.t. (i),
if there are two singular CL sets {u, v} and {v, w} and a
singular ML set {u,w}, then the CL sets can be reduced
into a new CL set {v, z} with z being a merged point of
u and w. For (ii), given intersected example sets {u, v, w}
and {w, x, y}, they can be reduced to {u, v, w} and {x, y}
or {u, v} and {w, x, y} via a pre-processing step. Appar-
ently, such a removal process would ignore a portion of
background knowledge. Nevertheless, as shown in the se-
quel of the paper, designing and analyzing our algorithm in a
guided disjoint setting dramatically alleviates the problem’s
computational complexity, while imposing minimal impact
on solving the arbitrary intersected case.

Challenge and Motivation
The biggest challenge faced when adopting constrained
clustering with background knowledge is the computational
complexity of the problem. As noted, most clustering prob-
lems are inherently NP-hard, despite that there usually
exist either efficient heuristic algorithms with no perfor-
mance guarantee or approximation algorithms with non-
practical performance ratio and high runtime complexity.
Moreover, clustering models with instance-level ML and CL
constraints (Wagstaff et al. 2001) leads to the following se-
vere approximation and computation barriers (introduced by
the CL constraints) that significantly limit their use.

Theorem 1. (Davidson and Ravi 2007) It is NP-complete
even only to determine whether an instance of the CL-
constrained clustering problem is feasible.

Overcoming theoretical barriers. Arbitrarily intersected
CL constraints were known to be problematic to clustering
as their inclusion leads to a computationally intractable fea-
sibility problem as stated in the above theorem. That means,

under the assumption of P ̸= NP , it is impossible to de-
vise an efficient polynomial time algorithm to even deter-
mine, for an instance of the CL-constrained clustering prob-
lem (e.g., CL-constrained k-center or k-means), whether
there exists a clustering solution satisfying all arbitrary CL
constraints irrespective of the optimization objective. This
inapproximability result can be obtained via a reduction
from the k-coloring problem and, we believe, has hindered
the development of efficient approximation algorithms for
constrained clustering despite their many useful applica-
tions (Basu, Davidson, and Wagstaff 2008). For instance, for
the closely related constrained k-means problem with both
ML and CL constraints, only heuristic algorithms (Wagstaff
et al. 2001; Davidson and Ravit 2005) without performance
guarantee are known. Therefore, a strong motivation for us
is to algorithmically overcome the long-standing theoretical
barriers on constrained k-center that have been prohibiting
its wide adoption (like k-center) in practice. We also hope
that our proposed techniques can inspire novel solutions to
other more intricate problems like constrained k-means.

Enhancing practical applications.The reward of our
theoretical breakthrough will be the enhanced capability for
utilizing additional information or domain knowledge (i.e.,
in the form of ML and CL constraints) in a range of practical
applications (Basu, Davidson, and Wagstaff 2008) such as
GPS lane finding, text mining, interactive visual clustering,
distance metric learning, privacy-preserving data publishing,
and video object classification. Among these applications,
clustering results can be further used to infer data classifi-
cation, where both ML and CL constraints were shown to
improve classification performance.

Results and Contribution
In this paper, we gradually develop an efficient solution
to constrained k-center clustering with guaranteed perfor-
mance both in theory and practice. Inspired by the heuristic
algorithm (Wagstaff et al. 2001) for constrained k-means,
we started by adapting it to construct optimized heuris-
tic algorithms for constrained k-center, namely Greedy and
Matching, both aiming at reducing cluster connection costs.
We use these algorithms as competitive baselines in our ex-
periments. Then we focus on choosing the optimal cluster
centers, which leads to our main contribution of an efficient
approximation algorithm for solving ML/CL-constrained k-
center problem.

Specifically, assuming the optimal radius is known, our
algorithm leverages the structure of disjoint CL sets and
then the construction of a Reverse Dominating Set (RDS)
to result in a constant factor approximation ratio of 2 that
is the best possible. For an efficient computation of RDS,
we first propose a Linear Programming (LP)-based formula-
tion and show the equivalence between the LP solution and
RDS via the integral polyhedron. Instead of directly solv-
ing the LP for RDS using slower industry solvers, we de-
vise a fast primal-dual algorithm that exploits LP duality to
achieve time O(k2.5). Finally, dropping the assumption of
knowing the optimal radius, the algorithm can be recovered
from combining with binary searched radius-thresholding,
which eventually consumes a total time of O(nk3.5 log n).
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Extensive experiments are carried out on a variety of
real-world datasets to demonstrate the clustering effective-
ness and efficiency of our proposed approximation algo-
rithm with theoretical guarantees.

Other Related Work
Constrained clustering. Instance-level or pairwise ML
and CL constraints have been widely adopted in clustering
problems such as k-means clustering (Wagstaff et al. 2001;
Jia et al. 2023), spectral clustering (Coleman, Saunderson,
and Wirth 2008), and hierarchical clustering (Davidson and
Ravi 2009). Basu et al. (Basu, Davidson, and Wagstaff
2008) have collated an extensive list of constrained cluster-
ing problems and applications. As confirmed by (Xing et al.
2002; Wagstaff et al. 2001), instance-level constraints are
beneficial for improving the clustering quality.

Constrained k-center. Several studies have included k-
center clustering with instance-level constraints in rather
limited settings. Davidson et al. (Davidson, Ravi, and
Shamis 2010) were the pioneers to consider constrained
k-center when k is 2. They incorporated an SAT-based
framework to obtain an approximation scheme with
(1 + ϵ)-approximation for this extreme case. Brubach et
al. (Brubach et al. 2021) studied k-center only with ML con-
straints and achieved an approximation ratio 2. In contrast,
we (including our constructed baseline methods) neither
consider a limited special case (i.e., with a very small cluster
number k) nor only the much simpler ML constraints.

Algorithm for CL-Constrained k-Center
Algorithm overview. In this section, we propose a
threshold-based algorithm for CL k-center and show it de-
serves an approximation ratio of 2. The key idea of our al-
gorithm is to incrementally expand a set of centers while
arguably ensuring that each center is in a distinct cluster of
the optimal solution. In the following, we first introduce a
structure called reverse dominating set (RDS) and propose
an algorithm using the structure to grow the desired center
set; then we propose a linear programming (LP) relaxation
and use it to find a maximum RDS. Moreover, we accelerate
the algorithm by devising a faster LP primal-dual algorithm
for finding the maximum RDS.

For briefness, we first assume that the optimal radius (r∗)
for the constrained k-center problem is already known and
utilize it as the threshold. Aligns with previous studies on
threshold-based algorithms (Badanidiyuru et al. 2014), we
discuss the problem with both ML and CL constraints with-
out knowing r∗ in the next section.

Reverse Dominating Set and the Algorithm
To facilitate our description, we introduce the following aux-
iliary bipartite graph, denoted as G(Y,C;E), which allows
us to represent the relationships between a CL set Y and C.
Definition 2. The auxiliary bipartite graph G(Y,C;E) re-
garding the threshold η is a graph with vertex sets Y and
C, where the edge set E is as follows: an edge e(y, z) is in-
cluded in E iff the metric distance d(y, z) between y ∈ Y
and z ∈ C is bounded by η, i.e., d(y, z) ≤ η.

Algorithm 1: Approximating CL k-center via RDS.
Input: A family of l disjoint CL sets Y , a positive integer

k, and a distance bound η = 2r∗.
Output: A set of centers C.

1 Initialization: Set C ← ∅, C′ ← ∅ and Y ′ ← ∅;
2 while true do
3 for each Y ∈ Y do
4 Select a CL set Y ∈ Y and construct an auxiliary

graph G(Y,C;E) regarding η according to
Def. 2;

5 if G(Y,C;E) contains an RDS (Y ′, C′) then
6 Update the center set using a maximum RDS:

C ← C ∪ Y ′ \ C′;
7 end
8 end
9 if G(Y,C;E), ∀Y ∈ Y , contains no RDS then

10 Return C.
11 end
12 end

Based on the above auxiliary graph, we define reverse
dominating set (RDS) as below:
Definition 3. For a center set C, a CL set Y , and the auxil-
iary bipartite graph G(Y,C;E) regarding η = 2r∗, we say
(Y ′, C ′), Y ′ ⊆ Y and C ′ = N(Y ′) ⊆ C, is a reverse dom-
inating set (RDS) iff |C ′| < |Y ′|, where N(Y ′) denotes the
set of neighboring points of Y ′ in G.

In particular, for a point y ∈ Y that is with distance
d (y, z) > 2r∗ to any center z ∈ C in the auxiliary graph
G(Y,C;E), ({y}, ∅) is an RDS.

Note that RDS is a special case of Hall violator that it
considers only the case |C ′| < |Y ′|. Anyhow, it obviously
inherits the NP-hardness of computing a minimum Hall vi-
olator (Cygan et al. 2015):
Lemma 4. It is NP-hard to compute an RDS with minimum
cardinality.

In comparison with the above-mentioned NP-hardness,
we discover that a maximum RDS (i.e. an RDS with max-
imized |Y ′| − |C ′|) can be computed in polynomial time.
Consequently, our algorithm proceeds in iterations, where
in each iteration it computes a maximum RDS regarding the
current center set C and a CL set Y ∈ Y (if there exists any),
and uses the computed RDS to increase C towards a desired
solution. The formal layout of our algorithm is as in Alg. 1.
The correctness of Alg. 1 is as below:
Theorem 5. Alg. 1 always outputs a center set C that satis-
fies the following two conditions: (1) all the CL constraints
are satisfied; (2) the size of C is bounded by k.

For proving Condition (1), we have the following property
which is actually a restatement of Hall’s marriage theorem:
Lemma 6. (Hall 1935) There exists a perfect matching in
G(Y,C;E), iff there exists no RDS in G(Y,C;E).

Recall that Alg. 1 terminates once it is unable to find any
RDS between the current C and any Y ∈ Y . Then by the
above lemma, this implies the existence of a perfect match-
ing in each G(Y,C;E) regarding the current C and each
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Y ∈ Y . Consequently, this ensures the satisfaction of each
CL set in Y . Lastly, for Condition (2), we have the following
lemma, which immediately indicates |C| ≤ k:

Lemma 7. Assume that V∗ = {V1, . . . , Vk} is the set of
clusters in an optimum solution. Let C be the output of
Alg. 1. Then the centers of C appear in pairwise different
clusters of V∗.

Efficient Computations of RDS
It remains to give a method to compute a maximum RDS.
For the task, we propose a linear program (LP) relaxation
and then show that any basic solution of the LP is integral.
Let C be the set of current centers in an iteration and Y be
a CL set. Then we can relax the task of finding a maximum
RDS (Y ′, C ′) (i.e. an RDS with maximized |Y ′| − |C ′|) as
in the following linear program (LP (1)):

max
∑
y∈Y

y −
∑
z∈C

z

s.t. y − z ≤ 0 ∀e(y, z) ∈ E

0 ≤ y, z ≤ 1 ∀y ∈ Y, z ∈ C

Note that when we force y, z ∈ {0, 1}, the above LP (1)
is an integer linear program that exactly models the task of
finding a maximum RDS. Moreover, we observe that any
basic solution of LP (1) is integral, as stated below:

Lemma 8. In any feasible basic solution of LP (1), the val-
ues of every y and z must be integers.

From the above lemma, we can obtain a maximum
RDS by computing an optimal basic (fractional) solution
to LP (1). It is worth noting that LPs can be efficiently
solved in polynomial time using widely-used LP solvers like
CPLEX (IBM 2022). Consequently, we can immediately
achieve a polynomial time 2 approximation for CL k-center.

Next, we devise an LP primal-dual algorithm that acceler-
ates the computation of RDS and consequently improves the
theoretical runtime of Alg. 1 mainly incurred by solving the
LP formulation. The dual of LP (1) can be easily obtained
as in the following (LP (2)):

min
∑
y∈Y

αy+
∑
z∈C

βz

s.t. αy +
∑

e∈δ(y)

γe ≥ 1 ∀y ∈ Y

βz −
∑

e∈δ(z)

γe ≥ −1 ∀z ∈ C

αy, βz ≥ 0 ∀y ∈ Y, ∀z ∈ C

γe ≥ 0 ∀e ∈ E

Our algorithm first constructs a special feasible solution to
the dual LP (2) based on a maximal matching in G(Y,C;E),
and then uses the dual solution to construct an RDS. To
utilize the maximal matching, we need the relationship be-
tween the primal LP and its dual as in the following:

Algorithm 2: A fast algorithm for maximum RDS.
Input: C and Y .
Output: An RDS (Y ′, C′).

1 Construct the auxiliary graph G(Y,C;E) according to
Def. 2 and set C′ = ∅;

2 Find a maximal matching in G, say M , and set γe = 1 for
each e ∈M ;

3 Set Y ′ = Y \M , set αy = 1 for each y ∈ Y ′, and set
αy = 0 and βz = 0 for every y ∈ Y \ Y ′ and z ∈ C;
// Construction of an initial solution

to the dual LP (2).
4 while C′ does not equal NG(Y

′) do
/* NG(Y

′) denotes the set of
neighbors of Y ′ in G. */

5 Set C′ ← C′ ∪NG(Y
′) and then

Y ′ ← Y ′ ∪NM (C′), where NM (C′) is the set of
neighbours of C′ in M ;

6 end
7 if |Y ′| > |C′| then

// Otherwise no RDS exists.
8 Set αy = 1 for ∀y ∈ Y ′, βz = −1 for ∀z ∈ C′, and

γe = 0 for edge e adjacent to each z ∈ C′;
// Update the initial solution to

LP (2).
9 Return (Y ′, C′) as the maximum RDS.

10 end

Lemma 9. When there exists no RDS, we have

max

∑
y∈Y

y −
∑
z∈C

z

 = min

∑
y∈Y

αy +
∑
z∈C

βz

 = 0.

Moreover, when there exists no RDS, αy = βz = 0 holds.
Hence, the polyhedron of LP (2) becomesγ ∈ [0, 1]E(G) :

∑
e∈δ(y)

γe ≥ 1, y ∈ Y ;
∑

e∈δ(z)

γe ≤ 1, z ∈ C


Notably, this is exactly the LP polyhedron for the maxi-

mal matching problem. So any feasible integral solution to
the above polyhedron means a perfect matching. In other
words, when G(Y,C;E) contains no RDS, there must exist
a perfect matching between Y and C in G(Y,C;E), con-
forming to Lem. 6.

To construct an RDS in cases where a perfect matching
does not exist in G(Y,C;E), we employ a two-step ap-
proach: (1) utilize maximal matching to construct a feasi-
ble dual solution; (2) employ the dual solution to obtain the
RDS, and meanwhile constructing a corresponding dual so-
lution.

For the first, we demonstrate that an initial feasible so-
lution of LP (2) can be easily constructed from a maximal
matching M of G(C, Y ;E) as in the following: (1) For each
e ∈ M , set γe = 1; (2) For each y ∈ Y \M , set αy = 1; (3)
Set αy = 0 and βz = 0 for every other y ∈ Y and z ∈ C. It
can be easily verified that the above solution is feasible since
all the constraints of LP (2) remain satisfied.
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Secondly, according to the RDS returned by the algo-
rithm, we update the initial feasible solution such that it cor-
responds to the RDS and remains a feasible solution to the
dual LP (2). The updating simply proceeds as: set αy = 1
for each y ∈ Y ′, βz = −1 for each z ∈ C ′, set γe = 0 for
each edge adjacent to each z ∈ C ′. It is easy to verify that
such an updated solution satisfies the constraints of LP (2).
The details of the algorithm are as depicted in Alg. 2.
Lemma 10. During the iterations of Alg. 2, N(Y ′) ⊆ M ∩
C always holds. When it terminates, Alg. 2 produces an RDS
(Y ′, C ′) with maximum |Y ′| − |C ′|.

Lastly, recalling that Alg. 1 employs Alg. 2 to compute
RDS, we have their runtimes as below:
Lemma 11. Alg. 2 runs in time O(k2.5), and consequently
Alg. 1 runs in O(nk3.5).

The Whole Algorithm for ML/CL k-Center
We will firstly demonstrate that Alg. 1 can be extended to ap-
proximate k-center with both ML and CL constraints. Sec-
ondly, when the value of r∗ is unknown, we will show the
algorithm can be easily tuned by employing a binary search.

For the first, the key idea is to contract the ML sets into
a set of “big” points. That is, for each X , we remove all
the points from P that belong to X and replace them with a
“big” point x. Then, for distances involving the points result-
ing from this contraction, we use the following definition:
Definition 12. For two points xi and xj that result from
contraction and correspond to Xi and Xj respectively, the
refined distance between them is

d̂(xi, xj) = d̂(Xi, Xj) = max
p∈Xi, q∈Xj

d(p, q).

Treating a single point as a singleton CL set, we can cal-
culate the distance between x (representing X) and a point
q /∈ X using Def. 12 as follows:

d̂(x, q) = d̂(X, q) = max
p∈X

d(p, q).

Then the distance between x and the center set C is

d̂(x, C) = d̂(X, C) = max
p∈X

d(p, C) = max
p∈X

min
q∈C

d(p, q).

By Def. 12, we can simply extend Alg. 1 to solve ML/CL
k-center.

For the second, we show the same ratio can be achieved
even without knowing r∗ based on the following observa-
tion:
Lemma 13. Let Ψ = {d(pi, pj)|pi, pj ∈ P}. Then we have
r∗ ∈ Ψ. In other words, the optimum radius r∗ must be a
distance between two points of P .

That is, we need only to find the smallest r ∈ Ψ, such that
regarding 2r, Alg. 1 can successfully return C with |C| ≤ k.
By employing a binary search on the distances in Ψ, we
can find in O(log n) iterations the smallest r under which
Alg. 2 can find a feasible solution. Therefore, by combining
the two aforementioned techniques, the whole algorithm for
k-center with both ML and CL sets without known r∗, is
depicted in Alg. 3. Eventually, we have runtime and perfor-
mance guarantees for Alg. 3 as follows:

Algorithm 3: Whole algorithm for ML/CL k-center.
Input: Database P of size n with ML sets X and CL sets

Y and a positive integer k.
Output: A set of centers C.

1 Initialization: Set C ← ∅, C′ ← ∅, Y ′ ← ∅, and shrink
each ML set X ∈ X as x;

2 Compute Ψ = {d(pi, pj) | pi, pj ∈ P}, the set of
distances between each pair points of P ;

3 while true do
4 Assign the value of the median of Ψ to η;
5 for each Y ∈ Y do
6 Construct an auxiliary graph G(Y,C;E)

according to Def. 2 wrt η, and the distances
concerning the shrunken point x are computed
according to Def. 12;

7 if G(Y,C;E) contains an RDS (Y ′, C′) then
8 Update the center set using the RDS:

C ← C ∪ Y ′ \ C′;
9 end

10 end
11 if |C| > k then
12 Remove each d ≤ η (except η) from Ψ;
13 else
14 Remove each d ≥ η (except η) from Ψ;
15 end

/* Note that |C| ≤ k indicates η is
sufficiently large while |C| > k
for otherwise. */

16 if |Ψ| = 1 then
17 Return η together with the corresponding C.
18 end
19 end

Datasets #Rec. #Dim. k

Wine 178 13 3
Cnae-9 1,080 856 9

NLS-KDD 22,544 41 2
Skin 245,057 3 2

Wide09 570,223 21 13
Covertype 581,012 54 7
Simulated 10,000 50 5/10/50/100

Table 1: Datasets summary.

Theorem 14. Alg. 3 solves the ML/CL k-center within run-
time O(nk3.5 log n) and outputs a center set C, such that:
(1) d(p, σ(p)) ≤ 2r∗ holds for ∀p ∈ P where σ(p) is the
center for p in C; (2) All the ML and CL constraints are
satisfied; (3) |C| ≤ k.

Experimental Evaluation
Experimental Configurations
This section includes a brief description of the experimental
configurations.

Real-world datasets. We follow existing studies on con-
strained clustering (Wagstaff et al. 2001; Malkomes et al.
2015) to use the four real-world datasets (Wine, Cnae-
9, Skin and Covertype (Bache and Lichman 2013)) and
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Figure 2: Normalized Mutual Information (Disjoint ML/CL).
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Figure 3: Rand Index (Disjoint ML/CL).
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Figure 4: Runtime(ms) (Disjoint ML/CL).

two famous network traffic datasets (KDDTest+ of NLS-
KDD (Tavallaee et al. 2009) and Wide09 of MAWI (Group
2020)) to evaluate the algorithms on the Internet traffic clas-
sification problem.

Simulated datasets. It is challenging for us to evaluate
the practical approximation ratio of Alg. 3 on real-world
datasets due to the lack of optimal solution costs as a bench-
mark for the constrained k-center problem. To overcome this
problem, we construct simulated datasets using given pa-
rameters (e.g., k, n, and r∗). Tab. 1 gives brief statistics of
the aforementioned datasets.

Constraints construction. We construct both disjoint and
intersected ML/CL constraints for the real-world and the
simulated datasets in accordance with the Introduction and
Algorithm to evaluate the clustering performance of our ap-
proximation algorithm against baselines. In short, for a given
dataset, a given number of constrained data points, and a
given number of participants (who have their own back-

ground knowledge of ML/CL), we uniformly sample data
points from the raw dataset into different ML and CL sets.

Baselines. Since this is the first non-trivial work with a
2-opt algorithm for the constrained k-center problem with
disjoint CL sets, we propose two baseline algorithms - a
greedy algorithm (Greedy) and a matching-based algorithm
(Matching). In brief, Greedy is adapted from a constrained
k-means algorithm (Wagstaff et al. 2001) to handle the CL
sets while considering the ML constraints as “big” points,
and matching is a simple improvement of Greedy by overall
matching points to closer centers that incurs smaller cover-
ing radiuses.

Evaluation metrics. Following existing studies on clus-
tering (Bera et al. 2022; Wang, Nie, and Huang 2014;
Lingam, Rout, and Das 2020; Rand 1971), we use the com-
mon clustering quality metrics in the experiments, which
are Cost (Epasto, Esfandiari, and Mirrokni 2019; Bera et al.
2022), Normalized Mutual Information (NMI) (Lingam,
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Rout, and Das 2020) and Rand Index (Rand 1971). For run-
time, we report it in the base ten logarithms.

Implementation details. We implemented all algorithms
in Java 1.8.0 on a 64-bit Linux 3.10 high-performance com-
puter, where each node equips an Intel Xeon Gold 6240 CPU
and 32 GB RAM.

Clustering Quality and Efficiency with Disjoint
ML/CL Constraints
In this section, we show and analyze the experimental clus-
tering quality and efficiency (averaged over 40 runs on each
dataset) of our algorithms and the two baselines, when ap-
plied to disjoint ML/CL settings.

Given disjoint ML/CL constraints, Alg. 3 outperforms
the baseline algorithms as guaranteed. From Fig. 1 to
Fig. 3, while varying the number of constrained data points
from 0% to 10% of all data points, we observe that Alg. 3
demonstrates promising clustering accuracy across all per-
formance metrics, varying 10% to 300% clustering qual-
ity improvement. Since the experimental clustering accuracy
is highly related to the theoretical approximation ratio, the
guaranteed 2-opt for the constrained k-center problem with
disjoint ML/CL constraints provides Alg. 3 with a signifi-
cant advantage.

As the number of constraints increases, all three algo-
rithms show a general upward trend in clustering accu-
racy. However, Alg. 3 stabilizes once the number of con-
straints reaches 4%. We argue the reason behind this be-
havior is that adding constraints effectively reduces the fea-
sible solution space in optimization problems. Introducing
more constraints is expected to improve the solution quality
of an approximation algorithm. Consequently, we anticipate
a higher clustering accuracy for a constrained k-center algo-
rithm as the number of constraints increases.

Alg. 3 demonstrates significantly better performance
on sparse datasets. An example of such a dataset is Cnae-
9, which is highly sparse with 99.22% of its entries being
zeros. Among all the datasets we examined, we observed
the largest discrepancy in terms of cost/accuracy between
Alg. 3 and the two baseline algorithms when applied to the
Cnae-9 dataset. We attribute this disparity to the fact that
the traditional k-center problem struggles with sparse high-
dimensional datasets, as highlighted in the study (Steinbach,
Ertóz, and Kumar 2013). However, the introduction of con-
straints proves beneficial in adjusting misclustering and cen-
ter selection, offering improved performance in these cases.

The crucial factor in bounding the approximation ra-
tio for the constrained k-center problem with disjoint
ML/CL constraints is the selection of centers. Analyzing
the results depicted in the figures, we observe that Greedy
and Matching algorithms often yield similar clustering out-
comes despite employing distinct strategies to handle the CL
constraints. We contend that the cluster assignment methods
have minimal influence on certain datasets, as the improve-
ment in the experiment hinges on the correction of center se-
lection facilitated by the approximation algorithm with con-
straints. This correction not only enhances the approxima-
tion ratio but also contributes to improved clustering accu-
racy.

#CL/ML Algorithm k = 5 k = 10 k = 50 k = 100

Alg. 3 1.9901 1.9971 1.9964 1.9997
1, 000 Matching 2.8678 2.8295 2.9281 2.7805

Greedy 2.9542 2.9793 2.9308 2.9286

Alg. 3 1.9892 1.9931 1.9942 1.9986
2, 000 Matching 2.7537 2.8047 2.9246 2.6884

Greedy 2.9992 2.9648 3.0400 2.9073

Alg. 3 1.9941 1.9908 1.9958 1.9952
5, 000 Matching 2.5500 2.7392 3.0239 2.8794

Greedy 3.0555 3.0647 3.2250 3.1741

Alg. 3 1.9965 1.9938 1.9979 1.9983
10, 000 Matching 2.5140 2.7952 3.0236 3.1212

Greedy 3.3707 3.5421 3.4695 3.4143

Table 2: Empirical Approximation Ratio.

Alg. 3 exhibits superior efficiency when applied to
larger datasets. Fig. 4 depicts the (log) runtime of all three
algorithms. As a larger number of points are designated as
constrained points, the likelihood of encountering a scenario
where a CL set contains k points increases. In such cases,
Alg. 3 can rapidly determine the center set, whereas Greedy
and Matching algorithms must rely on center sets deter-
mined by traditional methods.

Empirical Approximation Ratio
In this experiment, approximation ratio is measured based
on the clustering radius ratio obtained on the simulated
dataset, i.e., Approx Ratio = rmax/r

∗, where rmax repre-
sents the maximum radius (worst solution cost) obtained
from 1, 000 runs of the algorithm (10 simulated datasets ×
10 distinct constrained cases × 10 repeated runs) and r∗

denotes the optimal cost by construction in the simulated
dataset. Tab. 2 presents the empirical ratios, demonstrating
that Alg. 3 consistently produces better approximation ra-
tios below two, which aligns with the theoretical results pre-
sented in the previous Algorithm section.

Conclusion
In this paper, we confirmed the existence of an efficient ap-
proximation algorithm for the constrained k-center problem
with instance-level ML/CL constraints. Despite the known
inapproximability barrier from the arbitrary CL constraints,
we made a significant breakthrough by uncovering that the
reducible disjoint set structure of CL constraints on k-center
can lead to constant factor approximation in our analysis. To
achieve the best possible 2-approximation, we introduced a
structure called reverse dominating set (RDS) for obtaining
the desired set of cluster centers. For efficient RDS com-
putation, we employ a suite of linear programming-based
techniques. Our work sheds light on devising efficient ap-
proximation algorithms for solving more complex clustering
problems involving constraints. For instance, it opens av-
enues for further investigation such as approximations with
inconsistent, stochastic, and/or active constraints.
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