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Abstract

As an effective tool for eliciting the power of Large Lan-
guage Models (LLMs), prompting has recently demonstrated
unprecedented abilities across a variety of complex tasks. To
further improve the performance, prompt ensemble has at-
tracted substantial interest for tackling the hallucination and
instability of LLMs. However, existing methods usually adopt
a two-stage paradigm, which requires a pre-prepared set of
prompts with substantial manual effort, and is unable to per-
form directed optimization for different weak learners. In this
paper, we propose a simple, universal, and automatic method
named PREFER (PRompt Ensemble learning via Feedback-
REflect-Refine) to address the stated limitations. Specifically,
given the fact that weak learners are supposed to focus on
hard examples during boosting, PREFER builds a feedback
mechanism for reflecting on the inadequacies of existing
weak learners. Based on this, the LLM is required to automat-
ically synthesize new prompts for iterative refinement. More-
over, to enhance stability of the prompt effect evaluation, we
propose a novel prompt bagging method involving forward
and backward thinking, which is superior to majority voting
and is beneficial for both feedback and weight calculation in
boosting. Extensive experiments demonstrate that our PRE-
FER achieves state-of-the-art performance in multiple types
of tasks by a significant margin. We have made our code pub-
licly available.

Introduction
Large Language Models (LLMs) have recently flourished
across a variety of fields, demonstrating unprecedented abil-
ities in myriad of complex tasks (Zhao et al. 2023b; Ouyang
et al. 2022). Trained with large-scale web data on massive
parameters, LLMs show emergent abilities beyond the orig-
inal linguistic competence (Wei et al. 2022a), which perform
tremendous versatility in both academia and industry. To
elicit the power of pretrained LLMs directly or adapt LLMs
to specific domains, various paradigms are proposed, includ-
ing prompt engineering (Qiao et al. 2022), p-tuning (Liu
et al. 2021), and LoRA finetuning (Hu et al. 2021), etc. Due
to the immense scale of the model parameters, finetuning on
all or even part of LLMs is costly and time-consuming. To
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Figure 1: High-level overview of feedback-reflect-refine
paradigm. pt denotes the prompt at the t-th iteration.

this end, as a simple and effective paradigm, prompt engi-
neering explores a fundamentally new way of invoking in-
trinsic knowledge and reasoning ability of LLMs based on a
pretrain-prompt-predict manner (Liu et al. 2023).

Though promising, the naı̈ve prompting approaches are
afflicted by several limitations. As generative language mod-
els, LLMs’ output commonly has a large variance. For in-
stance, the reasoning logic and predicted results could be
contradictory in multiple runs, although the input prompts
are fixed. In addition, LLMs suffer from the notoriously hal-
lucination issue (Ji et al. 2023), leading to results that are
plausible-sounding but factually incorrect or irrelevant to the
inputs. Furthermore, the quality of LLMs’ output is suscep-
tible to the given prompts, which entails substantial manual
effort and domain expertise to find out the reliable prompts.

As a promising solution to these issues, prompt ensem-
ble learning has attracted substantial interest in the commu-
nity very recently, demonstrating significant improvements
in both effectiveness and stability across various tasks. As
a representative work, PromptBoosting (Hou et al. 2023)
applies the traditional ADABOOST (Freund and Schapire
1997) algorithm over a set of pre-defined prompts for text
classification. BPE (Pitis et al. 2023) focuses on Chain-of-
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Thought (CoT) (Wei et al. 2022b) boosting and builds few-
shot CoT prompts based on self-consistency (Wang et al.
2022). These efforts empirically demonstrate the strength
of prompt ensembles for LLM-based tasks, yielding excep-
tional performance gains over single-prompt baselines.

However, despite their success, existing prompt ensem-
ble approaches, which typically adopt a two-stage process,
have several limitations. First, they require a pre-prepared
set of prompts in advance, which are either manually de-
fined or generated by another language model with heavy
parameters. This preliminary work is costly and laborious,
often involving a trial-and-error or pre-evaluation process to
ensure the quality of pre-defined prompts. Second, the two-
stage paradigm fixes the prompts to be used in the ensemble
process, limiting the adaptability and scalability of prompt
boosting, as the prompts cannot be optimized jointly. Since
the relationships between prompts are ignored during the
iterative boosting process, the pre-defined prompts tend to
be sub-optimal and susceptible. Moreover, existing methods
conduct ensembles either in boosting or in bagging individ-
ually, neglecting the potential benefits of combining the two
worlds to enhance performance.

To alleviate the above issues, we advocate that a smarter
paradigm for prompt ensemble in the era of LLMs is ex-
pected to be automatic, self-adaptive and joint-optimizable.
Such paradigm reduces the need for manual effort and do-
main expertise, as well as takes prompt relations into consid-
eration for directed optimization. Accordingly, we propose
a simple, automatic and universal approach called PREFER
(PRompt Ensemble learning via Feedback-REflect-Refine),
towards a more effective prompt ensemble via utilizing
the generative and reflective capabilities that LLMs excel
at (Madaan et al. 2023). As shown in Figure 1, our PREFER
adopts a feedback-reflect-refine circle for prompt boosting.
Concretely speaking, inspired by the fact that weak learn-
ers pay more attention to hard examples via weight redis-
tribution during boosting, we propose to transfer this hard-
sample-oriented weighting into nature language feedback,
which returns error information to the LLM for reflection.
Hence, considering the reflection information, the LLM per-
ceives the inadequacies of existing prompts and is able to
generate new prompts to refine them purposefully. Attribute
to the feedback-reflect-refine path, the LLM jointly opti-
mizes the downstream tasks solving and prompt generation
in an automatic manner. Iterating along this path, potential
conflict and redundancy among prompts are reduced, which
is vital for building a more stable and faster learner.

Furthermore, to adequately unleash the ability of each
prompt and further enhance the stability during boosting,
we propose a bilateral bagging approach, which incor-
porates forward and backward thinking for multi-source
verification. Specifically, drawing inspiration from human
decision-making, wherein uncertain answers are often re-
solved through a process of elimination, we instruct the
LLM to compute a confidence score for each response and
subsequently filter out the most uncertain answers. Given
the observed tendency of LLMs to overestimate confidence
in their predictions (Zhao et al. 2021), our bilateral bag-
ging approach assesses the responses from both forward and

backward directions, in which the overconfidence bias can
be counteracted subtly. The empirical results demonstrate
the superiority of our bilateral bagging approach compared
to other regular methods such as majority voting in both ef-
fectiveness and efficiency.

We conduct extensive experiments and in-depth case stud-
ies on a number of tasks, including reasoning, topic classifi-
cation, hate speech discrimination, etc. The empirical results
testify the effectiveness of our PREFER approach. Moreover,
PREFER shows superiority in both stability and efficiency
compared to existing approaches.

Related Work
Large Language Models
Nowadays, Large Language Models (LLMs) have made rev-
olutionary progress and posed significant impact on various
artificial intelligent community (Zhao et al. 2023b; Ouyang
et al. 2022). According to the scale law, LLMs demonstrate
unprecedent power (called emergent abilities) with the rapid
growth of model parameters and data volume (Wei et al.
2022a). For instance, the most prominent applications in-
cluding ChatGPT and GPT-4 (OpenAI 2023) have shown
surprising reasoning ability, human-like conversation skills,
as well as a rich reserve of factual commonsense. Based on
the surprising emergent abilities, a series of classical algo-
rithms can evolve to a more intelligent version. In this paper,
we provide a pilot work on ensemble algorithm as a prelim-
inary study. We believe that our proposed approach could
not only simply serve as a strong baseline to foster future
research on prompt ensemble, but also shed light on the po-
tential research direction towards improving classical algo-
rithms with the power of LLMs.

Prompt Engineering
To invoke the power of LLMs, a series of approaches
have been proposed in the community, including parameter-
efficient fine-tuning (Hu et al. 2021; Liu et al. 2021) and
prompt engineering (Qiao et al. 2022; Liu et al. 2023), etc.
Due to the heavy weight of LLMs, fully or even partly fine-
tuning them is expensive and inefficient. Accordingly, as an
out-of-the-box paradigm, prompt engineering (aka prompt-
ing) has emerged as a new way for adapting pretrain-prompt-
predict path for downstream tasks.

Concretely, prompting adopts natural language as addi-
tional inputs, acting as instructions or hints to LLMs. For ex-
ample, GPT2 (Radford et al. 2019) allows for unsupervised
learning of LLM on multiple tasks through handcrafted task-
specific prompts. However, building prompts manually can
be expensive, biased and sub-optimal (Liu et al. 2023). An-
other line of works are devoted to conducting prompting in
an automatic way. STaR (Zelikman et al. 2022) utilizes a
simple loop to bootstrap LLMs with a self-taught manner,
in which Chain-of-Thought (CoT) (Wei et al. 2022b) ratio-
nale is iteratively generated to hint the question answering
process. Closer to our work, APO (Pryzant et al. 2023) it-
eratively optimizes the single prompt in a feedback manner,
which treats the textual reflection information as gradient in
classical deep learning.
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Figure 2: The pipeline of PREFER. Given the initial prompt p0, LLM partially solves the problem via incorporating backward
thinking. Then the error information will be used for prompt optimization through the feedback-reflect-refine process. Iterating
this process and finally ensembling prompts based on evolved weights.

Prompt Ensemble Learning
Prior studies have proven that LLMs have multiple reason-
ing paths for a single problem, which could lead to dis-
tinct outputs from identical inputs (Wang et al. 2022). To
this end, prompt ensemble learning has been presented as a
solution, which combines several individual prompts to ob-
tain better stability and generalization performance. Boost-
ing and bagging are two typical ensemble methods widely
adopted in numerous classical tasks, while their adaptation
on LLMs is still in its infancy. Current works for prompt
boosting typically utilize a two-stage paradigm. Prompt-
Boosting (Hou et al. 2023) has done a preliminary trial on
this way, which conducts the traditional ADABOOST (Fre-
und and Schapire 1997) algorithm over a pre-defined prompt
set for text classification. On the other hand, existing prompt
bagging approaches mainly rely on regular majority voting,
which can be computationally intensive. Notably, BPE (Pitis
et al. 2023) focuses on constructing few-shot CoT prompts
based on self-consistency (Wang et al. 2022), which offers
better performance than a single prompt in the case of in-
troducing exponentially additional computation. In this pa-
per, we propose a computation-efficiency prompt bagging
approach inspired by the human ethology, which incorpo-
rates prompt boosting for further performance improvement.

Our PREFER Approach
Preliminaries
In this section, we introduce preliminaries of our PREFER
approach, including the problem formulation and the dis-
mantling of key components.

Considering a reasoning or classification task driven by
LLMs, given the training data Dtr =

⋃
i{(xi, yi)}, the

goal of the proposed PREFER is to automatically construct a
prompt set P =

⋃
t{pt} along with prompt weights

⋃
t{λt}

via LLM-augmented ensemble learning, which can then be
utilized cooperatively for the subsequent inference. Here
xi ∈ X denotes the input texts and yi ∈ Y denotes the
output label. It is noted that an initial prompt p0 is provided
as the seed for the subsequent iteration. Instead of requiring

any supervised fine-tuning (SFT) or reinforcement learning,
our proposed PREFER utilizes out-of-box LLM API (e.g.,
ChatGPT or GPT-4) as the foundation model M for uni-
versality and flexibility. As illustrated in Figure 2, our PRE-
FER mainly contains two components, i.e. feedback-driven
prompt boosting and bilateral prompt bagging, which will
be elaborated in sections below.

Prompt Boosting via Feedback-Reflect-Refine
Before delving into the technical details of the proposed
prompt boosting approach, we first provide our design
principle, based on the thinking about what characteristics
should an intelligent prompt boosting have in the era of
LLMs. Review that boosting algorithms combine several in-
dividual weak learners to obtain better generalization per-
formance. Considering the fact that weaker learners are sup-
posed to pay more attention to hard samples during boost-
ing, we advocate that an intelligent boosting algorithm is
expected to understand what problems the previous weak
learners cannot solve. That is, instead of building prompts
individually, the relation among prompts should be consid-
ered for better performance and faster convergence. In an-
other vein, to reduce the manual effort, the prompt boost-
ing process should be automatic, where each prompt can be
constructed without manual intervention. Furthermore, the
prompt boosting should be universal and adaptive, for em-
powering any prompting-based task with the superiority of
ensemble learning seamlessly.

Our proposed PREFER embraces all the above design
principles, towards a simple, automatic and adaptive prompt
ensemble paradigm. Inspired by the classical boosting al-
gorithm such as ADABOOST (Freund and Schapire 1997)
and iterative prompting algorithms (Pryzant et al. 2023), we
adopt an iterative manner to build the prompt set where each
prompt is treated as a weak learner. As illustrated in Fig-
ure 2, acting as a weak learner, each prompt can only han-
dle part of the instance space, where new prompts will be
added to expand the solving space by introducing more in-
formation. Based on the error-ambiguity decomposition of
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Listing 1: solving prompt

# Task
Given two sentences, determine whether
sentence 2 provides an answer to the
question posed by sentence 1.

# Output format
Explain your reasoning process in one
sentence and Answer "Yes" or "No" as the
label.

# Prediction
Sentence 1: {text1}
Sentence 2: {text2}
Label:[]

Listing 2: feedback prompt

I’m trying to write a Textual Entailment
task prompt. My current prompt is: {prompt}
But this prompt gets the following examples
wrong: {error_info}

Give {num_feedbacks} reasons why the prompt
could have gotten these examples wrong. Wrap
each reason with <START> and <END>.

ensemble learning (Opitz and Shavlik 1995), the ensemble
error mathematically contains two parts:

Eensemble = Ē − Ā (1)

where Ē and Ā respectively denote the average error and the
average ambiguity (also called diversity) of individual weak
learners. Based on Eq.(1), the ensemble performance is pos-
itively correlated with both the accuracy and diversity of
weak learners. Considering this requirement, the prompt in
each iteration is supposed to focus on the hard examples that
the prompts in previous iterations cannot handle. Inspired by
the way human reflect and refine for improving performance
when tackling difficult tasks, we propose a feedback-reflect-
refine pipeline, asking the LLM to consider the relation of
prompts in the iteration, generate new informative prompts,
and optimize them jointly.

Concretely speaking, we define two types of prompt tem-
plates, namely the solving prompt and the feedback
prompt, which are respectively responsible for solving
downstream tasks and conducting the feedback process. Fol-
lowing In-Context Learning (ICL) (Dai et al. 2022), we
format both types of prompts with the component of the
instruction, demonstration and output format. Exemplary
cases of these two templates are illustrated in Listing 1
and Listing 2, respectively. Given the initial seed prompt p0
and the corresponding performance, we build the feedback
prompt based on the feedback template and the wrong exam-
ples. This is reminiscent of the gradient in deep learning op-
timization, which indicates the direction of model optimiza-
tion, the key difference lies that the feedback form changes
from numerical into textual. The feedback prompt will then
be fed to the LLM M for self-reflecting, and M provides a
series of reasons why the current prompt pt can solve some

examples well but not others. Based on the reflection, the
LLM is asked to generate new prompts in connection with
hard examples specified in the previous iteration. In detail,
the sampled wrong examples and corresponding textual la-
bels are combined to error info in Listing 2. Mathemat-
ically, this feedback-reflect-refine process can be formulated
via the Bayesian theory:

P(pt|X ,Y, pt−1) = P(Rt|X ,Y, pt−1) · P(pt|Rt) (2)

here Rt denotes the reflection of M at the t-th iteration. It is
noted that our PREFER only modifies the instruction of the
solving prompt, while other parts remain unchanged.

Close to our work, APO (Pryzant et al. 2023) also con-
ducts a feedback mechanism for prompt optimization. Nev-
ertheless, there are several intrinsic differences between
such iterative prompting method and our PREFER. First,
APO aims to search for a single prompt covering the largest
possible solution space, while our PREFER organizes a set
of prompts via ensemble learning, which works in tandem to
cover multiple sub-spaces. Second, our PREFER proposes an
effective bagging approach to reduce the variance of LLMs,
which is superior to the regular techniques such as beam
search or Monte Carlo search in APO. Experimental results
demonstrate that our PREFER outperforms APO by a large
margin with less computational cost and higher stability.

Bilateral Prompt Bagging
As shown in Eq.(1), the quality and stability of weak learn-
ers is essential to the ensemble performance. Due to the
generative property of language model, LLMs’ outputs are
highly sensitive to the input prompts, which affects the sta-
bility of both the feedback and weight calculation process.
To alleviate this issue, direct solutions include majority vot-
ing or beam search, which is commonly used in the commu-
nity (Wang et al. 2022; Li et al. 2023). However, these meth-
ods are computationally intensive, especially for LLMs with
massive parameters. Accordingly, to enhance the ability and
stability of each prompt with limited calculation burden, we
further propose a bagging approach called bilateral prompt
bagging, which draws inspiration from human behavior of
utilizing forward and backward thinking for difficult tasks.

Concretely speaking, humans commonly adopt the pro-
cess of elimination when they are not sure about the decision
making. Inspired by this, we advocate that similar spirits
can be utilized in the prompt bagging. In each iteration, the
LLM M is required to evaluate its answer’s confidence by
utilizing the generated prompt pt followed by a confidence
evaluation clause. When the evaluation result is not confi-
dent enough, the reverse thinking takes effect via conduct-
ing elimination process. In detail, we consider the quantita-
tive confidence score evaluation in both forward and back-
ward thinking. Take the classification task as an example, in
the forward evaluation, M is required to measure the confi-
dence that each candidate answer is the correct one. As for
the backward evaluation, M is required reversely to measure
the confidence that each candidate answer is excluded. For
notational simplicity, we name the confidence scores corre-
sponding to the forward and backward evaluations with S+
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Algorithm 1: Our PREFER Algorithm
Input: Training data Dtr =

⋃
i{(xi, yi)}, the LLM M, the

seed prompt p0, the prompt templates Tsolving and Tfeedback
Output: the result prompt set P =

⋃
t{pt} and their weights⋃

t{λt}, the reflection set
⋃

t{Rt}
1: Set the initial data weight to ω

(0)
i = 1/|Dtr|, ∀i ∈

{0, · · · , |Dtr|}, P = {p0}.
2: for t = 0 to N do
3: if t > 0 then
4: Generate new pt with {M, reflection Rt−1}
5: end if
6: Solve target tasks with {pt, Tsolving, ωi}
7: Conduct bilateral bagging
8: Build feedback prompt with {error info,

Tfeedback}
9: Perform feedback and get the reflection Rt

10: Compute weighted error as Eq.(4)
11: Update the weight on pt by Eq.(5)
12: Update the instance weights in Dtr by Eq.(6) fol-

lowed by re-normalization
13: P = P ∪ pt, R = R∪Rt

14: end for
15: return

⋃
t{pt},

⋃
t{λt},

⋃
t{Rt}

and S− respectively. The final probability can be calculated
via combining S+ and S− with a subtractive fashion:

ŷ = argmaxj
eS

+
j −S−

j∑K
c eS

+
c −S−

c

(3)

here ŷ denotes the predicted answer, c and j denote the
indexes of candidate answers. It is noted that LLMs tend
to evaluate confidence score overconfidently (Zhao et al.
2021), while our proposal ingeniously circumvents this in-
adequacy via positive and negative offsets. We believe that
such paradigm can also shed light on the community of
LLMs’ calibration (Zhao et al. 2023a).

Attributed to the introduction of reverse thinking mecha-
nism, the accuracy-versus-efficiency dilemma can be largely
alleviated. Experimental results explicitly manifest that such
bilateral bagging outperforms regular methods (e.g., major-
ity voting) in both effectiveness and efficiency.

Overall Algorithm To sum up, we conclude the proposed
PREFER in Algorithm 1. Basically, our PREFER follows the
pipeline of the classical ADABOOST (Freund and Schapire
1997) algorithm, while enhancing it with the feedback-
reflect-refine boosting and the bilateral prompt bagging.
Both branches can co-adapt and cooperate for automatic
prompt set optimization. In detail, the weighted ensemble
error in the t-th iteration is calculated as:

error(t) =

|Dtr|∑
i=1

ω
(t)
i · I

(
yi ̸= M(pt, xi)

)∑|Dtr|
i ωi

(4)

here I is the identify function. Moreover, the weight in each
iteration is updated based on the above error information as:

λ(t) = log
1− error(t)

error(t)
+ log

(
|Y| − 1

)
(5)

Finally, the instance weights in training dataset Dtr can be
updated by:

ω
(t)
i = ω

(t−1)
i · exp

(
λ(t) · I

(
yi ̸= M(pt, xi)

))
(6)

here i is the index of training examples. Once the process of
Algorithm 1 is complete, optimized prompts

⋃
t{pt} along

with their weights
⋃

t{λt} can be obtained, which can then
be utilized for application via weighted decision making.
Moreover, the intermediate reflection

⋃
t{Rt} naturally pro-

vides abundant interpretability for prompt boosting.

Experiments
Experimental Settings
Datasets We follow the experimental settings of the com-
pared works to conduct experiments on a wide range of tasks
including natural language inference and classification:

• Natural Language Inference
SNLI (Bowman et al. 2015), MNLI (Williams, Nangia,
and Bowman 2017), and RTE (Dagan, Glickman, and
Magnini 2005): textual entailment inference;
QNLI (Rajpurkar et al. 2016): question-answering infer-
ence.

• Natural Language Classification
Ethos (Mollas et al. 2020): hate speech detection;
Liar (Wang 2017): fake news classification;
ArSarcasm (Farha and Magdy 2020): Arabic sarcasm de-
tection.

Compared Baselines To manifest the superiority of our
PREFER approach, we compare it with several state-of-
the-art baselines. As the closest work to our proposal,
PromptBoosting (Hou et al. 2023) conducts the traditional
ADABOOST algorithm over a pre-defined prompt set for text
classification. As a remarkable work of iterative prompting
methods, APO (Pryzant et al. 2023) utilizes an iterative man-
ner for optimizing a single prompt, where the performance
of the previous prompt will be used to form a natural lan-
guage “gradient” that guides the prompt optimization. More-
over, we also conduct single-prompt and Chain-of-Thought
(CoT) enhanced single-prompt experiments, to figure out the
superiority of our PREFER compared with vanilla and opti-
mized non-iterative prompting works. Lastly, we compare a
variant of our PREFER, which rewrites synonymous prompts
for boosting instead of feedback-reflect-refine paradigm, for
ascertaining the utility of LLMs’ reflective ability.

Running settings To make a fair comparison, we closely
follow the experimental protocols that were set up in APO
with our own data split. In detail, we mainly conduct devel-
oping and evaluation of our PREFER in few-shot settings.
For each task, we randomly sample k examples from the
original training dataset, to build k-shot training set Dtr. By
default, the k in this paper is set to 50. We use F1-score for
performance evaluation and GPT-3.5-turbo as M. Our im-
plementation1 is available online.

1https://github.com/zcrwind/PREFER
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Datasets SNLI MNLI QNLI RTE Ethos Liar ArSarcasm

Single Prompt 0.587 0.660 0.660 0.720 0.833 0.535 0.511
Single Prompt (CoT) 0.575 0.685 0.660 0.731 0.804 0.549 0.525
Synonym Ensemble 0.580 0.746 0.720 0.659 0.812 0.572 0.569
PromptBoosting 0.619 0.574 0.631 0.673 - - -
APO - - - - 0.964 0.663 0.873
APO* - - - - 0.947 0.658 0.639
Ours 0.647 0.767 0.793 0.753 0.963 0.744 0.739

Table 1: Main experimental results of our PREFER and the compared approaches. APO and APO* respectively denote the re-
ported (Pryzant et al. 2023) and our reproduced results. Bold: best; underline: runner-up (results are based on our reproduction).

Method −Feedback −Bagging Voting Ours

SNLI 0.580↓ 0.640 0.626 0.647
MNLI 0.746 0.713 0.733 0.767
QNLI 0.720 0.747 0.767 0.793
RTE 0.659↓ 0.740 0.760 0.753
Ethos 0.812↓ 0.947 0.938 0.963
Liar 0.572↓ 0.718 0.701 0.744
Sarcasm 0.572↓ 0.653↓ 0.649↓ 0.739

Table 2: Experimental results of the ablation study. ↓ indi-
cates a severe performance drop (more than 10%).

Experimental Results
In view of the key proposals in our PREFER approach, we are
naturally motivated to ask the following interesting research
questions (RQ).

• RQ1. Is the prompt ensemble learning really useful for
improving LLMs’ performance?

• RQ2. Are the feedback-driven boosting and bilateral
bagging both useful for prompt synthesis in ensemble
learning?

• RQ3. Is the reason why PREFER is superior to the itera-
tive methods due to the expansion of the sample space?

To figure out the answers to these questions, we conduct
sufficient experiments and the results can be found in Ta-
ble 1. For the RQ1, we compare the ensemble-based meth-
ods (including PromptBoosting and our PREFER) with the
single-prompt-based methods. As shown in the experimental
results, when compared to the vanilla (Line 1) and Chain-of-
Thought-enhanced (CoT) single prompt approach (Line 2),
both PromptBoosting and our PREFER outperform them by
a significant margin. For example, PREFER outperforms the
runner-up by up to 6.3% for the QNLI dataset, and 13.1%
for the Liar dataset. An evident trend in Table 1 is that the
more difficult the task is, the better ensemble learning per-
forms. We conjecture that it is due to the feedback-reflect-
refine paradigm can achieve greater improvement for the
harder tasks. It is noted that the experimental results change
marginally by adding CoT for single-prompt approach.

To explore the RQ2, we compare PREFER with both the
two-stage ensemble approach PromptBoosting (Line 4) and
the synonym rewriting ensemble approach (Line 3). For

PromptBoosting, we use the publicly available code of (Hou
et al. 2023) and conduct experiments following its hyper-
parameter setting. For the synonym rewriting ensemble, we
conduct prompt rewriting with same semantics, followed by
regular ensemble learning similar to PREFER. As shown in
Table 1, PREFER consistently outperforms the two ensemble
approaches by a significant margin, reaching around 5% to
35% relative improvement in most datasets. We attribute the
superiority of PREFER to its feedback-reflect-refine mecha-
nism as well as the design of the joint optimization paradigm
that naturally captures relations among weak learners.

As for the RQ3, APO (Pryzant et al. 2023) is introduced as
the remarkable approach of iterative prompting for compari-
son. It is noted that we reproduce the APO approach (APO*
at Line 6) for a strictly fair comparison, which eliminates
the interference from data sampling. Similar performance
trends are observed, that is, our PREFER outperforms APO
with the power of feedback-reflect-refine boosting and bi-
lateral prompt bagging. It manifests that through expanding
the sample space in a nonlinear way, prompting performance
can be enhanced significantly than single-prompt methods
with similar iteration rounds. In fact, attributed to our bag-
ging design, PREFER is superior to APO not only in effec-
tiveness, but also in stability and efficiency.

Ablation Study
To figure out the effectiveness of each component in PRE-
FER, we perform ablations on both feedback-reflect-refine
boosting and bilateral bagging, and the experimental results
are provided in Table 2. First, we remove the feedback mech-
anism in prompt boosting (“−Feedback”), in which the ini-
tial seed prompt is modified by the LLM without directed
optimization, then the similar boosting and bagging are per-
formed to align the settings of PREFER. It is observed that
the prompt ensemble without feedback-reflect-refine is sub-
optimal, signifying that our feedback mechanism plays an
important role for directed prompt boosting. Second, to fig-
ure out the effectiveness of our bilateral bagging, we also
turn off the whole component (“−Bagging”) or replace it
with majority voting (“Voting”). The experimental results
convey that our bilateral bagging is beneficial, and distinctly
outperform the regular bagging approach of majority vot-
ing. Notably, the performance of majority voting is basically
satisfactory, manifesting that the prompt bagging can ben-
efit the boosting prompt process consistently. An interest-
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Figure 3: Training process comparison for APO and ours.

APO Ours

Frequency b(N + 2) + T |Dsample| 2N + 2
Tstep1 579.0 s 132.4 s
Tstep2 2100.4 s 336.1 s

Table 3: Comparison of training efficiency. Frequency de-
notes the API access numbers required by the methods
within each optimization step, where N is training size
and b, T , |Dsample| are hyperparameters required by APO.
Tstep1 and Tstep2 represent the time required for the corre-
sponding optimization steps from the beginning, where we
set N = 50, b = 4, T = 20, |Dsample| = 16.

ing phenomenon is that removing the feedback-reflect-refine
module leads to more serious performance decline than re-
moving the bagging module. This is expected, as the bag-
ging mainly benefits the stability while the boosting is more
important for ensemble.

Efficiency Discussion
To further demonstrate the superiority of our PREFER, we
conduct detailed experiments on the Ethos dataset for train-
ing efficiency. As shown in Figure 3, both APO and PREFER
reach the peak in optimization steps 2 to 3, indicating that
neither approach requires extensive iterations for impressive
results. Clearly, our PREFER has a more stable performance
retention compared to APO during subsequent iterations. On
the other hand, considering the limitations on the speed and
frequency of LLM API accesses, we compare the API ac-
cess numbers during training and the time consumption for
the first two prompt optimization steps, which is displayed in
Table 3. It can be observed that the access number of APO
increases rapidly during beam search and bandit selection,
which brings serious efficiency problems. On the contrary,
our PREFER does not enforce optimal optimization at each
time step, but rather maintains a stable and efficient improve-
ment via ensemble learning. As for the inference, it is noted
that the result prompts are used in parallel, whose time con-
sumption is close to that of the single-prompt methods.

Given two sentences, determine whether sentence
2 provides an answer to the question posed by
sentence 1.

Assess whether sentence 2 provides supporting
evidence or contradictory information to the
argument made in sentence 1, both implicitly
and explicitly.

The prompt does not provide any guidance on
how to handle cases where the question posed
by sentence 1 is vague or open-ended.
The prompt does not provide any guidance on
how to handle cases where sentence 1 and
sentence 2 have different levels
of specificity or granularity.
The prompt does not take into account
the possibility of implicit answers, where
sentence 2 provides a plausible inference or
implication rather than an explicit statement.

Decide whether sentence 2 answers the question
asked by sentence 1 when given two sentences.

Initial prompt

Reflection

Refine

Synonymous Rewriting

Figure 4: Comparison of the generation obtained from our
feedback-reflect-refine paradigm and synonymous rewrite.

Case Study
To visualize our feedback-reflect-refine paradigm, we pro-
vided a case study as an illustration. As shown in Figure
4, taking the nature language inference task on the QNLI
dataset as an example, we provide the intermediate output of
the LLM in the feedback-reflect-refine process, to show its
effectiveness and interpretability. Compared to the prompt
generated by synonymous rewriting (gray box), the one gen-
erated by our method is more informative and logically com-
pensates for the deficiencies of the previous prompt, thus
achieving directed prompt optimization.

Conclusion
In this paper, we propose a simple, automatic, and uni-
versal prompt ensemble approach called PREFER (PRompt
Ensemble learning via Feedback-REflect-Refine), empiri-
cally showing consistent and significant improvement over
previous baselines. PREFER contains two main components,
namely feedback-reflect-refine prompt boosting and bilat-
eral prompt bagging. Prompt boosting directly and collec-
tively optimizes prompt in an automatic fashion based on
the evolving self-reflection. Prompt bagging proposes a bag-
ging paradigm containing forward and backward coopera-
tion inspired by human behavior, which adequately unearths
the real quality of generated prompts and thus ensures the
stability of boosting. In a parallel note, our PREFER brings
the prompt ensemble approach with more interpretability
by harnessing the LLMs’ language ability. For future work,
how to make more classical algorithm more intelligent based
on the power of LLMs is worth studying.
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