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Abstract

Robustness and privacy protection are two important factors
of trustworthy federated learning (FL). Existing FL works
usually secure data privacy by perturbing local model gra-
dients via the differential privacy (DP) technique, or defend
against poisoning attacks by filtering the local gradients in the
outlier of the gradient distribution before aggregation. How-
ever, these two issues are often addressed independently in
existing works, and how to secure federated learning in both
privacy and robustness still needs further exploration. In this
paper, we unveil that although DP noisy perturbation can im-
prove the learning robustness, DP-FL frameworks are not in-
herently robust and are vulnerable to a carefully-designed at-
tack method. Furthermore, we reveal that it is challenging for
existing robust FL methods to defend against attacks on DP-
FL. This can be attributed to the fact that the local gradients
of DP-FL are perturbed by random noise, and the selected
central gradients inevitably incorporate a higher proportion
of poisoned gradients compared to conventional FL. To ad-
dress this problem, we further propose a new defense method
for DP-FL (named Robust-DPFL), which can effectively dis-
tinguish poisoned and clean local gradients in DP-FL and ro-
bustly update the global model. Experiments on three bench-
mark datasets demonstrate that baseline methods cannot en-
sure task accuracy, data privacy, and robustness simultane-
ously, while Robust-DPFL can effectively enhance the pri-
vacy protection and robustness of federated learning mean-
while maintain the task performance.

Introduction
Federated learning (FL) is a widely used privacy-preserving
machine learning paradigm that can train model parameters
without accessing raw data (Yang et al. 2019; Li et al. 2020).
Existing FL methods are typically based on a decentral-
ized learning framework, where local clients keep their own
privacy-sensitive training data and a central several keeps
a machine learning model that needs to be trained (McMa-
han et al. 2017; Lalitha et al. 2018). The clients first employ
their local data to train the model parameters, and the global
model is further updated by collecting and aggregating local
gradients. Then this process is iteratively executed until the
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model training converges. Unfortunately, the learning pro-
cess of FL systems is exposed to an open environment, and
faces serious risks in privacy protection and model robust-
ness (Lyu et al. 2022; Fang et al. 2020; Li et al. 2021).

In fact, federated learning cannot guarantee the security
of user privacy (Geiping et al. 2020; Wang et al. 2019).
Many existing works demonstrate that although the privacy-
sensitive training data are locally kept by clients, the cor-
responding user private information can be still recovered
from the exchanged local gradients (Zhu, Liu, and Han
2019; Sun et al. 2021). Thus, it is potential for an adversary
to filch user privacy from their shared local gradients, which
seriously damages the trustworthiness of the FL systems.
Differential privacy is a representative privacy protection
technique, which is widely used in many real-world privacy-
sensitive applications (Kenny et al. 2021). Its core idea is to
perturb the exposed data that are relevant to the user privacy
via random noise. Therefore, many existing works utilize the
differential privacy technique to secure data privacy in fed-
erated learning (Wei et al. 2020; Girgis et al. 2021; Geyer,
Klein, and Nabi 2017; Truex et al. 2020; Sun, Qian, and
Chen 2021). For example, Truex et al. (2020) perturb the lo-
cal model gradients via Gaussian noise before sharing them
with the server. Generally speaking, these differentially pri-
vate federated learning frameworks (DP-FL) can effectively
address the privacy concerns on federated learning.

Besides data privacy, the model robustness of feder-
ated learning is also threatened by underlying attacks (She-
jwalkar and Houmansadr 2021; Baruch, Baruch, and Gold-
berg 2019). Since the local model training is invisible for the
central server, an adversary can easily poison the local gra-
dients (e.g. injecting backdoors) before sending them to the
server. The global model is further poisoned due to its in-
tegration with the uploaded poisoned gradients. Intuitively,
identifying the poisoned gradients before the model aggre-
gation can defend against such attacks. Therefore, most ex-
isting robust FL methods follow a similar assumption that
poisoned gradients are usually outliers in the gradient dis-
tribution (Awan, Luo, and Li 2021; Yin et al. 2018). Fur-
thermore, these methods only aggregate the local gradients
which are in the center of the gradient distribution to avoid
the integration of poisoned gradients. For example, Yin et al.
(2018) proposed to update the global model based on the
element-wise median of local gradients. However, most of
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the existing robust FL methods only consider the attack on
conventional federated learning, which may be inapplicable
in the DP-FL system. Thus, how to simultaneously improve
the privacy protection and robustness of federated learning
needs more study.

In this paper, we explore how to guarantee the privacy
protection and robustness of federated learning. We focus on
the direction that improving the robustness of the differen-
tially private federated learning to achieve this goal. In gen-
eral, the random perturbation (e.g., dropout) on the machine
learning model usually improves its robustness (Srivastava
et al. 2014; Huang et al. 2022; Li et al. 2019; Cohen, Rosen-
feld, and Kolter 2019). In the DP-FL methods, the intelli-
gent models are perturbed by the local noise, which makes
them more robust than the models learned in conventional
FL (Naseri, Hayes, and De Cristofaro 2020; Xie et al. 2022).
Thus, this arises the first research question “Is DP-FL inher-
ently robust to poisoning attacks?”. To answer this question,
we compare the attack performance of existing poisoning at-
tack methods on DP-FL and conventional FL based on three
benchmark datasets. We reveal that the attack success rates
on DP-FL are substantially reduced compared with those
on conventional FL. This result indicates that DP-FL is ro-
bust to a part of current poisoning methods. Unfortunately,
based on further study, we reveal that the conclusion cannot
be generalized and DP-FL is also vulnerable to certain at-
tack patterns. In fact, in DP-FL, the norms of the perturbed
gradients are usually much larger than the norms of the un-
perturbed gradients, which can be exploited by the adver-
sary to enhance their attack. Based on this observation, we
propose a new poisoning attack method on DP-FL (named
Attack-DPFL). The adversary of Attack-DPFL re-scales the
norm of an unperturbed poisoned gradient to align it with
the norm distribution of the perturbed gradients. Then the
adversary uploads the amplified unperturbed poisoned gra-
dients instead of the perturbed ones to the server for global
model updating. In this way, the global model updating is
mainly dominated by the poisoned gradients, instead of the
clean gradients or the DP noise regularization, which can
ensure the attack success rate. Experiments also empirically
verify the attack effectiveness of Attack-DPFL on DP-FL.

The successful attack on DP-FL further arises the second
research question “How can we robustly aggregate the local
gradients in DP-FL?”. An intuitive solution is applying ex-
isting robust FL methods to defend against the poisoning at-
tacks on DP-FL. However, in DP-FL the clean gradients are
perturbed by strong noise while the poisoned gradients are
unperturbed, which makes the clean gradients more likely
to be outliers than the poisoned gradients. Therefore, pro-
tecting DP-FL with robust aggregation methods for conven-
tional FL methods may even lead to worse robustness, since
many filtered gradients are clean ones. Fortunately, the ex-
changed poisoned gradients and clean gradients exhibit dif-
ferent patterns in components. An exchanged clean gradient
is composed of an unperturbed gradient and a DP noise, and
the DP noise can be substantially reduced in its element ag-
gregation. In contrast, an exchanged poisoned gradient only
contains an amplified poisoned gradient, and its element ag-
gregation should tend to be larger than that of a clean gra-

dient due to the amplification operation. Based on this in-
sight, we propose a new robust aggregation method target-
ing the attacks on DP-FL (named Robust-DPFL), which can
effectively distinguish poisoned and clean local gradients to
learn a clean global model. We define the detection score
of an uploaded gradient by averaging its elements, and fil-
ter the uploaded gradients with large detection scores for
robust aggregation. Extensive experiments on three bench-
mark datasets demonstrate that baseline robust FL methods
can hardly defend against poisoning attacks on DP-FL. Fur-
ther, experiments also show that Robust-DPFL can effec-
tively improve the model robustness and maintain the task
accuracy under effective differential privacy guarantees.

The contributions of our work are three-fold:

• We propose an effective attack method for differentially
private federated learning, demonstrating that DP-FL is
also vulnerable to certain poisoning attacks.

• We propose a robust gradient aggregation method for
DP-FL (Robust-DPFL), which can effectively identify
clean and poisoned gradients under the interference of
DP noise.

• Extensive experiments on three benchmark datasets ver-
ify that Robust-DPFL can ensure the privacy protection,
model robustness, and task accuracy of federated learn-
ing simultaneously.

Related Work
Federated Learning
Federated learning is a representative machine learning
paradigm that can train model parameters from decentral-
ized data in a privacy-preserving way (McMahan et al.
2017; Yang et al. 2019; Zhang et al. 2021). Its core idea is
to exchange model gradients instead of the local data for
model training (Bonawitz et al. 2017). For example, McMa-
han et al. (2017) first formulate the framework of federated
training: the clients locally train the model parameters and
then upload the local model updates to the server, and the
server collects and averages local updates to learn the global
model. Furthermore, to speed up the model convergence,
many works study the adaptive federated learning optimiza-
tion strategies that can effectively smooth the learning of the
global model (Reddi et al. 2021; Yuan and Li 2022; Karim-
ireddy et al. 2020; Zhang et al. 2020; Khanduri et al. 2021;
Yuan, Zaheer, and Reddi 2021). In conclusion, the conven-
tional federated learning methods usually focus on how to
effectively learn model parameters from decentralized data.
However, these conventional FL methods are based on a dis-
tributed training framework that is exposed to an open envi-
ronment, which faces serious risks in terms of both data pri-
vacy and model robustness. These risks also promote a line
of research to secure federated learning, including differen-
tially private federated learning and robust federated learn-
ing, which are reviewed in the following sections.

Differentially Private Federated Learning
Differential privacy techniques can offer theoretical guaran-
tees on the privacy protection of communicated data (Kenny
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et al. 2021). The main idea of the DP technique is to per-
turb the communicated data via independent random noise
to pose challenges to user privacy identification. Further-
more, DP still allows us to accurately estimate some sta-
tistical characteristics of the communicated data since the
DP noise can be effectively reduced by aggregating the per-
turbed data. Thus, the DP technique can be naturally ap-
plied to protect user privacy in federated learning, which is
widely studied in previous works (Wei et al. 2020; Girgis
et al. 2021; Geyer, Klein, and Nabi 2017; Truex et al. 2020;
Sun, Qian, and Chen 2021). For example, Truex et al. (2020)
proposed to utilize the Gaussian noise to perturb the local
model gradients, and then update the global model based on
the aggregation of perturbed gradients. Sun, Qian, and Chen
(2021) proposed a parameter shuffling-based differentially
private FL method that can enhance the trade-off between
task accuracy and privacy protection. In conclusion, most of
the existing differentially private federated learning (DP-FL)
methods focus on studying how to improve the effectiveness
of model training under a given privacy protection level (Sun
and Lyu 2021). However, these DP-FL methods are also vul-
nerable to poisoning attacks, which still have serious risks in
real-world applications. Different from these methods, we
study how to improve the model robustness of differentially
private federated learning.

Robust Federated Learning
Poisoning attack is a serious threat to the security of feder-
ated learning (Cao et al. 2019; Shejwalkar et al. 2022; Fang
et al. 2020). In federated learning, the local model training
of a client is invisible to the outside, making it highly con-
venient for an adversary to poison the local gradients. Thus,
in the general framework of existing federated poisoning at-
tack methods, the adversary first employs certain strategies
to poison local model gradients and further uploads them
to the server to poison the global model (Yin et al. 2018;
Shejwalkar and Houmansadr 2021). Most federated poison-
ing attack methods can be broadly classified into three cat-
egories according to their attack purposes (Shejwalkar et al.
2022): (1) targeted attack aiming to degrade the model ac-
curacy on samples in certain groups (Bhagoji et al. 2019;
Tolpegin et al. 2020), (2) untargeted attack aiming to de-
grade the overall task accuracy (Fang et al. 2020; Blanchard
et al. 2017), (3) backdoor attack aiming to control the model
predictions on poisoned samples embedded with the back-
door triggers (Bagdasaryan et al. 2020; Wang et al. 2020;
Xie et al. 2020). For example, Bhagoji et al. (2019) pro-
posed to flip the label of a part of local training data for the
untargeted attack, and Bagdasaryan et al. (2020) proposed to
learn poisoned model updates based on backdoored training
data. In conclusion, these works disclose the vulnerability
of federated learning to poisoning attacks and show that it is
important to study robust federated learning methods.

There is a line of works studying how to defend against
poisoning attacks in federated learning. In practical attack
settings, the malicious clients controlled by the adversary
should be the minority group in the participating clients.
Thus, most of the robust FL methods assume that the poi-
soned gradients are the outliers in the gradient distribution,

and filtering the outliers and only aggregating the gradients
in the distribution center can avoid integrating the poisoned
gradients into the global model. For example, Yin et al.
(2018) proposed to update the global model based on the
median of local gradients in each dimension. Blanchard et al.
(2017) proposed to select the local model gradient that is
most relevant to other gradients to update the global model.
Generally speaking, most of the existing robust gradient ag-
gregation methods are designed for conventional FL, which
is difficult to be applied in differentially private FL. This is
because in DP-FL local gradients are perturbed by DP noise,
which may make the outlier assumption not hold. Besides,
many current robust FL methods update the global model
based on a very small fraction of local gradients (Blanchard
et al. 2017; Yin et al. 2018), which is difficult to reduce the
damage of DP noise on task accuracy. Different from these
works, we propose a new robust differentially private FL
framework, which can simultaneously ensure the data pri-
vacy, model robustness, and model accuracy.

Preliminary
Problem Definition
In our work, we assume that there are N local clients par-
ticipating in the federated learning, where U = {ui|i =
1, 2, ..., N} denotes the set of the participated clients and
ui denotes the i-th client. The local training dataset kept by
the i-th client ui is denoted as Ti, and the machine learn-
ing model that needs to be trained in federated learning is
denoted by Θ, which is kept by the server and is aligned in
local clients. The local clients and the server will collaborate
with each other to train the model on decentralized data in a
federated way. Besides, we assume that there may be an ad-
versary that can filch the communicated local data from the
FL system to recover user privacy. To guarantee the privacy
protection of users, the local gradients must be protected by
differential privacy before sharing them with the outside.
Moreover, we assume that there may be an adversary that
can control a part of local clients to poison the global model
for certain malicious purposes. Thus, the server should ag-
gregate the local gradients in a robust manner to defend
against potential attacks. We employ a variable ai to rep-
resent whether the i-th client is a benign client (ai = 0) or a
malicious client (ai = 1). Furthermore, we also assume that
the benign users will honestly follow the framework of DP-
FL, while the malicious clients can generate the poisoned
gradient based on any strategy.

Renyi Differential Privacy
We employ Renyi differential privacy (Mironov 2017) to
guarantee the privacy protection of FL. Renyi differential
privacy can be defined based on the following formulation:
Definition 1 ((α, ϵ)−RDP ) Let f : X → Y represent
the randomized mechanism for privacy protection, we call
f have ϵ-Renyi differently privacy of order α (shorted as
(α, ϵ)-RDP), if and only if for arbitrary adjacent data set
Xi,Xj ⊆ X , the following inequation holds:

1

α− 1
logE[P (x)/Q(x)]α ≤ ϵ, α > 1, ϵ > 0. (1)
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Figure 1: Poisoning attacks on conventional FL and DP-FL. Attack-FL denotes the results of conventional FL (FedAvg) under
existing attack methods. Attack-Naive denotes the results of DP-FL under existing attack methods. Attack-NonDP denotes the
results of DP-FL under a naive variant attack method. Attack-DPFL denotes results of DP-FL under our proposed attack method.

(a) Gradient distribution in conventional  FL. (b) Gradient distribution in DP-FL.

Figure 2: Gradient distributions of conventional FL and DP-
FL. Gradients in the gray circle are aggregated for global
model updating in previous robust aggregation methods.

α and ϵ represents the security level of privacy, where larger
α and smaller ϵ means stronger privacy protection. Further-
more, it can be proved that a Gaussian noise based random-
ized mechanism can satisfy (α, ϵ)-RDP based on the Lemma
in the Appendix. Thus, in the DP-FL framework, we perturb
the local gradients via Gaussian noise before uploading them
to the server.

Experimental Setup
Next, we will introduce the basic experimental setups for ex-
ploring the research questions in our work. We conduct ex-
periments on three benchmark datasets for federated learn-
ing, including MNIST (Deng 2012), FEMNIST (Caldas et al.
2018), and CIFAR-10 (Krizhevsky, Hinton et al. 2009). The
training data is randomly partitioned into 100 clients based
on a non-IID data partition strategy (Hsu, Qi, and Brown
2019). The basic machine learning models trained on these
three datasets are implemented by ResNet-18 (He et al.
2016). Besides, we note that the purpose of some poisoning
attack methods (i.e., targeted and untargeted performance) is
to degrade the model performance on certain or all samples,
while the DP technique applied in FL will also degrade the
model accuracy. Thus, due to the interference of DP noise,
it is difficult to verify the attack and defense effectiveness
if we employ targeted and untargeted attack methods for
experiments. We remark that the federated backdoor attack
aims to inject backdoors into models to control their predic-
tions on poisoned data while keep their normal predictions

on clean data, which will not degrade the model performance
on clean test data. Therefore, we employ a federated back-
door attack method (Bagdasaryan et al. 2020) to poison dif-
ferent FL methods to verify their robustness. The propor-
tion of malicious clients controlled by the adversary is set to
15%. Each malicious client generate the poisoned gradient
by training the model on the poisoned data. Besides, we uti-
lize the accuracy score for task performance verification and
utilize the attack success rate (ASR) for defense effective-
ness verification. A larger accuracy score means better task
performance and a lower ASR score means better defense
performance. In addition, the level of DP guarantee is set to
(1.2, 5). More details can be found in the Appendix.

Approach
Differentially Private FL Framework
Next, we will first briefly introduce the workflow of differ-
entially private federated learning (DP-FL). In each train-
ing round of DP-FL, the server first distributes the current
model Θt to local clients and then selects a part of clients
for local training. The set of selected clients is denoted as
Ut. For each selected client u ∈ Ut, it first trains the model
Θt on its local training dataset Tu to build the model gra-
dient Gu. Then we clip the norm of the gradient Gu and
perturb it via the Gaussian noise according to the DP tech-
nique: Su = h(Gu; l) + N(0, σ2), where l is the clipping
value of the gradient norm, σ is the DP noise intensity,
and h(G, l) is the function that clips the L2 norm of G to
l. Then the client u uploads the protected gradient Su to
the server for aggregation. Furthermore, the server updates
the global model based on the collected local gradients:
Θt+1 = Θt − β 1

|Ut|
∑

u Su, where β is the learning rate.
Then the server iteratively repeats the process until model
training convergences. In our work, we focus on developing
privacy secured and robust federated learning method. We
remark that we follow the direction of improving the robust-
ness of DP-FL to achieve the research purpose. Next, we will
study the research questions on the robustness of DP-FL.

Attack on Differentially Private FL
The first research question is “Is DP-FL inherently robust to
poisoning attacks?”. Generally speaking, incorporating ran-
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Figure 3: Detection score distributions of clean and poisoned gradients on three benchmark datasets.

domized perturbation into the training of the machine learn-
ing models can improve their robustness (Srivastava et al.
2014; Huang et al. 2022; Li et al. 2019; Cohen, Rosenfeld,
and Kolter 2019). The training of the global model in DP-
FL can be formulated by the combination of an unperturbed
equivalent gradient Gt and an equivalent noise N:

Θt+1 = Θt−β(Gt + N),

Gt =
1

|Ut|
∑
u∈Ut

h(Gu; l), N =
1

|Ut|
∑
u∈Ut

Nu,
(2)

where Nu represents the Gaussian noise sampled for the gra-
dient Gu. Thus, the global model training in DP-FL is per-
turbed by an equivalent noise, and the model may be more
robust than the model trained in conventional FL. This in-
dicates that the DP-FL may be naturally robust to poison-
ing attacks and does not need extra robustness enhance-
ment. To explore this problem, we conduct experiments on
three datasets to evaluate the performance of conventional
FL and DP-FL under poisoning attacks (Fig. 1). Results
show that although the existing attack method can poison
the model in conventional FL with high ASR scores (results
of Attack-FL), it can hardly poison the model of DP-FL (re-
sults of Attack-Naive). This indicates that DP-FL may be ro-
bust to some existing federated poisoning attack methods.
However, the malicious clients may not follow the training
framework of DP-FL, and they can upload unperturbed gra-
dients rather than perturbed gradients to weaken the pertur-
bation on the global model training and improve attack ef-
fectiveness. Based on this intuition, we further apply this
naive attack method on DP-FL and the results show that
its attack is still ineffective (Attack-NonDP). To explain this
phenomenon, we define a metric that measures the relative
perturbation intensity (RPI) on the global model updating:

γ
△
= E[||N||]/E[||Gt||], where larger γ means stronger per-

turbation and better robustness. Thus, for these two attack
methods on DP-FL, we can formulate their RPI by:

γ1 =

√
D

M
σ/G, γ2 =

√
pD

M
σ/G,

M = |Ut|, p =

∑
u∈Ut

au

|Ut|
, G = E[||Gt||],

(3)

where γ1 and γ2 corresponds to Attack-Naive and Attack-
NonDP respectively, and p represents the proportion of be-
nign clients. Since the benign clients are the majority, the

value of p is usually larger than 0.5 (e.g., p = 0.85 in our
settings), making Attack-NonDP can only slightly reduce the
RPI. The empirical results and the theoretical analysis shows
that it is not a trivial task to attack differentially private FL.

Since it is difficult to reduce the RPI by weakening the
equivalent noise, another direction is to amplify the equiv-
alent gradient norm. In general, the norm of the DP noise
is usually much larger than the norm of the local gradient,
since the protection of high-dimensionality data usually re-
quires strong DP noise. Thus, the adversary may be able to
exploit this pattern to amplify the poisoned gradients, which
can make the poisoned gradients dominate the equivalent
gradient meanwhile reduce the RPI. Based on this obser-
vation, we propose a new poisoning attack method on DP-
FL (named Attack-DPFL). For a malicious client u, Attack-
DPFL first learns the poisoned gradient Gu from its local
poisoned data. Then Attack-DPFL simulates the distribution
of the perturbed poisoned gradient and aligns their norms to
learn an amplified unperturbed poisoned gradient Au:

Au = AGu, A = ||Su||/||Gu||
Su = h(Gu; l) +N(0, σ2),

(4)

where A is the amplification coefficient. Next, we approxi-
mate the norm of the equivalent gradient in Attack-DPFL via
Eq. 5 and obtain the approximated RPI γ3 =

√
Dσ√

(1−p)MAG
.

||Gt|| = || 1
M

∑
au=0

h(Gu; l) +
1

M

∑
au=1

A2Gu||

≈ || 1
M

∑
au=1

A2Gu|| ≈
√

1− pAG.

(5)

Since the expectation of A is usually large in DP-FL (i.e.,
A = 100 in our DP settings), γ3 is much lower than γ1 and
γ2, indicating that Attack-DPFL is promising in reducing the
training perturbation in DP-FL and improving the attack ef-
fectiveness. Moreover, we further conduct experiments for
empirical verification. Fig. 1 show that the ASR of Attack-
DPFL on differentially private FL and the ASR of baseline
attack methods on conventional FL are comparable, demon-
strating Attack-DPFL can effectively attack DP-FL. These
results also disclose that differentially private FL is not in-
herently robust to poisoning attacks and also needs protec-
tion against poisoning attacks.
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Robust Differentially Private FL Framework
The second research question is “How can we robustly ag-
gregate the local gradients in DP-FL?”. An intuitive solu-
tion is to apply existing robust gradient aggregation methods
for conventional FL to protect DP-FL. Most existing robust
gradient aggregation methods are usually based on the as-
sumption that poisoned gradients are outliers in the gradient
distribution. Therefore, updating the global model based on
the gradients in the distribution center can effectively ex-
clude the poisoned gradients and learn a clean model (Fig. 2
(a)). Unfortunately, the outlier assumption does not hold in
DP-FL. This is because, in the positioning attacks on DP-
FL, the clean gradients are perturbed by strong DP noise,
while the poisoned gradients are not. Consequently, the po-
sitioned gradients tend to be more relevant to each other, and
the outliers in the gradient distribution of DP-FL are more
likely to be clean gradients rather than poisoned gradients.
This makes existing robust FL methods that aggregate gra-
dients in the distribution center will incorporate more poi-
soned gradients into the global model in DP-FL than con-
ventional FL, seriously degrading the defense effectiveness
(Fig. 2 (b)). In addition, some current robust aggregation
methods only select a very small fraction of gradients (e.g.,
only one of the local gradients) for global model updating.
This may also make the DP noise cannot be effectively re-
duced in gradient aggregation and hurt the task accuracy.
Thus, how to defend against poisoning attacks in differen-
tially private FL needs further study.

Fortunately, in DP-FL the gradients shared by benign
clients and malicious clients exhibit different patterns in
their components. A shared gradient from benign clients is
composed of an unperturbed clean gradient and a DP noise
vector, while a shared gradient from malicious clients only
contains an amplified unperturbed poisoned gradient. Fur-
thermore, the elements in noise vectors and unperturbed gra-
dients also exhibit highly distinctive patterns. Elements of
a noise vector are independent and their element-wise ag-
gregation usually degrades to zero, while elements in un-
perturbed gradients are usually correlated and their element-
wise aggregation is usually a nonzero value. These observa-
tions inspire us that the element-wise aggregation Z(S) =

| 1D
∑D

i=1 S[i]| of the shared gradients may be informative
for identifying poisoned gradients, where S[i] denotes the i-
th element of the vector and D denotes the dimensionality.
Thus, we formulate the detection score Zc and Zp of clean
and poisoned gradients based on element aggregation:

Zc = Z(h(G; l)+N) ≈ | 1
D

D∑
i=1

Gi|,

Zp = Z(A) = |A
D

D∑
i=1

G| ≈ AZc,

(6)

Eq. 6 shows that Zp is typically much larger than Zc due
to the amplification coefficient A. Eq. 6 also indicates that
it is possible to distinguish poisoned and clean gradients
based on their element-wise aggregation. We conduct exper-
iments to further support our analysis, and results in Fig. 3

MNIST FEMNIST CIFAR10
ACC ASR ACC ASR ACC ASR

IdealFL 98.44 0.20 78.85 2.67 36.53 4.46
FedAvg 91.51 99.84 50.01 98.22 10.01 99.97

Mid 79.48 18.44 29.06 61.64 10.00 100.00
Krum 9.97 83.29 4.97 100.00 10.00 33.46

MKrum 9.80 100.00 5.16 99.82 10.00 100.00
Norm 86.05 66.99 47.10 90.65 10.00 100.00
Contra 10.06 83.33 4.97 100.00 10.00 100.00
Ours 97.43 0.39 76.79 2.49 33.46 1.55

Table 1: The model accuracy and robustness of different ro-
bust federated learning methods.

show that clean and poisoned gradients have highly distinc-
tive based on their detection scores. Based on these anal-
yses, we propose a robust gradient aggregation framework
for DP-FL (named Robust-DPFL). In each training round of
Robust-DPFL, the server first models the detection score of
each uploaded gradient {Z(Su)|u ∈ Ut}. Then the server
clusters the detection scores into two groups based on the
K-means algorithm to detect the suspicious gradients. The
server treats the cluster with a larger averaged detection
score as the abnormal cluster and only aggregates the gra-
dients in another cluster to learn the global model.

Experiment
Performance Evaluation
Next, we will compare the accuracy and robustness of differ-
ent federated learning methods under the protection of dif-
ferential privacy. Several representative robust FL methods
are compared, including: (1) Mid (Yin et al. 2018): update
the global model based on the median of the local gradients
for each dimensionality. (2) Krum (Blanchard et al. 2017):
update the global model based on the local gradient that
is most relevant to other gradients. (3) MKrum (Blanchard
et al. 2017): update the global model by averaging multi-
ple local gradients that are most relevant to other gradients.
(4) Norm (Sun et al. 2019): clip the norm of local gradi-
ents according to a threshold to update the global model
based on the clipped gradients. (5) Contra (Awan, Luo, and
Li 2021): aggregate local gradients weighted by their co-
sine similarities with other gradients to update the global
model. In addition, we provide the results of DPFL (Truex
et al. 2020) without any defense mechanisms for compar-
isons. We also provide the results of ideal results of dif-
ferentially private FL (IdealFL) which can filter the poi-
soned gradients with 100% accuracy. The code is available
in https://github.com/taoqi98/Robust-DPFL.

Each experiment is repeated 10 times and we show the av-
eraged scores in Table 1. First, robust gradient aggregation
methods for conventional FL can hardly defend against poi-
soning attacks under DP-FL. For example, the attack success
rate on Krum on FEMNIST is close to 100%. This is because
baseline robust FL methods assume that updating the global
model based on the gradients in the center can avoid in-
corporating poisoned gradients into the model. However, in
DP-FL the clean gradients are perturbed by strong DP noise
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Figure 4: The performance of different robust FL methods under varying ratios of malicious clients.

Figure 5: The trade-off of Robust-DPFL in task accuracy, model robustness and privacy protection.

while the poisoned gradients are not, making the gradients
in the distribution center more likely to be poisoned. Second,
the task accuracy of some baseline robust FL methods is
worse than the results of FedAvg without any defense against
poisoning attacks. This is because some baseline robust FL
methods only select a very fraction of gradients (e.g., Krum
only selects one of the local gradients for global model up-
dating). Furthermore, the DP noise in the uploaded gradi-
ents cannot be reduced in the gradient aggregation and dam-
age the model training. Third, Robust-DPFL can effectively
defend against the poisoning attacks on DP-Fl, meanwhile
maintains the comparable task accuracy as ideal clean train-
ing. This is because clean and poisoned gradients in DP-FL
exhibit discriminative patterns in their components. Based
on this discriminative pattern, we propose an effective de-
tection algorithm that can identify poisoned local gradients
from clean gradients. By accurately filtering poisoned gradi-
ents, Robust-DPFL can ensure task accuracy, model robust-
ness, and privacy protection at the same time.1

Influence of Malicious Client Ratios
Next, we evaluate the performance of Robust-DPFL and
baselines under different ratios of malicious clients. Results

1Results show that some methods exactly achieve 10% task ac-
curacy on CIFAR10. This is because the model prediction will de-
grade into a single class under the interference of differential pri-
vacy and poisoning attacks. Since CIFAR10 is a balanced dataset
with ten categories, the accuracy consequently aligns at 10%.

are shown in Fig. 4, from which we find that the defense ef-
fectiveness of baselines rapidly decreases with the increase
of malicious client ratio. Different from these methods,
Robust-DPFL consistently improves the robustness of DP-
FL and maintains the task performance. These results further
demonstrate the effectiveness of Robust-DPFL in balancing
accuracy, privacy, and robustness of federated learning.

Accuracy, Privacy, and Robustness Trade-off
Next, we conduct experiments to analyze the trade-off
among accuracy, privacy protection, and model robustness
of Robust-DPFL. Results are shown in Fig. 5, from which
we have several findings. First, with the increase of pri-
vacy protection levels (i.e., lower privacy budget), the accu-
racy of Robust-DPFL decreases. This is because stronger DP
noise is incorporated into the training to better secure pri-
vacy, which damages the model training. Second, stronger
security guarantees also slightly degrade the model robust-
ness. This maybe because stronger DP noise makes the dis-
tribution of benign and malicious gradients to be disordered,
posing challenges to identifying and aggregating the benign
ones. These results can provide guidance in balancing the ac-
curacy, robustness, and privacy protection of Robust-DPFL.
Moreover, we also conduct other experiments to analyze
Robust-DPFL, including (1) verifying the generalization of
our work under more poisoning attacks, and (2) evaluating
the effectiveness of the detection mechanism. Due to space
limitations, the results and discussions are in the Appendix.
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Conclusion
In this paper, we study the robustness issue of differentially
private federated learning. We first propose a poisoning at-
tack method targeting DP-FL (named Attack-DPFL) that
can weaken the robustness of DP-FL powered by DP noise.
Attack-DPFL amplifies the poisoned gradients by align-
ing their norm distributions with perturbed clean gradients,
which enables the poisoned gradients to dominate the global
model updating. Extensive experimental results on three
benchmark datasets demonstrate the difficulty of existing
poisoning attacks in compromising DP-FL, while highlight-
ing the capability of Attack-DPFL in poisoning DP-FL mod-
els. Furthermore, we propose a robust gradient aggregation
method for DP-FL (named Robust-DPFL), which can learn
a clean global model under the interference of DP noise.
Robust-DPFL first identifies poisoned gradients from clean
gradients based on their discriminative patterns in compo-
nents and then updates the global model on identified clean
gradients. Experiments show that Robust-DPFL can achieve
an effective trade-off among task accuracy, model robust-
ness, and privacy protection, while baseline robust federated
learning methods cannot.
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