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Abstract
Long document retrieval aims to fetch query-relevant docu-
ments from a large-scale collection, where knowledge distil-
lation has become de facto to improve a retriever by mim-
icking a heterogeneous yet powerful cross-encoder. However,
in contrast to passages or sentences, retrieval on long docu-
ments suffers from the scope hypothesis that a long document
may cover multiple topics. This maximizes their structure het-
erogeneity and poses a granular-mismatch issue, leading to
an inferior distillation efficacy. In this work, we propose a
new learning framework, fine-grained distillation (FGD), for
long-document retrievers. While preserving the conventional
dense retrieval paradigm, it first produces global-consistent
representations crossing different fine granularity and then
applies multi-granular aligned distillation merely during train-
ing. In experiments, we evaluate our framework on two long-
document retrieval benchmarks, which show state-of-the-art
performance.

Introduction
Large-scale retrieval, as a fundamental task in information
retrieval (IR), has attracted increased interest from industry
and academia in the last decades, as it plays an indispensable
role in a wide range of real-world applications, such as web
engines (Fan et al. 2022), question answering (Karpukhin
et al. 2020) and dialogue systems (Yu et al. 2021). Given a
text query, it aims to fetch top-relevant documents1 from a
huge collection (Cai et al. 2021). As the collection usually
scales up to millions or billions, a retrieval method must
satisfy the efficiency or latency requirement of online deploy-
ment to calculate the relevance score between a query and
every document.

* Work is done during internship at Microsoft. This work was
supported in part by FDCT grants 0154/2022/A3, 0102/2023/RIA2
and SKLIOTSC(UM)-2021-2023, MYRG-CRG2022-00013-
IOTSC-ICI grant and SRG2022-00023-IOTSC grant.

† Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Each entry of the collection can be any text granularity (e.g.,
sentence, passage, document) but we take ‘document’ to denote
‘entry of collection’ in this paper for clear writing.

Document: … The European Renaissance was a time of massive economic and
cultural growth following the stagnation of the Middle Ages. Beginning in Italy in the
14th century, the movement spread to all parts of the continent during the next 300
years. The outstanding cultural and artistic heritage of the Renaissance can still be seen
today in many of the great cities of the period, including Florence and Venice in Italy,
Bruges in Belgium and Toledo in Spain. It All Began in Florence Florence is the city
where the Renaissance began, and where it reached its peak in the 15th and 16th
centuries under the patronage of the powerful Medici family. Some of the greatest
names in Renaissance art are associated with the city, including Leonardo da Vinci,
Botticelli and Michelangelo. The poet Dante, the political theorist Machiavelli and the
scientist Galileo also lived and worked in Florence. Buildings like the Pitti Palace,
Uffizi Gallery and Florence Cathedral are among the masterpieces of Renaissance
architecture. The Legacy of Venice To present-day tourists, Venice is renowned for its
picturesque canals and its lack of motorized vehicles …
Query1: 3 people who were important of the european renaissance time period
Query2: what are the italian renaissance cities

Figure 1: A case for scope hypothesis in long document. The
document contains multiple topics, and the relevance to a
query may vary across different parts of the document.

Recently, pre-trained language models (PLMs), e.g., BERT
(Devlin et al. 2019), RoBERTa (Liu et al. 2019), DeBERTa
(He et al. 2021), have dominated the field of IR in deep rep-
resentation learning literature, as they are readily adapted to
capture token-wise correlations and produce generic repre-
sentations by fine-tuning. In the common practice of PLMs,
a pair of text pieces (i.e., a query and every document in our
task) should be concatenated to pass into the models (Devlin
et al. 2019) for fine-grained relevance measurement – known
as cross-encoder that performs very competitively – however
cannot meet the efficiency requirement due to combinatorial
explosion in terms of online PLM inference (Zhang et al.
2022a; Ren et al. 2021). In contrast, a bi-encoder (a.k.a. dual-
encoder or two-tower) leverages the PLMs to embed queries
and documents individually into a single vector in the same
dense semantic space, and then query-document relevance
can be derived by a lightweight metric (e.g., dot-product)
(Reimers and Gurevych 2019). The bi-encoder enables of-
fline document embeddings and satisfies the online efficiency
requirement, so it has become the de facto model choice for
PLM-based large-scale retrievers. However, the bi-encoder
is vulnerable to information bottleneck by the single dense
vector and thus lags behind the cross-encoder considerably
(Wang et al. 2022; Gao and Callan 2022).

To narrow the performance gap against cross-encoder, a
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recently advanced technique to train bi-encoder is distilling
list-wise relevance score distributions from cross-encoder
during contrastive learning (Zhang et al. 2022a; Ren et al.
2021). This technique merely affects the training process of a
bi-encoder and has been proven to improve the generalization
ability of bi-encoder (Menon et al. 2022), leading to better
retrieval quality without any sacrifice of inference efficiency.

Nonetheless, such a distillation technique to improve bi-
encoder has proven effective merely in the scenarios where
the targeted text pieces are usually short semantic units (e.g.,
sentences (Liu et al. 2022b) and passages (Ren et al. 2021))
with an almost single topic. In contrast, long document re-
trieval usually targets super-long documents with up to thou-
sands of words (cf. 65 words per passage (Nguyen et al.
2016)). Considering the scope hypothesis (Robertson and
Zaragoza 2009) that a long document may cover multiple
topics (see a case in Figure 1), distilling knowledge from a
cross-encoder to bi-encoder is prone to become less effective.
This is likely because modeling long documents maximizes
their heterogeneity in terms of visibility – cross-encoder ex-
plicitly models the query-dependent salience part (e.g., a
sentence) whereas bi-encoder directly models the whole into
a query-agnostic dense bottleneck – thus such a brute-force
distillation suffering from the granularity mismatching. In our
pilot experiments, the brute-force distillation can only bring
0.1% gain on long document retrieval after extensive tuning,
in contrast to > 1% gain frequently observed in passage
retrieval (Ren et al. 2021).

Thereby, we aim to improve the knowledge distillation
from a cross-encoder to a long-document retriever by cir-
cumventing the granularity mismatching problem. Instead of
knowledge distillation at the long-document level, we pro-
pose a brand-new bi-encoder learning framework, dubbed
fine-grained distillation (FGD), for large-scale retrieval over
long documents. It operates on multi-vector distillation cross-
ing fine granularity merely in the training phase while
keeping single-vector retrieval during inference. To derive
fine-grained representations without cross-granular conflict,
we first propose a global-consistent granularity embedding
method, which enables dynamic contextualization visibility
(e.g., passage, sentence) over a long document. Then, we
present a local-coordinating score distilling strategy, which
replaces global (i.e., document-level) distillation, for long-
document retriever training. In addition, to empower our dis-
tillation strategy, we propose a hierarchical negative mining
technique to produce hard negatives throughout granularity.

In the experiments, we conduct an extensive evaluation of
our proposed framework on two document retrieval bench-
mark datasets, i.e., MS-Marco document retrieval (Nguyen
et al. 2016) and TREC 2019 Deep Learning track (Craswell
et al. 2020). The experimental results show that our method
achieves state-of-the-art performance compared with other
strong competitors. In addition, we verify the generality of
our framework by evaluating it on different long document
retrievers paired with different cross-encoder teachers.

There are main contributions of our paper:
• We propose a novel fine-grained distillation (FGD) frame-

work for large-scale retrieval over long documents. FGD
is trained with multi-vector distillation crossing fine gran-

ularity while keeping single-vector retrieval in inference.
• We introduce a global-consistent granularity embedding

method, which helps to derive fine-grained representations
without cross-granular conflict.

• We present a local-coordinating score distilling strategy
and a hierarchical negative mining technique to produce
hard negatives throughout granularity, which further em-
powers our distillation strategy.

• Our proposed method achieves state-of-the-art perfor-
mance on two long-document retrieval benchmarks.

Related Work
Retriever Training with Distillation. To improve dense
passage retrieval, a trend is to conduct distillation from a
cross-encoder-based ranker to a dense retriever, where the
ranker can be well-trained in advance (Lin, Yang, and Lin
2021; Zhou et al. 2023) or updated along with the bi-encoder
(Zhang et al. 2022a). In contrast to the conventional setting,
distillation in retrieval does not focus on model compression
but aims to distill features from different retriever architec-
tures to learn knowledge from different semantic perspectives
(Menon et al. 2022). In distillation in retrieval, a well-trained
ranker is widely used as the teacher model to produce weak
labels on large-scale unlabeled query-document pairs (Ren
et al. 2021; Lu et al. 2022). To explain this, Menon et al.
(2022) conduct a theoretical study to prove the distillation
alleviates over-fitting of the bi-encoder training. However,
these methods only investigate improving passage retrievers
by distillation, regardless of the inherent scope hypothesis
and the granular-mismatch issue in long-document retrieval.

Multi-granular Representation. In information retrieval,
multi-granular representation learning attracts increased inter-
est from the community as it can either break the information
bottleneck to represent text from multiple views (Zhang et al.
2022b) or represent fine-grained semantic units for specific
tasks (Lee et al. 2021; Zheng et al. 2020). In contrast, we
aim to leverage multi-granular representation as the medium
to distill fine-grained relevance information during learning,
thus without extra overheads to calculate or/and store multi-
ple vectors during inference.

Multi-granular Distillation. Recently, knowledge distilla-
tion, as a critical technique for model compression in NLP,
has been widely applied to PLMs for compact ones (Chen
et al. 2017). These works focus on contextualized embedding
or attention maps for individual tokens, regardless of various
semantic units with vital contextual information. Motivated
by this, Liu et al. (2022a) propose multi-granularity knowl-
edge distillation to exploit information of multi-granularity
language units for model compression. However, this work
is only applicable to homogeneous distillation, i.e., the same
model family, which is however the opposite of our target.
Therefore, we present a new strategy to distill fine-grained
information between the heterogeneous structures.

Hard Negative Mining. Hard negative mining (Khattab
and Zaharia 2020; Zhang et al. 2022a; Qu et al. 2021) has
been proven very effective in contrastive learning for text
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Figure 2: An overview of our fine-grained distillation (FGD) for long-document retrieval. FGD uses a global-consistent granularity
embedding method to produce representations for different granularity in a document. Then, FGD applies a local-aligned score
distilling strategy to learn from a cross-encoder teacher at each granularity level. Finally, a hierarchical hard negative mining
provides negative samples across granularity.

representation of retrievers. In contrast to random or in-batch
negatives, it finds more challenging negatives for a pair of an
anchor (i.e., query) and its positive example. They compose
effective contrastive samples to help model learn against
contextual nuance between the positive and negatives. At
the early stage, a large number of works employ the off-the-
shelf BM25 retriever to fetch negative from a large collection
(Karpukhin et al. 2020), which greatly boosts the retrievers.
Furthermore, recent works (Gao and Callan 2021, 2022) lever-
age a retriever to sample retriever-specific hard negatives for
each query, which are considered the most challenging nega-
tives. But, the involved mining techniques are focused only
on sequence-level hard negatives, partially incompatible with
our goal. Thereby, we adapt previous methods to efficiently
mine fine-grained negatives with minor modifications.

Methodology
Task Definition. Considering a large-scale collection with
numerous long documents (i.e., D = {di}|D|i=1 where each
di denotes a document), large-scale retrieval is to fetch top-
relevance documents (i.e., D̄q) by a retriever (e.g., M) for a
text query q. This requires M to calculate every relevance
score sqi between the q and ∀di ∈ D, where i ∈ [1, |D|].
In the remaining, we will omit the superscript ‘q’ for clean
demonstration if no confusion is caused.

Bi-encoder Learning with Distillation
To meet the efficiency requirement of large-scale retrieval,
a de facto scheme (Gao and Callan 2021, 2022; Wang et al.
2022) is to leverage a bi-encoder for the relevance score. It
encodes each query and document individually into dense
semantic space and derives the score usually by a lightweight
metric (e.g., dot-product, cosine similarity), i.e,

s(be) := M(be)(q, d|θ(be)) =< u,v >:= (1)

< Enc(q|θ(q)),Enc(d|θ(d)) >, ∃d ∈ D,

where < ·, · > denotes a non-parametric dot-product,
Enc(·|θ(*)) denotes a θ(*)-parameterized encoder that em-

beds a piece of text into a dense vector, and θ(be) = θ(q)∪θ(d)

parameterize the bi-encoder where the query and document
encoders can be tied in terms of parameters.

Then, the training of retrieval-related models (e.g., bi-
encoder learning θ(be) here) is usually formulated as a con-
trastive learning problem. That is, only a positive document
d+ is given as a golden label for the query q, while a set of
negative documents d− ∈ N also should be mined in light
of (q, d+) for contrastive learning (Gao and Callan 2022).
Basically, a BM25 or a trained retriever is usually employed
to mine the negatives. Providing d+ and N, we derive a score
distribution over them,

p(be) := P (d|q, {d+} ∪ N; θ(be)) = (2)

exp(M(be)(q, d|θ(be))/τ)∑
d′∈{d+}∪N exp(M(be)(q, d′|θ(be))/τ)

,

where ∀d ∈ {d+} ∪ N and τ denotes the temperature set to
1. Next, the training loss of contrastive bi-encoder learning
can be simply written as

L(cl) = −
∑

q
logP (d = d+|q, {d+} ∪ N; θ(be))

= −
∑

log p
(be)
[d=d+]. (3)

To improve the bi-encoder’s generalization ability and
boost its retrieval qualities, a common practice is to distill
score distributions from a cross-encoder to the bi-encoder
retriever. In general, a cross-encoder is frequently defined as
a classifier that a Transformer encoder followed by a one-
way-out multi-layer perceptron (MLP), i.e.,

s(ce) := M(ce)(q, d|θ(ce)) = (4)

Transformer-cls([CLS]q[SEP]d[SEP]| θ(ce)),

where s(ce) ∈ R and θ(ce) parameterizes this cross-encoder.
Here, q and d concatenated with special tokens are passed into
the self-attention encoder to enable token-level interaction,
capture fine-grained nuance, and produce a precise relevance
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score. Note that, θ(ce) can be either well-trained in advance
(Gao and Callan 2022; Zhou et al. 2023) or updated along
with the bi-encoder (Ren et al. 2021; Zhang et al. 2022a),
while we opt for the former but without loss of generality.
Next, we can also obtain p(ce) := P (d|q, {d+} ∪ N; θ(ce)) as
in Eq.(2). Last, the loss function of this distillation is

L(kd) = KL-Div(p(be)∥p(ce)). (5)

So, the final training loss for the bi-encoder learning with
distillation is written as λL(cl) + L(kd).

Global-consistent Granularity Embedding
Although the bi-encoder learning with distillation has been
proven very effective in passage retrieval (Wang et al. 2022)
or sentence matching (Reimers and Gurevych 2019), its
efficacy will be diminished when directly applied to long-
document retrieval due to granularity mismatch. This is be-
cause the cross-encoder defined in Eq.(4) is able to focus
only on the q-relevant topic of d via its fine-grained self-
attention mechanism, regardless of other topics in the scope
hypothesis. By comparison, the bi-encoder defined in Eq.(1)
is constrained by its representation bottleneck (i.e., fixed-
length low-dimensional vector by Enc(·)), so it can only
produce q-agnostic d representations as a whole.

To break the bottleneck during distillation, we propose to
perform knowledge distillation over fine-grained text pieces
instead of the whole document. However, an open question
remains about how to derive consistent embeddings across
granularity. In particular, to produce consistent embeddings,
previous methods directly apply mean-pooling over contex-
tual embeddings for different granularity, which however
becomes inferior when the document length goes extremely
long and has proven less effective in our pilot experiments.
This is the reason why most previous document retrieval
works rely on [CLS] embedding paradigm (Ma et al. 2022;
Xiong et al. 2021; Zhan et al. 2021b).

Thereby, to better align with the prevalent [CLS] embed-
ding paradigm, we present a global-consistent granularity
embedding method. Specifically, ‘[CLS] embedding’ de-
notes using the contextual embedding of [CLS] to represent
the whole sequence, which is equivalent to applying a self-
attention pooling (Lin et al. 2017; Shen et al. 2018) to the
penultimate layer, i.e.,

vd = Transfm-Enc([CLS]d[SEP]|θ(d))[CLS]

= FFN(
∑

i∈[1,|d|]
σ(α[CLS]←di

)h′i) (6)

where i denotes the token index in d, h′i denotes a hidden
state for token di from the previous layer, σ denotes a non-
linear function and usually softmax, α[CLS]←di

denotes an
attention probability from [CLS] to di, and FFN denotes
post-processes including MLP and residual connection de-
fined in the Transformer. The attention scores are calculated
between global embedding h′[CLS] and each token embedding
h′i by the attention module in the last layer of the Transformer
(Vaswani et al. 2017). Then, following such global-aware at-
tention pooling, we can leverage the off-the-shelf attention
scores to produce global-consistent embeddings across gran-
ularity. Formally, given an arbitrary text span x ∈ d with the

token indices [bx, ex], its global-consistent embedding can
be written as

vx = Enc(x|d; θ(d))

:= FFN(
∑

i∈[bx,ex]
σ(α[CLS]←di

)h′i). (7)

Consequently, we can readily derive representation for
various granularity, e.g., passages and sentences, via
Enc(x|d; θ(d)).

Remark on Propagation. Besides the mean-pooling meth-
ods (Reimers and Gurevych 2019), a recent trend to get multi-
granular representation is employing graph neural network
(GNN) (Wu et al. 2021) for deep embedding propagation
(Zheng et al. 2020). Both of them focus on fine-grained rep-
resentations rather than document-level ones and target the
final applications of the representations, e.g., open-domain
and context-based question answering. Standing with a dis-
tinct motivation, we still focus on the single document-level
bottleneck but leverage fine-grained representations as the
intermediate for knowledge distillation. This necessitates the
paradigm of original global [CLS] representation, which re-
quires consistency between document-level and fine-grained
representations without complicated embedding propagation.

Local-aligned Score Distilling
After applying Enc(x|d; θ(d)) to fine-grained text piece in d,
we obtain fine-grained representations, respectively. That is

vxj
k =Enc(xj

k|d;θ
(d)), j ∈ [0,M ],k ∈ [1,Kj ], (8)

where j is the index of granularity, M denotes the total num-
ber of granularity, i is the index of text piece in j-th gran-
ularity, and Kj denotes the number of total text pieces in
j-th granularity. Here, j = 0 denotes the granularity at the
document level, leading to K0 = 1 and d = x0

1. Then, we
rewrite Eq.(1) to score multi-grained pieces as

s
(be)
j,k := M(be)(q, xj

k|d; θ
(be)) =< u,vxj

k >

:=< Enc(q|θ(q)),Enc(xj
k|d; θ

(d)) > . (9)

Next, following Eq.(2), we can also derive multi-granular
score distributions as

p
(be)
j,k := P (xj

k|q, {x
j
k+} ∪ Nj

k; θ
(be)) = (10)

exp(M(be)(q, xj
k|d; θ(be))/τ)∑

x′j
k ∈{x

j
k+}∪N

j
k
exp(M(be)(q, x′jk |d; θ(be))/τ)

,

where Nj
k is a set of negative samples in j-th granularity,

which we dive into in the next sub-section.
After, we could apply the cross-encoder to each pair of q

and xj
k and its negative pairs for multi-granular distributions.

It is noteworthy that differing from the bi-encoder, the score
between the q and each xj

k by cross-encoder is based solely
on xj

k, independent of the other parts in d. This is because, in
contrast to our bi-encoder that takes global-consistent fine-
grained representations to align document-level bottleneck
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learning, the cross-encoder here aims to provide precise rele-
vance scores to describe q-xj

k relationships exactly. So, we
obtain the cross-encoder’s relevance scores by

s
(ce)
j,k := M(ce)(q, xj

k|θ
(ce)). (11)

It is straightforward to get multi-granular score distribution
by cross-encoder, i.e., p(ce)

j,k := P (xj
k|q, {x

j
k+} ∪ Nj

k; θ
(ce)).

Lastly, we can define the training loss of our multi-granular
aligned distillation as

L(fkd) =
∑

j∈[1,M ]

1

Kj

∑
k∈[1,Kj ]

KL-Div(p
(be)
j,k ∥p(ce)

j,k ), (12)

where KL-Div(·∥·) denotes the KL divergence between the
two distributions. It is remarkable that we do not include
j = 0 here as the document-level relevance is only learned
via contrastive learning. After replacing L(kd) in § with the
above L(fkd), we get the final training loss of our FGD, i.e.,

L(be)
θ(bi) = λL(cl) + L(fkd). (13)

Please refer to Figure 2 for the illustration.

Remark on Overheads. The first thought that comes into
our mind is that such extensive knowledge distillation from
a heavy network will lead to massive training computation
overheads. On the side of the student bi-encoder, there is
only a little extra computation (i.e., applying the attention
pooling multiple times with off-the-shelf attention scores as
defined by Eq.(7)) in the top layer of the Transformer. On
the side of the teacher cross-encoder, as the overheads grow
quadratically with sequence length (i.e., O(n2)), applying
cross-encoder to sub-granularity (e.g., passage and sentence)
only results in a complexity of O(n log n). Thereby, the com-
plexity of FGD in invoking cross-encoder is even less than the
traditional document-level distillation. Again, we would like
to mention that we still use one single bottleneck vector to rep-
resent each document instead of multiple vectors (Santhanam
et al. 2021; Humeau et al. 2020), where multi-granular em-
beddings only as the intermediate for distillations.

Hierarchical Hard Negative Mining
Hard negative mining has been proven very effective in
achieving competitive performance by many previous works
(Xiong et al. 2021; Wang et al. 2022). It leverages the best-
so-far retriever to retrieve hard examples (i.e., top-relevant
documents but not d+) for each query q, which are used as
negative documents N for the next round of retriever training.

Nonetheless, as formulated in Eq.(10), negative text pieces
Nj

k are needed to sample at each j-th granularity. Notably, we
cannot get the precise gold label(s) at every sub-document
granularity xj

k+ in Eq.(10) except for the gold document
d+ (i.e., j = 0). As a weakly-supervised remedy (Yang
et al. 2022), we regard each xj

k ∈ d+ as a positive text
piece during our multi-granular aligned distillation. Thereby,
we present a simple yet effective hierarchical hard negative
mining technique from top to bottom. That is,

Nj
k = {xj

k−|x
j
k− ∼M(be)(q, xj

k|d; θ
(be)) (14)

∧ xj
k ∈ Nj−1

∗ }, (15)

Fine-Grained Distillation

Model Initialization

Hard Negatives Mining

Pre-trained
LM encoder

Well-trained
Re-ranker

Retriever
Stage-2

Retriever
Stage-1

Hard Negatives Mining

Figure 3: The pipeline of our method.

where Nj−1
∗ denotes all negatives in (j − 1)-th granularity

and N0 = D \ {d+}.

Experiments
Datasets and Metrics. In experiments, we conduct exten-
sive evaluations of our method on the two long-document
retrieval benchmark datasets: MS-Marco Doc (Nguyen et al.
2016) and TREC Deep Learning 2019 document retrieval
(TREC 2019) (Craswell et al. 2020). Following previous
works (Ma et al. 2022), we use official metrics MRR@100
and Recall@100 (R@100) to report evaluation results on
MS-Marco dev, while using nDCG@10 and Recall@100 for
TREC 2019.

Pre-training & Fine-tuning Pipeline
Following previous works (Ma et al. 2022), we detail our
pre-training and fine-tuning pipelines (shown in Figure 3) for
document retrieval by FGD.

Stage-0: Pre-training. Initialing a model by self-
supervised pre-training has been proven effective by numer-
ous works (Xiong et al. 2021; Zhan et al. 2021b; Ma et al.
2021, 2022), which can be categorized into two groups, i.e.,
general pre-training and corpus-aware pre-training. Specifi-
cally, the former is referred to as PLMs that are pre-trained on
general corpora by language modeling (e.g., RoBERTa (Liu
et al. 2019)). Built upon the former, the latter is proposed for
continual pre-training on the collection corpus by language
modeling and/or pseudo-label training (e.g., coCondenser
(Gao and Callan 2022) and SimLM (Wang et al. 2022)). In
this work, we test our framework on both, corresponding
to RoBERTa and ED-MLM (Wang et al. 2022). In addition,
following all previous works in document retrieval (Xiong
et al. 2021; Zhan et al. 2021b), we also conduct a supervised
pre-training on passage retrieval by default.

Stage-1: Warmup Fine-tuning. Providing the document-
level hard negatives mined by the pre-trained retriever, the
first fine-tuning step is based solely on the contrastive learn-
ing loss defined in Eq.(3) to warm up in retriever for docu-
ment retrieval (Zhan et al. 2021b; Wang et al. 2022).

Stage-2: Continual Fine-tuning. Upon the retriever from
the warmup, the hard negative mining is invoked again for
more challenging negatives. In contrast to previous works
merely employing the contrastive learning (Ma et al. 2022),
we apply FGD by Eq.(13) for more competitive results.

Main Results
MS-Marco Doc. As shown in Table 1, our FGD consis-
tently achieve the best performance across the two metrics
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Method Corpus-aware MS-MARCO Doc Dev TREC 2019 Doc

MRR@100 R@100 nDCG@10 R@100

Sparse or lexicon retriever

BM25 0.277 0.808 0.519 0.395
DeepCT (Dai and Callan 2019) 0.320 - 0.544 -
BestTRECTrad (Craswell et al. 2020) - - 0.549 -

Dense retriever

ANCE (Xiong et al. 2021) 0.377 0.894 0.610 0.273
BERT (Ma et al. 2022) 0.389 0.877 0.594 0.301
STAR (Zhan et al. 2021b) 0.390 0.913 0.605 0.313
ICT (Lee, Chang, and Toutanova 2019) ✓ 0.396 0.882 0.605 0.303
PROP (Ma et al. 2021) ✓ 0.394 0.884 0.596 0.298
B-PROP (Ma et al. 2021) ✓ 0.395 0.883 0.601 0.305
SEED (Lu et al. 2021) ✓ 0.396 0.902 0.605 0.307
RepCONC (Zhan et al. 2022) 0.399 0.911 0.600 0.305
JPQ (Zhan et al. 2021a) 0.401 0.914 0.623 -
ADORE+STAR (Zhan et al. 2021b) 0.405 0.919 0.628 0.317
SeDR (Chen et al. 2022) 0.409 0.921 0.632 0.343
COSTA (Ma et al. 2022) ✓ 0.422 0.919 0.626 0.320

FGD-STAR (ours) 0.430 0.915 0.629 0.338
FGD (ours) ✓ 0.440 0.925 0.635 0.349

Table 1: Comparison results on MS-Marco and TREC 2019 datasets.

on MS-Marco document retrieval benchmark. Compared to
STAR (Zhan et al. 2021b), our FGD-STAR exhibits 4%
MRR@100 absolute improvement and also outperforms
ADORE+STAR (Zhan et al. 2021b). When coupled with
corpus-aware pre-training, ED-MLM (Wang et al. 2022),
FGD achieves state-of-the-art performance, surpassing care-
fully designed COSTA model (Ma et al. 2022).

TREC Deep Learning 2019 Doc. It is observed that our
method is superior to its baselines and competitors consis-
tently in Table 1, and achieves state-of-the-art effectiveness
across different metrics on TREC Deep Learning 2019 Doc.

Ablation Study and Model Choice
To further investigate the contribution of each part in our
model, we conduct an ablation study as shown in Table 2.

Distillation Medium. In our FGD framework, we opt in to
distill the ranker’s relevance information in fine granularity
(i.e., passage and sentence), however without document-level
distillation for the sake of granularity mismatch. As listed in
the table, discarding fine-grained distillation at either the pas-
sage (pass) or sentence level leads to a 0.5% MRR@100 drop.
Interestingly, equipping our proposed FGD with document-
level distillation results in a 0.4% MRR@100 drop, which
verifies severity of the granularity mismatch issue.

Fine-grained Representation. To verify the global-
consistent granularity embedding in our proposed model,
we evaluate our FGD with other schemes to derive the fine-
grained representation for distillation medium. First, by re-
placing our global-consistent embedding with mean-pooling
over the corresponding tokens for fine-grained representation
(i.e., FGD w/ FG pooling), there is global-local inconsis-
tency to derive representation, diminishing the model by

1.4% MRR@100. Second, to alleviate the inconsistency, we
also try to obtain all embeddings at different granularity with
mean-pooling (i.e., FGD w/ All pooling), but there is still a
1.5% MRR@100 gap from our main result. This is because
mean-pooling become inferior when representing a long text.
Third, instead of leveraging contextualized fine-grained rep-
resentation in our FGD, we make the text inputs symmetric
between the retriever and ranker by separating text pieces
into passages and sentences (i.e., FGD w/ Separate Pieces).
Despite all representations derived from [CLS], results show
non-contextual representations still cause 1.1% MRR@100
drop due to less effectiveness of the distillation process.

Baseline Methods. To check exact improvement brought
by FGD, we ablate all our major modules. First, we remove
all the fine-grained distillation but opt in mere document-level
distillation, leading to 42.8% MRR@100 (-1.2%). Second,
we fine-tune a retriever at stage 2 without any distillation,
resulting in 42.7% MRR@100 (-1.3%).

Further Analysis

Compatibility with Other Retriever/Ranker. To verify
the generality of our proposed distillation framework, we
replace either retriever backbone (i.e., the student model) or
ranker model (i.e., the teacher model) in our FGD framework.
As shown in Table 3, when replacing ED-MLM initialization
with STAR (Zhan et al. 2021b) for the retriever, the fine-
tuned results still exhibit consistent improvement, i.e., 1.3%
MRR@10 over its baseline, STAR retriever at stage 2. Then,
when replacing the used ranker, R2anker, with a document
ranker by (Gao, Dai, and Callan 2021), a remarkable improve-
ment (+1.1% MRR@10) is still observed in contrast to its
baseline, i.e., fine-tuning ED-MLM encoder w/o distillation.
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Method MARCO Dev

MRR@100 R@100

FGD (stg2) 0.440 0.925

Distillation Medium
♢ FGD w/o pass-distill 0.435 0.924
♢ FGD w/o sent-distill 0.435 0.925
♢ FGD w/ doc-distill 0.436 0.924

Fine-grained Representation
♢ FGD w/ FG pooling 0.426 0.924
♢ FGD w/ All pooling 0.425 0.923
♢ FGD w/ Separate Pieces 0.429 0.924

Baseline Methods
♢ only doc-distill 0.428 0.923
♢ w/o ALL 0.427 0.923

Table 2: Ablation study. ‘FG’ is ‘fine-grained’, ‘w/o ALL’ is
equivalent to ‘ED-MLM’ at stage 2 (stg2).
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Figure 4: Comparison of our FGD (top left) and vanilla
document-level distillation (top right) model on the MS-
Marco test set; and the margins (bottom left) of FGD and
vanilla. Different γ for multi-vector retrieval (bottom right).

Generalization Improvement by FGD. Following Menon
et al. (2022), it is intuitive to leverage distributions of positive
scores, negative scores, and their margins for generalization
analysis. This is because a more generalizable retriever is
prone to produce higher relevance scores for positive pairs,
lower relevance scores for negative pairs, and larger margins
for test triples (i.e., a query, its positive and negative). In Fig-
ure 4, compared to document-level distillation, the proposed
FGD is more capable of distinguishing a positive pair from
the negative ones, revealing its generalization.

Multi-vector Retrieval. The multi-grained representations
across documents, passages, and sentences allow us to break
single-vector information bottleneck and perform multi-
vector retrieval. Despite unsatisfactory retrieval based on
either passage- or sentence-level embeddings, we find that
it is effective to complement document-level vectors with
fine-grained ones, i.e.,

s(be) := s(be) + γ · (max
i

(s
(be)
1,i ) + max

j
(s

(be)
2,j )).

As such, we tune the hyperparameter γ by grid search in
Figure 4 and find model achieves optimal performance when

Method MARCO Dev

MRR@100 R@100

FGD (ED-MLM + psg-ranker) 0.440 0.925

Replacing the bi-encoder (student) retriever

STAR (stg2) 0.417 0.914
FGD (STAR as student) 0.430 0.915

Replacing the cross-encoder (teacher) ranker

ED-MLM (stg2) 0.427 0.923
FGD (doc-ranker as teacher) 0.438 0.923

Table 3: Results with the other retriever or ranker.

Method MARCO Dev Doc

MRR@100 R@100

Previois SoTA 0.422 0.919
FGD 0.440 0.925
FGD + multi 0.444 0.926

Table 4: FGD with multi-vector (i.e., ‘multi’) retrieval.

Method MARCO Dev Doc

MRR@100 R@100

FGD (global-consistent) 0.440 0.925
- FGD w/ RGAT 0.441 0.925
- FGD w/ FG pooling 0.426 0.924

Table 5: Comparisons on MS-Marco dev w.r.t. different meth-
ods to derive fine-grained representations.

γ = 0.4. As listed in Table 4, our multi-vector retrieval can
bring 0.4% absolute improvement to hit 44.4% MRR@100.

Fine-Grained Propagation. In addition to our global-
consistent granularity embedding method, we also present
two fine-grained representation derivation methods: FG pool-
ing that use mean-pooling to aggregate the corresponding to-
kens and RGAT that leverage position- & granularity-specific
features for deep graph propagation (Busbridge et al. 2019).
Although the latter excels fine-grained representation, it is
likely to break our local-global representing consistency and
be redundant against the deep contextualized Transformer
encoder. Thus, despite complexity, results shown in Table 5
are similar to those of the more concise FGD.

Conclusion
In this work, we propose a new knowledge distillation frame-
work for long-document retrieval, called fine-grained distil-
lation (FGD). Integrated with the hierarchical hard negative
mining technique, the proposed framework produces fine-
grained representations consistent with the global document-
level one and then distills multi-granular score distributions
from a heterogeneous cross-encoder. The proposed frame-
work will not affect the long-document retrieval procedure in
terms of both retrieval paradigm and efficiency. The exper-
iment results show that the proposed framework achieves a
state-of-the-art quality in document retrieval and is compat-
ible with a broad spectrum of baseline choices in terms of
both the bi-encoder student and the cross-encoder teacher.
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