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Abstract

In this paper, we study the effectiveness of using a constant
stepsize in statistical inference via linear stochastic approxi-
mation (LSA) algorithms with Markovian data. After estab-
lishing a Central Limit Theorem (CLT), we outline an in-
ference procedure that uses averaged LSA iterates to con-
struct confidence intervals (CIs). Our procedure leverages the
fast mixing property of constant-stepsize LSA for better co-
variance estimation and employs Richardson-Romberg (RR)
extrapolation to reduce the bias induced by constant step-
size and Markovian data. We develop theoretical results for
guiding stepsize selection in RR extrapolation, and identify
several important settings where the bias provably vanishes
even without extrapolation. We conduct extensive numeri-
cal experiments and compare against classical inference ap-
proaches. Our results show that using a constant stepsize en-
joys easy hyperparameter tuning, fast convergence, and con-
sistently better CI coverage, especially when data is limited.

Introduction
Stochastic approximation (SA) algorithms use stochastic up-
dates to iteratively approximate the solution to fixed-point
equations. SA has wide applications, such as the stochas-
tic gradient descent (SGD) algorithm for loss minimization
and the Temporal Difference (TD) learning algorithm in re-
inforcement learning (RL) (Sutton 1988). Classical works
on SA typically assume the stepsize sequence αt is square-
summable and diminishing, i.e.,

∑
t αt = ∞,

∑
t α

2
t < ∞,

under which asymptotic almost-sure convergence is well
studied (Robbins and Monro 1951; Blum 1954; Borkar and
Meyn 2000). Constant stepsize has gained popularity re-
cently, particularly among practitioners, due to its fast ini-
tial convergence and easy hyperparameter tuning. A growing
line of works studies the convergence properties of SA under
constant stepsize, establishing upper bounds on the mean-
squared error (MSE) (Lakshminarayanan and Szepesvári
2018; Srikant and Ying 2019; Mou et al. 2020, 2021) as well
as weak convergence results (Dieuleveut, Durmus, and Bach
2020; Yu et al. 2021; Huo, Chen, and Xie 2023a).

Recent works have explored using SA and SGD iterates
to perform statistical inference, e.g., constructing confidence
intervals (CIs) around a point estimate (Li et al. 2018; Chen
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et al. 2020; Li et al. 2022; Lee et al. 2022; Liu, Chen, and
Shang 2023). This approach is computationally cheap and
scales well with the size and dimension of the dataset: SA
updates are computed iteratively, without storing or multiple
passes over the dataset. In comparison, classical inference
techniques, such as bootstrapping, often require storing the
entire dataset and repeating the estimation procedure, which
may have prohibitive computational costs.

The aforementioned works on using SA for inference
have focused on the diminishing stepsize paradigm, for
which a mature convergence theory exists, ensuring the
asymptotic correctness of the inference results. In contrast,
constant-stepsize SA lacks last-iterate almost sure conver-
gence: recent works have shown that the iterates converge
only in distribution; moreover, the limit distribution may
have a nonzero asymptotic bias due to the nonlinearity of the
SA updates (Dieuleveut, Durmus, and Bach 2020) or the un-
derlying Markovian data (Huo, Chen, and Xie 2023a), and
this bias cannot be eliminated by iterate averaging. Partly
due to these considerations, inference with constant stepsize
SA iterates has been largely overlooked in the literature.

We study the effectiveness of statistical inference using
constant-stepsize SA iterates. We focus on linear stochastic
approximation (LSA), i.e., θt+1 = θt+α(A(xt)θt+ b(xt)),
with a constant stepsize α and Markovian data (xt)t≥0.
We first establish a Central Limit Theorem (CLT) for av-
eraged Markovian LSA iterates. Built upon the CLT, we
outline an inference procedure using averaged iterates and
batch-mean covariance estimates. Our procedure leverages
the fast mixing property of constant-stepsize updates for bet-
ter covariance estimation and employs Richardson-Romberg
(RR) extrapolation for bias reduction. We study two step-
size schemes in RR extrapolation. We further prove that with
Markovian data, the asymptotic bias may vanish in several
important settings, in which case inference with constant-
stepsize LSA iterates is effective even without RR extrapo-
lation. We conduct extensive experiments to benchmark our
procedure against conventional inference approaches. Our
results demonstrate superior and robust performance of the
constant stepsize paradigm, which enjoys fast convergence,
good coverage properties, and easy parameter tuning.1

1An extended paper with appendix can be found at Huo, Chen,
and Xie (2023b).
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Related Work
Dating back to Robbins and Monro (1951), classical works
on stochastic approximation typically assume i.i.d. data and
a square-summable and diminishing stepsize sequence. Sub-
sequent works propose what is now known as the Polyak-
Ruppert iterate averaging (Ruppert 1988; Polyak 1990) and
establish a CLT for the averaged iterates (Polyak and Judit-
sky 1992). Recent work in Borkar et al. (2023) establishes
a CLT for scaled iterates for general contractive SA under
diminishing stepsize and Markovian data.

Constant-stepsize SA and SGD have attracted growing
attention recently. Several works study constant-stepsize
LSA with i.i.d. data and establish finite-time MSE bounds
and a CLT for the average iterates (Lakshminarayanan and
Szepesvári 2018; Mou et al. 2020). A parallel line of work
studies SGD for both convex (Dieuleveut, Durmus, and
Bach 2020) and nonconvex (Yu et al. 2021) functions with
i.i.d. data and identifies an asymptotic bias arising from the
nonlinearity of the function. More recent works study LSA
with Markovian data. The works in Srikant and Ying (2019)
and Durmus et al. (2023) study convergence bounds for
MSE, while the work in Huo, Chen, and Xie (2023a) es-
tablishes weak convergence of the LSA iterates and charac-
terizes its asymptotic bias due to Markovian data.

Most related to this paper is a recent line of work on
using SGD/SA iterates for statistical inference. The work
in Chen et al. (2020) considers SGD with i.i.d. data and
strongly-convex functions and proposes two covariance ma-
trix estimators. This result is generalized to ϕ-mixing data
in Liu, Chen, and Shang (2023). The work in Zhu, Chen,
and Wu (2023) extends the batch-mean estimator in Chen
et al. (2020) to a fully online version. The work in Lee et al.
(2022) proposes a random scaling covariance estimator for
robust online inference with SGD. Subsequent work in Li,
Liang, and Zhang (2023) investigates online statistical infer-
ence using nonlinear SA with Markovian data. The above
works all consider diminishing stepsizes. The work in Xie
and Zhang (2022) extends the random scaling estimator for
inference with SA under constant stepsizes but i.i.d. data.
The work in Li et al. (2018) studies statistical inference with
SGD and i.i.d. data, using a small stepsize whose value re-
mains constant throughout the iterations but scales inversely
with the total number of iterations. In contrast, we consider
constant stepsizes whose values are independent of the total
number of iterations and thus substantially larger than the
typical stepsize values in Li et al. (2018).

RR extrapolation is a classical technique from numerical
analysis to improve approximation errors. It has been used
in Dieuleveut, Durmus, and Bach (2020) for SGD and Huo,
Chen, and Xie (2023a) for LSA. See the survey by Bach
(2021) for the use of RR extrapolation in other data science
and machine learning problems.

Problem Setup
In this section, we formally set up the problem and intro-
duce the assumptions. Let (xt)t≥0 be a time-homogeneous
stochastic process on a Borel state space X with stationary
distribution π. Define the target vector θ∗ as the solution to

the steady-state equation Ex∼π[A(x)]θ∗ + Ex∼π[b(x)] = 0,
where A : X → Rd×d and b : X → Rd are deterministic
functions on X . To approximate θ∗, we consider the follow-
ing linear stochastic approximation iteraion:

θ
(α)
t+1 = θ

(α)
t +αt

(
A(xt)θ

(α)
t + b(xt)

)
, t = 0, 1, . . . , (1)

where (αt)t≥0 is the stepsize sequence. We focus on using
a constant stepsize, i.e., αt ≡ α for all t ≥ 0. (We omit the
superscript (α) when the stepsize is clear from the context.)
We emphasize that the constant stepsize considered here is
independent of the total number of iterations. This is differ-
ent from the work in Li et al. (2018), which pre-specifies the
total number of iterations T and uses a small fixed stepsize
of the form αt = T−β , ∀0 ≤ t ≤ T for some β > 0.

We make the following standard assumptions.
Assumption 1. (xt)t≥0 is a uniformly ergodic Markov
chain with transition kernel P and a unique stationary dis-
tribution π.

Assumpiton 1 is common in the literature on Markovian
SA (Bhandari, Russo, and Singal 2021; Durmus et al. 2023;
Huo, Chen, and Xie 2023a). Uniform ergodicity ensures that
the distribution of xt converges geometrically to π from any
initial distribution. For example, all irreducible, aperiodic,
and finite state space Markov chains are uniformly ergodic.
Assumption 2. Amax := supx∈X ∥A(x)∥2 ≤ 1 and
bmax := supx∈X ∥b(x)∥2 < ∞. Moreover, Ā :=
Ex∼π[A(x)] is a Hurwitz matrix.

The Hurwitz condition is again standard and ensures the
stability of a dynamic system (Srikant and Ying 2019; Dur-
mus et al. 2023; Huo, Chen, and Xie 2023a). This assump-
tion is satisfied in, e.g., SGD for minimizing strongly convex
quadratics and the linear TD algorithm in RL.

Central Limit Theorem
Our first result is a CLT for averaged LSA iterates, which
lays the theoretical foundation for the inference procedure
developed later. To state the CLT, we recall a known result
for constant-stepsize Markovian LSA: the data-iterate pair
(xt, θt) converge weakly to a unique limit distribution, de-
noted by (x∞, θ∞) ∼ µ (Huo, Chen, and Xie 2023a).
Theorem 1 (CLT). Under Assumptions 1–2, there exists a
threshold α0 ∈ (0, 1) such that for all α ∈ (0, α0), we have

√
T (θ̄T − E[θ∞])

d→ N (0,Σ∗), as T → ∞,

where θ̄T := 1
T

∑T−1
t=0 θt and Σ∗ := limT→∞ T ·Eµ[(θ̄T −

E[θ∞])(θ̄T − E[θ∞])⊤].

The proof is deferred to the appendix. Theorem 1 extends
existing CLT results, which focus on either LSA with i.i.d.
data (Mou et al. 2020; Xie and Zhang 2022) or SA with di-
minishing stepsize (Borkar et al. 2023). When using Marko-
vian data (xt)t≥0, the iterate sequence (θt)t≥0 is no longer
a Markov chain on its own. Instead, we need to consider
the joint process (xt, θt)t≥0, which is a time-homogeneous
Markov chain thanks to the use of a constant stepsize, and
build the CLT accordingly. Moreover, a number of existing
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Markov Chain CLT results require a one-step contraction
property of the form Wp,q(µQ, νQ) ≤ γWp,q(µ, ν), where
Q is the Markovian transition kernel, γ < 1 and Wp,q is an
appropriate Wasserstein distance between distributions (Xie
and Zhang 2022). Our Markov chain (xt, θt)t≥0 does not
enjoy such a nice one-step contraction property, and hence
proving our CLT requires additional work.

Statistical Inference Procedure Using LSA
We next present a statistical inference procedure using the
averaged LSA iterates with constant stepsize and Markovian
data. This procedure can be combined with RR extrapolation
to construct confidence intervals for the target vector θ∗.

Asymptotic Bias and RR Extrapolation
It has been shown in Huo, Chen, and Xie (2023a) that the
asymptotic expectation E[θ(α)∞ ] is biased with respect to θ∗

and admits expansion: E[θ(α)∞ ] = θ∗ +
∑∞

i=1 α
iB(i), where

B(i) are vectors independent from the stepsize α. Theorem 1
guarantees that the averaged iterates θ̄T are asymptotically
normal, but E[θ(α)∞ ] ̸= θ∗. Moreover, the leading term in
E[θ(α)∞ ]−θ∗ scales with α. To construct CIs with good cover-
age properties, it is important to reduce the asymptotic bias.

In light of the bias expansion, we can employ Richardson-
Romberg (RR) extrapolation to reduce the asymptotic bias
to a higher order polynomial of the stepsize α (Dieuleveut,
Durmus, and Bach 2020; Bach 2021; Huo, Chen, and Xie
2023a). Specifically, we run the LSA update (1) with M
constant stepizes A = {α1, . . . , αM} and compute a linear
combination of the resulting iterates:

θ̃At =

M∑
m=1

hmθ
(αm)
t .

We carefully choose the coefficients {hm} to satisfy

M∑
m=1

hm = 1;
M∑

m=1

hmαl
m = 0, l = 1, 2, . . . ,M − 1. (2)

Using the aforementioned expansion, one sees that the bias
E[θ̃A∞] − θ∗ is reduced exponentially in M and now scales
with (maxm=1,...,M αm)M instead of αm.

Inference Procedure
We now describe the inference procedure, which follows
from the procedure in Li et al. (2018) originally designed
for i.i.d. data and a small stepsize.

Point Estimation and Batching Given a trajectory of
(xt)t≥0 sampled from a Markov chain, we run LSA with
constant stepsize α and obtain iterates (θ

(α)
t )t≥0. The first

b iterates (θ(α)t )b−1
t=0 are considered as initial burn-in and are

not used in the inference procedure. For the remaining it-
erates, we divide them equally into K batches of size n.
Within each batch, we discard the first n0(≥ 0) iterates and

compute the average of the remaining iterates:

θ
(α)
0 , . . . , θ

(α)
b−1︸ ︷︷ ︸

burn in, discarded

,

1st batch︷ ︸︸ ︷
θ
(α)
b , . . . , θ

(α)
b+n0−1︸ ︷︷ ︸

discard

, θ
(α)
b+n0

, . . . , θ
(α)
b+n−1︸ ︷︷ ︸

compute average θ̄
(α)
1

,

2nd batch︷ ︸︸ ︷
θ
(α)
b+n, . . . , θ

(α)
(b+n)+n0−1︸ ︷︷ ︸

discard

, θ
(α)
(b+n)+n0

, . . . , θ
(α)
b+2n−1︸ ︷︷ ︸

compute average θ̄
(α)
2

, . . .

Hence, for the k-th batch, we compute the point estimator
θ̄
(α)
k = 1

n−n0

∑b+nk−1
l=b+(n−1)k+n0

θ
(α)
l . As such, we obtain a

total of K batch-mean estimators {θ̄(α)k }, which will be used
for statistical inference. Note that we only need to save the
running average of each batch-mean estimator without the
necessity to store the entire trajectory (θ

(α)
t )t≥0.

Before delving into the construction of CIs, we briefly re-
mark on several design choices. The initial b iterates are con-
sidered as burn-in and are omitted, as these iterates are far
away from stationarity, and thus may have substantial opti-
mization errors. The first n0 iterates of each batch are also
discarded, to reduce the correlation of the remaining iterates
across batches, i.e., in the order of exp(−αn0).

Confidence Interval Construction Now that the CLT
for the average iterates of Markovian LSA with constant
stepsizes has been established, we construct estimators for
E[θ(α)∞ ] and Σ∗ and subsequently build CIs for E[θ∞].

With the K batch-mean estimators {θ̄(α)k } for k =
1, . . . ,K , we compute batch-mean estimators as

θ̄(α) =
1

K

K∑
k=1

θ̄
(α)
k .

For variance estimation, we adapt an estimator that has
been considered in Flegal and Jones (2010); Chen et al.
(2020), and Xie and Zhang (2022) to our problem. Given
{θ̄(α)k }, the variance estimator is computed as

Σ̂(α) =
(n− n0)

K

K∑
k=1

(
θ̄
(α)
k − θ̄(α)

)(
θ̄
(α)
k − θ̄(α)

)⊤
,

It has been shown in Flegal and Jones (2010) that Σ̂ is a
consistent estimator of Σ∗ in Theorem 1 as n,K → ∞,

Hence, for inference with LSA with stepsize α, for q ∈
(0, 1), we construct the (1− q)100%-confidence interval for
the i-th coordinate of E[θ∞] as[
θ̄
(α)
i − z1− q

2

√
Σ̂

(α)
i,i

K(n− n0)
, θ̄

(α)
i + z1− q

2

√
Σ̂

(α)
i,i

K(n− n0)

]
.

In subsequent experiments, we focus on 95% CIs.

Combining With RR Extrapolation
Next, we apply RR extrapolation in addition to the above-
delineated procedure to construct confidence intervals that
have better coverage properties of θ∗.
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To apply RR extrapolation, we first select a set of M
distinct stepsizes, i.e., A = {α1, α2, . . . , αM} and run
LSA iterates with these stepsizes simultaneously by using
the same underlying data stream (xt)t≥0. For each trajec-
tory of iterates (θ

(αm)
t )t≥0, we follow the inference pro-

cedure and obtain K batch-mean estimators {θ̄(αm)
k }Kk=1.

To obtain the RR extrapolated estimator, we linearly com-
bine the k-th estimates across the M trajectories and ob-
tain θ̃Ak =

∑M
m=1 hmθ̄

(αm)
k , with {hm} computed accord-

ing to (2). We then conduct statistical inference using the
iterates {θ̃Ak } and build confidence intervals following the
similar methodology described above for a single trajectory.

Theoretical Guarantees
Next, we provide additional theoretical analysis that helps us
achieve better statistical inference performance with RR ex-
trapolated iterates. Please refer to the appendix for the proofs
of propositions in this section.

Stepsize Selection in RR Extrapolation
As we discussed, one way to improve the coverage proba-
bility of θ∗ is to reduce the bias via RR extrapolation. How-
ever, RR extrapolation does not come for free, as the coeffi-
cients {hm} solving (2) may blow up, thus resulting in large
variance and offsetting the benefits of bias reduction. {hm}
values are uniquely determined by inverting a Vandermonde
matrix, which is infamous for being ill-conditioned when the
“roots” {αm} are positive real numbers. Therefore, when
employing RR extrapolation, we need to carefully select M
and {αm} to maximize the benefits of bias reduction.

We study two stepsize selection schedules, namely geo-
metric decaying and equidistant sequences. We assume that
αm decreases in value as m increases. We establish an upper
bound to the variance of θ∞ in each stepsize regime, which
would offer some insight and guidance on stepsize selection.

The geometric decay schedule is not a conventional
choice in numerical analysis, the field from which RR ex-
trapolation originates, but it is frequently employed in ma-
chine learning.

Proposition 2. Given unique stepsizes A = {α1, . . . , αM}.
Assume α1 < 1 and αm = α1/c

m−1 with c ≥ 2. We observe
the following properties.

1. |hm| ≤ hmax(c) = exp
(

2
c−1

)
.

2. Var(θ̃A∞) = O
(
c · exp(16 c−1/2)

)
.

It is noteworthy that the variance upper bound for geo-
metric decaying stepsizes does not depend on the number
of stepsizes M used in the extrapolation, suggesting that the
variance will not blow up as M → ∞. Nonetheless, one
problem with geometric decay is that the stepsize would de-
cay too quickly to near zero as M increases. As such, RR
iterates with a small constant stepsize mixes slowly and may
need a much longer trajectory for the iterates to converge.

The equidistant decay schedule has been studied in nu-
merical analysis (Gautschi 1990). We study the behavior of
a generic equidistant decay schedule in RR exploration.

Proposition 3. Given unique stepsizes A = {α1, . . . , αM}.
Assume a + b < 1 and αm = (a + b) − b(m−1)

M−1 for m =
1, . . . ,M . We observe the following properties.

1. |hm| =
(
M
m

)
· bm
a(M−1)+b(M−m) ·

(∏M
l=1

a(M−1)+b(l−1)
bl

)
.

2. Var(θ̃A∞) = O((2M/b)2M ).

When the stepsize sequence decays in equidistance, step-
sizes do not decrease as quickly to zero based on the choice
of a, b. However, the upper bound of variance now is of or-
der MM , which suggests that the variance could blow up
quickly as M increases, potentially offsetting the benefits
from reduced bias.

Zero Bias Special Cases
As discussed earlier, RR extrapolation reduces the asymp-
totic bias and hence increases the asymptotic coverage prob-
ability of θ∗ based on the CI constructed for E[θ∞]. Hence,
the Markovian underlying data and the presence of asymp-
totic bias should not discourage one from using constant
stepsize LSA iterates for statistical inference.

In this section, we would like to highlight that Markovian
data need not be a sufficient condition for the presence of
asymptotic bias in LSA. That is, there are several commonly
observed scenarios where no asymptotic bias is present, even
when the underlying data is Markovian.

Independent Multiplicative Noise In this scenario, we
expand our Markov chain state space to incorporate an in-
dependent bounded zero-mean random variable, i.e., xt =
(st, ξt), where (st)t≥0 is the uniformly ergodic Markov
chain and (ξt)t≥0 is uniformly bounded, i.e., ∥ξt∥ ≤ u, and
i.i.d. sampled from distribution ξ with E[ξ] = 0. Consider
the following Markovian LSA updates,

θt+1 = θt + α
(
(Ā+ ξt)θt + b(st)

)
, (3)

where A(st, ξt) = Ā + ξt and b(st, ξt) = b(st). It can be
easily verified that the above LSA iteration satisfies the re-
quired Assumptions 1–2.

Proposition 4. Consider the LSA iteration of (3), there ex-
ists some threshold α0 ∈ (0, 1) such that ∀α ∈ [0, α0),
(xt, θt)t≥0 converges weakly to a unique stationary distri-
bution. Moreover, E[θ∞] = θ∗.

The above proposition implies that when the Markovian
noise is only additive, the limiting expectation of the iter-
ates converges to θ∗. Hence, our CLT on E[θ∞] allows us to
construct CI and perform statistical inference directly on θ∗.

Independent Additive Noise in Linear Regression We
consider an independent additive noise setting in linear re-
gression, which has been previously discussed in Bresler
et al. (2020) and Huo, Chen, and Xie (2023a).

In this linear regression problem, independent observa-
tions (st)t≥0 are sequentially generated from a uniformly
ergodic Markov chain with stationary distribution ν and
Eν [sts

⊤
t ] is positive definite. yt = s⊤t w

∗+ ϵt, where ϵt is an
i.i.d. zero-mean noise with variance σ2

ϵ . The SGD iterates to
estimate w∗ are updated as wt+1 = wt−αst

(
⟨wt, st⟩−yt

)
.
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Casting the problem under the LSA framework, we have
wt+1 = wt + α(A(xt)wt + b(xt)) with xt = (st, ϵt),
A(xt) = −sts

⊤
t and b(xt) = st(s

⊤
t w

∗ + ϵt). It has been
shown in Huo, Chen, and Xie (2023a) that LSA under con-
stant stepsizes has zero asymptotic bias in this setup.

Realizable Linear-TD Learning in RL In this section,
we specialize our discussion on linear-TD learning in RL.

TD learning algorithm (Sutton 1988) is an important algo-
rithm in RL for policy evaluation. Potentially equipped with
linear function approximation, it is a special case of LSA.

We model the linear-TD problem with a Markov Re-
ward Problem (MRP) (S, PS , r, γ). The value function V :
S → R is approximated by a linear function V (s) =
E[
∑∞

t=0 γ
tr(st)|s0 = s] ≈ ϕ(s)⊤θ, where ϕ : S → Rd

is a known feature map of finite rank d and θ is the unknown
weight vector to be estimated. The feature map is normal-
ized such that ϕmax := sups∈S ∥ϕ(s)∥2 ≤ 1√

1+γ
.

We consider the semi-simulator regime, in which the iter-
ates are updated in the following fashion,

θt+1 = θt+α
(
r(st)+γϕ(snext

t )⊤ϕt−ϕ(st)
⊤θt

)
ϕ(st), (4)

where (st)t≥0 is a Markov chain and snext
t is sampled inde-

pendently from PS(st, ·) conditioned on st.
Proposition 5. Assuming (st)t≥0 is a uniformly ergodic
Markov chain on state space S with s0 ∼ πS . Assum-
ing the linear-TD is realizable, i.e., ∃v ∈ Rd such that
V (s) = ϕ(s)⊤v for all s ∈ S . The linear-TD iterates of
(4) converge without asymptotic bias, i.e., E[θ∞] = E[θ∗].

The realizability assumption is not particularly restrict-
ing, as there are a number of RL problems that satisfy this
assumption, such as TD learning on tabular MDP or linear
MDP. Hence, if we have such a structured linear-TD prob-
lem, we could use the iterates obtained in the semi-simulator
setting to perform statistical inference on the weight vector
θ estimation and subsequently the value function directly.

Numerical Experiments
We conduct extensive numerical experiments to examine our
proposed inference procedure and stepsize selection guide-
lines in RR extrapolation. We present our main results in this
section. Additional sets of experiments and detailed experi-
ment designs are included in the appendix.

Inference Performance Comparison
We examine the empirical performance of our proposed in-
ference procedure with constant stepsizes and RR extrapo-
lation. We consider LSA problems in dimension d = 5 for
a finite state, irreducible, and aperiodic Markov chain with
N = 10 states. We generate the transition probability P ,
and the functions A and b randomly; see the appendix for
details. We construct CIs using the LSA iterates. We exam-
ine the performance from three aspects, namely the ℓ2 error
of the point estimate to the target vector, i.e.,∥θ̄ − θ∗∥2, the
coordinate-wise CI width and coverage probabilities.

We mainly study under constant stepsizes α = 0.2 and
α = 0.02. The two choices of constant stepsizes are of dif-
ferent scales, allowing us to demonstrate extreme effects in

convergence and inference performance. RR extrapolation is
conducted using the two constant stepsizes. For comparison,
we also consider diminishing stepsizes with initial stepsize
α0 being 0.2 and 0.02 respectively, and a diminishing step-
size αt = α0t

−0.5 for t ≥ 1. The diminishing rate t−0.5 is
chosen as it is on the boundary of square-summable assump-
tion and has often been observed with the best empirical per-
formance among t−β with β ∈ [0.5, 1].

Baseline Comparison for I.I.D. LSA We first conduct a
cross-study to examine the performance of inference with
constant and diminishing stepsize under i.i.d. data. We no-
tice that constant stepsizes slightly outperform the 0.2t−0.5

diminishing stepsize. Please refer to the appendix for de-
tailed experiment design and results.

Performance Comparison for Markovian LSA We ex-
amine 100 different LSA problems of the same dimension
|X | = 10 and d = 5. For each LSA setup, the parameters
(P,A, b) are generated randomly, and we simulate 100 tra-
jectories (xt)t≥0 of length 105, run LSA iterates with the
above-described stepsize regimes, and perform inference.
We summarize the distribution of the performance across the
100 cases in Table 1.

With Markovian data, the LSA with constant stepsize con-
verges with nonzero asymptotic bias. The presence of bias is
rather obvious when α = 0.2, evident from the large ℓ2 error.
Hence, CIs constructed with α = 0.2 iterates have the worst
coverage probabilities. Reducing the stepsize to α = 0.02
will reduce the asymptotic bias, and hence CIs constructed
with α = 0.02 iterates have significantly better performance.

When the RR extrapolation technique is employed, the
confidence intervals constructed enjoy the best coverage
properties, with the smallest ℓ2 error, comparable CI width,
and higher coverage probabilities of θ∗. Moreover, the me-
dian coverage probability is around the targeted 95%.

Percentile Comparison table
0.2 0.02 RR 0.2√

t
0.02√

t

10
ℓ2 3.60 1.01 0.92 0.87 0.90
CI 1.44 1.30 1.31 1.21 0.87

Cov 0 72 90 86 62

25
ℓ2 6.05 1.25 1.08 1.06 1.11
CI 1.87 1.68 1.70 1.52 1.20

Cov 0 82 91 88 70

50
ℓ2 8.12 1.59 1.32 1.32 1.42
CI 2.70 2.38 2.41 2.14 1.51

Cov 11 90 94 91 76

75
ℓ2 14.82 2.39 1.90 1.85 2.13
CI 3.95 3.40 3.47 3.05 2.50

Cov 66 93 95 94 83

90
ℓ2 25.53 4.20 4.14 3.44 6.92
CI 10.49 6.31 8.91 5.21 4.82

Cov 92 95 97 96 90

Table 1: Inference comparison of different stepsize regimes.
ℓ2 denotes the ℓ2 error of point estimates and is of unit 10−3.
“CI” refers to the CI width and is also of unit 10−3. “Cov”
represents the coverage probability. Both the CI width and
coverage probability are for the 1-st coordinate estimate.
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Batch No. Comparison table
0.2 0.02 RR 0.2√

t
0.02√

t

100

ℓ2
7.80 1.01 0.70 0.69 0.72

(0.02) (0.02) (0.02) (0.02) (0.02)

CI 1.53 1.37 1.38 1.34 0.81
(0.01) (0.00) (0.00) (0.00) (0.00)

Cov 0 80.6 94.4 95.0 71.2
(0) (1.8) (1.0) (1.0) (2.0)

500

ℓ2
7.80 1.03 0.72 0.70 0.70

(0.02) (0.02) (0.02) (0.02) (0.02)

CI 1.54 1.38 1.39 1.06 0.40
(0.00) (0.00) (0.00) (0.00) (0.00)

Cov 0 80.8 94.2 88.8 42.2
(0) (1.8) (1.0) (1.4) (2.2)

1000

ℓ2
7.79 1.01 0.73 0.69 0.74

(0.02) (0.02) (0.02) (0.02) (0.03)

CI 1.54 1.38 1.39 0.82 0.29
(0.00) (0.00) (0.00) (0.00) (0.00)

Cov 0 83.0 94.2 75.4 30.4
(0) (1.7) (1.0) (1.9) (2.1)

Table 2: Inference comparison of different batch numbers.
ℓ2 and “CI” values are of unit 10−3. Both CI width and cov-
erage probability are for the 1-st coordinate estimate.

Batch Number Selection We further inspect the impact
of the number of batches used in inference, i.e., the value K
in the confidence interval construction procedure. We focus
on one specific LSA problem with |X | = 10 and d = 5
Markovian data. The trajectory length is set at 106 and the
number of batches varies. For each combination of stepsize
and number of batches used, we run 500 independent runs
and record the mean and the standard error in Table 2.

For constant stepsizes, as we compare across different
rows, the mean estimates are at the same scale, and not in-
fluenced much by the choice of batch number. However, for
diminishing stepsizes, as the batch number increases, the
CI widths decrease quickly, which drastically reduces the
coverage probability and implies an underestimation of the
variance. As the stepsize decays in the diminishing stepsize
sequence, the iterates become increasingly correlated, and
hence a longer batch size is needed to overcome the strong
correlation. Therefore, the number of batches used in dimin-
ishing stepsize regime cannot arbitrarily increase. In con-
trast, iterates under constant stepsize mixes at the same rate
and is more robust to the number of batches used.

Trajectory Length We next investigate the impact of in-
creasing trajectory length with a range of stepsizes to bet-
ter visualize the trend. For each trajectory length, we fix the
number of batches as T 0.3 as recommended in Chen et al.
(2020). The statistics are in Table 3.

We observe that inference with RR iterates consistently
presenting the best results. When the trajectory length is at
103, the iterates under various stepsize regimes would still
be distant from θ∗, which explains the mediocre coverage of
θ∗. As the trajectory length increases, the iterates gradually
approach stationarity. Hence, the inference performance de-
teriorates for α = 0.2 with 0 coverage probability, as the
iterates converge to E[θ∞], which is asymptotically biased

from θ∗. On the other hand, as the trajectory length is longer,
the iterates under diminishing stepsize converge closer to θ∗.
Therefore, the inference performance with diminishing step-
size improves. Inference with RR extrapolated iterates gen-
erally gives satisfactory performance. Hence, we would like
to note that inference with constant stepsize might be espe-
cially useful when the simulation trajectory length budget
is limited, as diminishing stepsize iterates struggle to output
good inference results.

Comparison Against Bootsrapping In all previous ex-
periments, we are comparing inference using SA iterates
under different stepsize regimes. Here, we compare to boot-
strapping, a more classical approach to statistical inference.
Detailed experimental design can be found in the appendix.

While constant stepsize together with RR obtains 95.2%
coverage with ℓ2 error 1.0 × 10−5 and CI width 0.00134,
bootstrapping achieves 93.4% coverage with ℓ2 error 2.0 ×
10−3 and CI width 0.00411. The large ℓ2 error and wide
confidence interval of bootstrapping suggest that it may not
be able to handle correlated data efficiently.

Bootstrapping requires the entire data set to be stored,
requiring O(T d) memory, whereas inference with SA it-
erates can accommodate online data, hence O(d) memory.
Inference with SA iterates only needs first-order informa-
tion, while bootstrapping may need higher-order informa-
tion, making it potentially computationally prohibitive.

Extending to Nonlinear SA Lastly, we examine the per-
formance of our proposed technique in an example of logis-
tic regression with unbounded Markovian data, to demon-
strate that our proposed technique is robust in a wide range
of settings, even if not currently addressed by our theory.

The categorical data (xt, yt) arrives online, with xt se-
quentially sampled from a 2-dimensional Gaussian AR(1)
process, and yt ∼ Bernoulli( 1

1+e−w∗xt
)) with w∗ ∈ R2 be-

ing a random unit vector. This setting is non-Hurwitz, non-
linear, and with an unbounded underlying Markov chain, but
our proposed inference procedure still exhibits similar per-
formance as seen in Table 4.

RR Stepsize Selection
In this section, we numerically examine the impacts of dif-
ferent stepsize selection decisions in RR extrapolation.

Comparing Different Regimes We first compare the geo-
metric and equidistant regimes. To ensure a fair comparison,
we keep the range of the stepsize selection the same across
the two regimes, so the difference would come solely from
how the stepsize decays within the range. The range is de-
termined by a dyadic decaying stepsize sequence, i.e. the
smallest stepsize across the two regimes is fixed at αM =
α1/2

(M−1). Under this setup, when the RR order is 2, there
is no difference between these two schedules, so we start the
comparison from the extrapolation with 3 stepsizes.

As depicted in Figure 1, when the order of extrapolation
increases to around 5, the benefits of RR extrapolation have
been mostly exploited. The difference between the two de-
caying schedules is more significant when the order is low.
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Length Comparison table
0.2 0.15 0.1 0.05 0.02 RR 0.2√

t
0.02√

t

103
ℓ2 2.84 (0.06) 2.55 (0.06) 2.48 (0.05) 2.35 (0.05) 2.28 (0.05) 2.28 (0.05) 2.36 (0.05) 4.28 (0.07)
CI 4.16 (0.07) 3.91 (0.06) 3.81 (0.06) 3.68 (0.06) 3.71 (0.06) 3.76 (0.06) 3.10 (0.05) 1.01 (0.02)

Cov 82.2 (1.7) 84.0 (1.6) 83.0 (1.7) 83.6 (1.7) 83.6 (1.7) 83.4 (1.7) 76.8 (1.9) 24.8 (1.9)

104
ℓ2 1.15 (0.02) 0.99 (0.02) 0.89 (0.02) 0.79 (0.02) 0.73 (0.02) 0.72 (0.02) 0.73 (0.02) 1.14 (0.02)
CI 1.44 (0.02) 1.38 (0.01) 1.34 (0.01) 1.31 (0.01) 1.29 (0.01) 1.30 (0.01) 1.12 (0.01) 0.67 (0.01)

Cov 75.2 (1.9) 81.8 (1.7) 85.2 (1.6) 88.8 (1.4) 90.0 (1.3) 89.2 (1.4) 85.4 (1.6) 56.0 (2.2)

105
ℓ2 0.82 (0.01) 0.61 (0.01) 0.44 (0.01) 0.29 (0.01) 0.24 (0.01) 0.23 (0.01) 0.22 (0.01) 0.24 (0.01)
CI 0.46 (0.00) 0.45 (0.01) 0.43 (0.01) 0.42 (0.01) 0.41 (0.00) 0.41 (0.00) 0.38 (0.00) 0.29 (0.00)

Cov 0.04 (0.9) 22.2 (1.8) 56.4 (2.2) 83.2 (1.7) 88.2 (1.4) 91.2 (1.3) 90.0 (1.3) 79.2 (1.8)

106
ℓ2 0.81 (0.00) 0.57 (0.00) 0.38 (0.00) 0.20 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
CI 0.15 (0.00) 0.15 (0.00) 0.14 (0.00) 0.14 (0.00) 0.13 (0.00) 0.13 (0.00) 0.13 (0.00) 0.11 (0.00)

Cov 0 (0) 0 (0) 0 (0) 19.0 (1.8) 80.2 (1.8) 95.2 (1.0) 92.8 (1.2) 90.2 (1.3)

Table 3: Inference comparison of different trajectory lengths. ℓ2 and “CI” values are of unit 10−2. Both CI width and coverage
probability are for the 1-st coordinate estimate.

Length Comparison table
0.2 0.02 RR 0.2√

t
0.02√

t

103

ℓ2
11.63 21.53 24.4 20.89 41.14
(0.28) (0.26) (0.25) (0.28) (0.25)

CI 24.01 34.87 38.07 15.17 16.31
(0.40) (0.27) (0.26) (0.20) (0.12)

Cov 70.2 34.0 26.4 3.6 0
(2.0) (2.1) (2.0) (0.8) (0)

104

ℓ2
8.35 2.87 3.27 3.65 10.64

(0.11) (0.07) (0.08) (0.09) (0.11)

CI 9.27 9.37 9.79 5.84 10.23
(0.10) (0.09) (0.09) (0.07) (0.07)

Cov 12.0 89.8 84.8 53.6 1.4
(1.5) (1.4) (1.6) (2.2) (0.5)

105

ℓ2
8.14 1.10 0.88 0.90 1.40

(0.04) (0.03) (0.02) (0.02) (0.03)

CI 3.09 2.83 2.82 1.83 2.74
(0.03) (0.02) (0.02) (0.02) (0.02)

Cov 0 80.2 90.2 73.0 59.6
(0) (1.8) (1.3) (2.0) (2.2)

Table 4: Inference comparison of different trajectory
lengths. ℓ2 and “CI” values are of unit 10−2. Both CI width
and coverage probability are for the 1-st coordinate estimate.

Comparing Spacing in the Equidistant Regime We
study the impact of decay distance in the equidistant decay-
ing scheme, i.e., varying the value of b in αm = (a + b) −
b (m−1)

M−1 . Specifically, we keep the a + b value constant, and
test with different b/(M − 1) ∈ {0.01, 0.02, 0.03, 0.04}.

As shown in Figure 2, the smaller b/(M−1) is, the worse
the RR extrapolation performance is. This phenomenon is in
line with Proposition 3, as b/(M − 1) inversely scales with
the variance upper bound. What is surprising is that when us-
ing small b/(M − 1), increasing the number of the stepsizes
used does not always reduce the ℓ2 error of the extrapolated
iterates. This may be due to the proximity of stepsizes, lead-
ing to large coefficients {hm}, increasing the variance and
offsetting the reduction in bias. Hence, this suggests that for
RR extrapolation to be effective, stepsizes should not be too
close to each other, but should explore a range of values.

Figure 1: ℓ2 errors of averaged iterates with different order
of RR extrapolation. The Y -axis is of logarithmic scale.

Figure 2: ℓ2 errors of averaged iterates with different order
of RR extrapolation. The Y -axis is of logarithmic scale.

Conclusion
In this paper, we demonstrate the effectiveness of statistical
inference with LSA iterates under Markovian data, constant
stepsizes, and RR extrapolation. An immediate next step is
to provide theoretical results to justify the validity of the CI
constructed with Markovian LSA iterates with constant step-
size, as the CI is non-consistent. Further directions include:
(a) develop an anytime variance estimator so that the pro-
posed inference procedure can be fully online; (b) given a
fixed simulation length, how one should decide the order of
RR extrapolation to achieve decent inference performance.
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