
An Autoregressive Text-to-Graph Framework for Joint
Entity and Relation Extraction

Urchade Zaratiana1,2, Nadi Tomeh2, Pierre Holat1,2, Thierry Charnois2

1 FI Group, Puteaux, France
2 LIPN - Université Sorbonne Paris Nord - CNRS UMR 7030, Villetaneuse, France

{zaratiana, tomeh, charnois}@lipn.fr, pierre.holat@fi-group.com

Abstract

In this paper, we propose a novel method for joint entity
and relation extraction from unstructured text by framing
it as a conditional sequence generation problem. In con-
trast to conventional generative information extraction mod-
els that are left-to-right token-level generators, our approach
is span-based. It generates a linearized graph where nodes
represent text spans and edges represent relation triplets.
Our method employs a transformer encoder-decoder archi-
tecture with pointing mechanism on a dynamic vocabulary of
spans and relation types. Our model can capture the struc-
tural characteristics and boundaries of entities and relations
through span representations while simultaneously grounding
the generated output in the original text thanks to the point-
ing mechanism. Evaluation on benchmark datasets validates
the effectiveness of our approach, demonstrating competitive
results. Code is available at https://github.com/urchade/ATG.

Introduction
Joint entity and relation extraction is a fundamental task in
Natural Language Processing (NLP), serving as the basis for
various high-level applications such as Knowledge Graph
construction (Ye et al. 2022b) and question answering (Chen
et al. 2017). Traditionally, this task was tackled via pipeline
models that independently trained and implemented entity
recognition and relation extraction, often leading to error
propagation (Brin 1999). Deep learning has led to the cre-
ation of end-to-end models, allowing for the use of shared
representations and joint optimization of loss functions for
both tasks (Wadden et al. 2019; Wang and Lu 2020; Zhao
et al. 2021; Zhong and Chen 2021; Yan et al. 2021). Despite
this advancement, these models essentially remain pipeline-
based, with entity and relation predictions executed by sepa-
rate classification heads, thereby ignoring potential interac-
tions between these tasks.

Recent advancements have seen a shift towards “real”
end-to-end solutions, where the prediction of entities and re-
lations is intertwined, accomplished through autoregressive
models. These models treat the joint entity-relation task as a
process of generating plain text, employing augmented lan-
guages to encode and decode structural information (Paolini
et al. 2021; Lu et al. 2022; Liu et al. 2022; Fei et al. 2022).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

While these models have achieved remarkable performance,
we argue that they also expose room for improvement, espe-
cially in terms of grounding the output in the input text.

In this paper, we present an autoregressive transformer
encoder-decoder model that generates a linearized graph in-
stead of generating plain text. Our model makes use of a
pointing mechanism (Vinyals, Fortunato, and Jaitly 2015) on
a dynamic vocabulary of spans and relations, providing ex-
plicit grounding in the original text. In fact, without ground-
ing, models can generate output that are semantically co-
herent but contextually detached from the input. Our point-
ing mechanism mitigates this issue by ensuring that the de-
coder’s outputs, specifically the entity spans, are directly tied
to the input text. Furthermore, by generating spans and re-
lations directly from the text, rather than producing stan-
dalone plain text, our model encode the structural charac-
teristics and boundaries of entities/spans more accurately,
which can be missed by previous generative information ex-
traction models. The cornerstone of our solution is the ex-
plicit enumeration of all spans1 at the encoder’s output, mak-
ing them readily available to the decoder. Although the num-
ber of spans can be extensive, we note that when bounding
the span size, our model’s vocabulary is typically smaller
than that of traditional language models (Devlin et al. 2019;
Raffel et al. 2019), as discussed in subsequent sections.

Moreover, as previous generative IE models operate at the
token level, they scatter the information regarding an entity’s
span and its boundaries over multiple decoding steps. In con-
trast, generating an entity and its type in our approach is
accomplished in a single decoding step, resulting in shorter
sequence (Figure 5). Additionally, our method naturally en-
sures the well-formedness of the output while some gener-
ative IE models that produce text, often require non-regular
constraints. As an example, in TANL (Paolini et al. 2021),
if a portion of the generated sentence has an invalid format,
that segment is discarded. Such issues are readily addressed
in our model since the vocabulary can be fully controlled.

We evaluated our model on three benchmark datasets for
joint entity and relation extraction: CoNLL 2004, SciERC,
and ACE 05. Our model demonstrated competitive perfor-
mance on all datasets. Our contributions can be summarized
as follows:

1Up to a certain length in practice.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19477

Alain Farley works at McGill University in Montreal

(0,1,PER) (4,5,ORG) (7,7,LOC)

 Based_In Work_For

Linearized graph:

Example from CoNLL 04:

Sorted:

Random:

(4,5,ORG) (0,1,PER) (7,7,LOC) <SEP> (4,5,ORG) (7,7,LOC) Based_In (0,1,PER) (4,5,ORG) Work_For

 (4,5,ORG) (7,7,LOC) (0,1,PER) <SEP> (4,5,ORG) (7,7,LOC) Based_In (0,1,PER) (4,5,ORG) Work_For
…………

 (7,7,LOC) (4,5,ORG) (0,1,PER) <SEP> (0,1,PER) (4,5,ORG) Work_For (4,5,ORG) (7,7,LOC) Based_In

(0,1,PER) (4,5,ORG) (7,7,LOC) <SEP> (0,1,PER) (4,5,ORG) Work_For (4,5,ORG) (7,7,LOC) Based_In <END>

(0,1,PER)(4,5,ORG) (7,7,LOC) <SEP> (0,1,PER) (4,5,ORG) Work_For(4,5,ORG) (7,7,LOC) Based_In <END>

(0,1,PER) (4,5,ORG) (7,7,LOC) <SEP> (0,1,PER) (4,5,ORG) Work_For(4,5,ORG) (7,7,LOC) Based_In <END>

(0,1,PER)(4,5,ORG)(7,7,LOC) <SEP> (0,1,PER) (4,5,ORG) Work_For (4,5,ORG) (7,7,LOC) Based_In <END>

Sorted:

Random:

…

Figure 1: Linearization for Information Graph Generation. The input text is mapped into an information extraction graph. The
graph consists of entities and relation triplets, which are generated sequentially by first producing entity spans (represented by
start word, end word, and entity type) followed by relation triplets (head entity, tail entity, and relation type).

• We propose a novel method for joint entity and relation
extraction by framing it as a conditional sequence gener-
ation problem. Our approach generates a linearized graph
representation, where nodes represent entity spans and
edges represent relation triplets.

• Our model employs a transformer encoder-decoder ar-
chitecture with a pointing mechanism on a dynamic vo-
cabulary of spans and relation types. This allows to cap-
ture the structural characteristics and boundaries of enti-
ties and relations while grounding the generated output
in the original text.

• We demonstrate the effectiveness of our approach
through extensive evaluations on benchmark datasets, in-
cluding CoNLL 2004, SciERC, and ACE 05. Our model
achieves state-of-the-art results on CoNLL 2004 and Sci-
ERC, surpassing previous comparable models in terms of
Entity F1 scores and Relation F1 scores.

Task Definition
We address the task of joint entity and relation extraction
from text as a graph generation approach. Our proposed
model generates nodes and edges as a single sequence, ef-
fectively integrating both entity and relation extraction into a
unified framework. Formally, the task can be defined as fol-
lows: Given an input text sequence x = {x1, x2, ..., xL},
where xi represents the i-th token in the sequence, our
objective is to generate a linearized graph representation
y = {y1, y2, ..., yM}, where yj represents a token in the
generated sequence. As shown in Figure 1, in Each token yj
can take one of three forms:

• Entity span: The token yj represents an entity span, de-
fined as yj = (sj , ej , tj), where sj and ej denote the
starting and ending positions of the entity span, and tj
denotes the type of the entity.

• Relation type: The token yj represents a relation type
between two entities, such as Work For relation.

• Special token: The token yj represents special tokens
used in the generation process, such as <SEP> to sep-

arate entities and relations or the <END> to stop the gen-
eration.

The template employed in our model, we refer to ATG
(Autoregrestive Text-to-Graph), is depicted in Figure 1. It
starts by generating the entities, followed by a <SEP> to-
ken, and ends with the relation triplets, each consisting of
head node, tail node and edge/relation type. During train-
ing, we try two distinct orderings for the graph linearization:
sorted and random. As shown in the Figure 1, the sorted
linearization organizes entities and relations based on their
positions in the original text, while the random linearization
randomly shuffles entities and relations order.

Model Architecture
Our model, ATG, employed an encoder-decoder architec-
ture, which processes the input text sequence and produces
a linearized graph as illustrated in the Figure 2.

Encoder
The encoder in ATG utilizes a transformer layer that takes
an input text sequence x and outputs token representations
H ∈ RL×D, where D is the model dimension.

Vocabulary Construction
Dynamic vocabulary To enable the pointing mechanism
in our decoder, we construct a dynamic vocabulary matrix
E that includes embeddings for spans, special tokens, and
relation types. While special tokens and relation type em-
beddings are randomly initialized and updated during train-
ing, the span embeddings are dynamically computed (Zara-
tiana et al. 2023), i.e their representations depend on the in-
put sequence. More specifically, the embedding of a span
(start, end, type) is computed as follows:

S[start,end,type] = WT
type[hstart ⊙ hend] (1)

In this equation, [⊙] represents a concatenation operation;
hstart and hend denote the representations of tokens at the
start and end positions, respectively. Wtype ∈ R2D×D is a
weight matrix associated with the entity type (i.e, there is a

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19478

Input tokens
X = {x1,…, xL}

…

Transformer
Encoder

…

Span
Representation

Layer

…

All span embeddings
K is the maximum span size and

C is the number of classes

S ∈ ℝ(L×K×C)×D

The vocabulary matrix of our
decoder E ∈ ℝ(L×K×C+R+T)×D

…

Span
embeddings

…

Relation types
embeddings

Special tokens
embeddings

Target sequence
(Shifted right)

y

…

Lookup Embedding
using E

…

…

De-embedding
using E

Transformer
Decoder

+ pos & struct embeddings

…

Cross-attention

Share weight

Share weight

- Span embeddings are computed using the
Span Representation Layer

- Relations types and special tokens
(<START>, <SEP>, <END>) embeddings are
learned during training

H ∈ ℝL×D

Figure 2: Illustration of the architecture of our model, ATG. (left) The Encoder takes in the input sequence X and generates
representations of the tokens H and spans S. (middle) The Decoder then generates the next token conditioned on the previous
tokens and the input representation H . (right) The vocabulary matrix used for decoding consists of the concatenation of span
embeddings S, learned relation type embeddings, and special token embeddings.

Wtype for each entity types in a datasets). Finally, the vo-
cabulary embedding matrix E is formed by stacking all the
span embeddings S, special token embeddings T, and rela-
tion type embeddings R.

Vocabulary size The size of the vocabulary matrix E ∈
RV×D is V = L×K ×C +R+T , where L represents the
sequence length, K the maximum span size, C the number
of entity types, R the number of relations, and T the number
of special tokens (<START>, <END>, and <SEP>). Let’s
take the CoNLL 2004 dataset as an example to illustrate
this. This dataset has the following characteristics: K = 12,
C = 4, R = 5, and T = 3. Considering a sentence of length
114 (which is the maximum length in the training set), the
resulting vocabulary size would be 5480. This size is con-
siderably smaller when compared with the vocabulary size
of a typical language model, which usually hovers around
30,000 distinct tokens.

Decoder
The decoder is a causal transformer trained to predict the
next token in the sequence, akin to traditional language mod-
eling. However, it is important to note that the vocabulary
of our decoder consists of entity spans, relation types, and
special tokens, rather than plain text. The decoder condi-
tions its predictions on the previously generated tokens y<j

using self-attention and on the input token representations
H using cross-attention. This enables the decoder to attend
to relevant information from both the previously generated
tokens and the input text. Through attention visualizations,
as depicted in Figure 8 and 9, we observed that the model
effectively harnesses both sources of information. Finally,

The training objective aims to maximize the following con-
ditional probability:

p(y|x) =
M∏
j=1

p(yj |y<j ,H) (2)

This is achieved during the training by minimizing the
negative log-likelihood of a reference sequence obtained by
linearizing the reference IE graph. Details about the decoder
input and output are given in the subsequent paragraphs.

Decoder input embedding The embedding step feeds the
previous decoder outputs y1, . . . , yi−1 into the model using
the vocabulary matrix E, along with positional and struc-
tural embeddings as shown in Figure 3. This process can be
expressed as follows:

z1, . . . , zi−1 =E[y1, . . . , yi−1]

+Epos[1, . . . , i− 1]

+Estruct[y1, . . . , yi−1]

(3)

Here, E[y1, . . . , yi−1] corresponds to the token embed-
dings, which may corresponds to spans, relation types, or
special tokens embeddings depending on the nature of y<i.
The matrix Epos represents absolute positional embedding.
It allows to capture the positional information of the decoder
outputs from y1 to yi−1. Additionally, the structural embed-
ding Estruct serve as indicators to guide the model in gener-
ating specific elements. In particular, they provide informa-
tion about whether the model should generate a Node (be-
fore <SEP> tokens), Tail, Head nodes, or Relation types (as
illustrated in Figure 3). Both the absolute position encoding
and the structural embedding are randomly initialized and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19479

(0,1,PER) (4,5,ORG) (7,7,LOC) <SEP> (0,1,PER) (4,5,ORG) Work_For (4,5,ORG) (7,7,LOC) Based_In

E<START> E(0,1,PER) E(4,5,ORG) E(7,7,LOC) E<SEP> E(0,1,PER) E(4,5,ORG) EWork_For E(4,5,ORG) E(7,7,LOC)

<END>

EBased_In

+ + + + ++ + +++ +

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

+ + + + ++ + +++ +

ENode ENode ENode ENode EHead ETail ERelation EHead ETail ERelation EHead

Decoder Output

Decoder Input
Embedding

Positional
Embedding

Structural
Embedding

Figure 3: Input/ouptut of the decoder. The process starts with the special token <START> and continues until the <END> token
is generated. To separate the generation of nodes and edges, a special token <SEP> is used. At each position, the decoder takes
in the sum of the embedding of the current token, absolute position embedding, and structural embedding.

updated during training. In summary, by combining these
embeddings, ATG can capture the semantic, positional and
structural information about the linearized graph.

Decoder output We define z̃i as the hidden state at the last
position of the decoder output sequence obtained by feeding
the previous output embedding and the encoder outputs H
(for cross-attention) to the decoder, i.e,

z̃i = Decoder(z1, . . . , zi−1;H)[−1] (4)

Then, to compute the probability distribution over the
dynamic vocabulary for generating the next token, yi, our
model employs the softmax function on the dot product be-
tween the dynamic vocabulary embedding matrix E and z̃i:

p(yi|y<i,H) =
expET z̃i∑V

k=1(expE
T z̃i)k

(5)

The probabilities generated by this formulation allow the
model to select the appropriate token from the vocabulary
for generating a span, special token, or relation type.

Constrained decoding During inference, we sample from
the model by enforcing constraints that preserve the well-
formedness of the output graph. More specifically, during

State 2State 1

State 3

State 4

Exit

Start

<START>

<SEP>
Span
token

Span
token

Relation
Type

<END>
Span
token

Figure 4: State-Transition diagram for constrained decod-
ing. This diagram illustrates the state-based decision process
used during the inference phase, which ensures the genera-
tion of a correct graph. Each state is represented by a node,
and directed edges indicate valid actions. We use the same
color code as the structural embedding in Figure 3.

inference, we feed our model with the <START> token,
and the generation process is guided by state-transition con-
straints as outlined in Figure 4. This structured approach en-
sures that each step in the generation aligns with the defined
template, thereby maintaining the well-formedness of the
output and allowing the production of valid IE graphs. All
generations start with the start token Start state and con-
tinue until the <END> token is sampled. In practice, we also
add other constraints: in state 1, we prevent the repetition of
already generated spans, and in state 3, we ensure the tail
span is different from the head. Furthermore, it is also possi-
ble to incorporate domain knowledge into the prediction. For
instance, if the type of a head entity is PER and the tail en-
tity is ORG, the relation can be constrained to be Work For
(CoNLL 04 dataset).

Training with Sentence Augmentation
In our work, we observed oversmoothing (Kulikov, Ere-
meev, and Cho 2022), where the model prematurely gen-
erates the <EOS>, i.e a bias towards short sequences (Mur-
ray and Chiang 2018; Xuewen et al. 2021). We found this
bias to harm the recall of the tasks as the generation ter-
minates before predicting all the entities/relations. To coun-
teract this, we propose sentence augmentation, drawing in-
spiration from Pix2seq (Chen et al. 2022), who encounter a
similar problem for their generative object detection model.
This approach forms an augmented training sample saug
by randomly concatenating sentences from the training set
D = {s1, s2, ..., sN}:

saug =
n⊕

k=1

sik , ik ∼ U(1, N), n ∼ U(1, B) (6)

Here, U denotes the uniform distribution, and B is a hyper-
parameter indicating the maximum number of sentences that
can be concatenated. By applying this sentence augmenta-
tion technique during training, the model is exposed to di-
verse and longer output sequence lengths, reducing the risk
of premature generation of the <EOS> token and thus im-
proving recall. We perform an ablation study of the effect
of sentence augmentation in our experiments section, show-
ing that it largely improves the overall performance of our
model.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19480

Input text: Alain Farley works at McGill University in Montreal

[Alain Farley | person | work for = McGill University] works at
[McGill University | organization | based in = Montreal] in
[Montreal | location]

((person: Alain Farley (work for: McGill University))
 (organization: McGill University (based in: Montreal))
 (location: Montreal))

(0,1,PER) (4,5,LOC) (7,7,LOC) <SEP> (0,1,PER) (4,5,LOC) Work_For
(4,5,LOC) (7,7,LOC) Based_In

TANL

UIE

ATG

{((Alain Farley, person [work for](McGill University, organization))
 (McGill University, organization [based in] (Montreal, location)))}LasUIE

31
tokens

32
tokens

33
tokens

10
tokens

Figure 5: Linearization for different models. In contrast to existing approaches (TANL (Paolini et al. 2021), UIE (Lu et al. 2022),
LasUIE (Fei et al. 2022)), our proposed model, ATG, generates spans (along with relation/special tokens) instead of text tokens,
which allows for a shorter output sequence, richer (span-level) representation and fully controlled decoding.

Experimental Setup
Datasets
We evaluated our model on three benchmark English
datasets for joint entity-relation extraction, namely SciERC
(Luan et al. 2018), CoNLL 2004 (Carreras and Màrquez
2004), and ACE 05 (Walker et al. 2006). The statistics of
the dataset is reported on Table 1.

ACE 05 is collected from a variety of domains, such as
newswire, online forums and broadcast news. It provides
a diverse set of entity types such as Persons (PER), Lo-
cations (LOC), Geopolitical Entities (GPE), and Organiza-
tions (ORG), along with intricate relation types that include
ART (Artifact relationships), GEN-AFF (General affilia-
tions), and PER-SOC (Personal social relationships). This
dataset is particularly notable for its complexity and wide
coverage of entity and relation types, making it a robust
benchmark for evaluating the performance of IE models.

CoNLL 2004 is an annotated corpus collected from
newswires and focuses on general entities such as People,
Organizations, and Locations, and relations like Work For
and Live in.

ScIERC is a dataset that comes with entity, coreference,
and relation annotations for a collection of documents from
500 AI paper abstracts. The dataset defines scientific term

Dataset |E| |R| # Train # Dev # Test

ACE05 7 6 10,051 2,424 2,050
CoNLL 04 4 5 922 231 288
SciERC 6 7 1,861 275 551

Table 1: The statistics of the datasets. We use ACE04,
ACE05, SciERC, and CoNLL 04 for evaluating end-to-end
relation extraction.

types and relation types specifically designed for AI domain
knowledge graph construction.

Evaluation Metrics

For the NER task, we adopt a span-level evaluation requir-
ing precise entity boundaries and type predictions. To evalu-
ate relations, we use two metrics: (1) Boundaries evaluation
(REL) necessitates the correct prediction of entity bound-
aries and relation types; (2) Strict evaluation (REL+) addi-
tionally require accurate entity type prediction. We report
the micro-averaged F1 score.

Baselines

We succinctly and briefly describe here the baseline that we
compared with our model, which we separate into two cate-
gories: Span-based/table-filling and generative IE.

Span-based and table-filling DyGIE++ (Wadden et al.
2019) is a model that uses a pretrained transformer to
compute contextualized representations and employs graph
propagation to update the representations of spans for pre-
diction. Tab-Seq (Wang and Lu 2020) tackles the task of
joint information extraction by treating it as a table filling
problem. PURE (Zhong and Chen 2021) is a pipeline model
for the information extraction task that learns distinct con-
textual representations for entities and relations. PFN (Yan
et al. 2021) introduces methods that model two-way inter-
actions between tasks by partitioning and filtering features.
UniRE (Wang et al. 2021) proposes a joint entity and rela-
tion extraction model that eliminates the separation of label
spaces for entity detection and relation classification. Their
model uses a unified classifier to predict labels for each cell
in a table of word pairs. In TablERT (Ma, Hiraoka, and
Okazaki 2022), entities and relations are treated as tables,
and the model utilizes two-dimensional CNNs to effectively
capture and model local dependencies.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19481

Models SciERC ACE 05 CoNLL 2004

ENT REL REL+ ENT REL REL+ ENT REL REL+
DYGIE++ (Wadden et al. 2019) 67.5 48.4 – 88.6 63.4 – – – –
Tab-Seq (Wang and Lu 2020) – – – 89.5 – 64.3 90.1 73.8 73.6
PURE (Zhong and Chen 2021) 66.6 48.2 35.6 88.7 66.7 63.9 – – –
PFN (Yan et al. 2021) 66.8 – 38.4 89.0 – 66.8 – – –
UniRE (Wang et al. 2021) 68.4 – 36.9 89.9 – 66.0 – – –
TablERT (Ma, Hiraoka, and Okazaki 2022) – – – 87.8 65.0 61.8 90.5 73.2 72.2

GENERATIVE

HySPA (Ren et al. 2021) – – – 88.9 68.2 – – – –
TANL (Paolini et al. 2021) – – – 89.0 – 63.7 90.3 – 70.0
ASP (Liu et al. 2022) † – – – 91.3 72.7 70.5† 90.3 – 76.3
UIE (Lu et al. 2022) – – 36.5 – – 66.6 – 75.0 –
LasUIE (Fei et al. 2022) – – – – – 66.4 – 75.3 –

ATG (Our model) 69.7 51.1 38.6 90.1 68.7 66.2 90.5 78.5 78.5

Table 2: Comparison of our proposed model with state-of-the-art methods. Results are reported in terms of Entity (ENT) F1,
Relation (REL) F1, and Strict Relation (REL+) F1 scores. The best scores are shown in bold, and the second-best scores are
underlined. † Italic scores use undirected evaluation for relation extraction and thus are not strictly comparable to our results.

Generative IE HySPA (Ren et al. 2021) is a model for
text-to-graph extraction that has linear space and time com-
plexity using a Hybrid span generator. TANL (Paolini et al.
2021) treat the joint IE task as translation from plain text
to augmented natural languages by fine-tuning a T5 model
(Raffel et al. 2019). This model has been further extended
by UIE (Lu et al. 2022) and LasUIE (Fei et al. 2022), which
both proposed better linearization and additional pretraining
to enhance results. Finally, ASP (Liu et al. 2022) handles en-
tity and relation extraction by encoding the target structure
as a series of structure-building actions, using a conditional
language model to predict these actions.

Hyperparameter Settings
Our model, ATG, employs a transformer encoder-decoder
(Vaswani et al. 2017) architecture. We train it for a max-
imum of 70k steps using AdamW (Loshchilov and Hut-
ter 2017) optimizer. We use learning rate warmup for the
first 10% of training and then decay to 0. The base learn-
ing rates are 3e-5 for the encoder, 7e-5 for the decoder,
and 1e-4 for other projection layers. Unlike other generative
IE models that utilize pretrained encoder-decoder architec-
tures, often relying on large models such as T5 (Raffel et al.
2019), we initialize ATG’s encoder with pre-trained trans-
former encoders, while the decoder is randomly initialized.
In our preliminary experiments, we observed that initializ-
ing ATG with a pretrained encoder-decoder led to subop-
timal performance. We hypothesize that this is due to our
decoder’s utilization of a dynamic vocabulary, whereas ex-
isting pretrained encoder-decoder models have a fixed token
vocabulary, which creates a large discrepancy. We use De-
BERTa (He, Gao, and Chen 2021) for Conll-04 and ACE 05
and SciBERT (Beltagy, Lo, and Cohan 2019) for SciERC
dataset. Across all configurations, the number of decoder
layers is set to 6, though we noted that even a single layer

can be enough in certain cases. The sentence augmentation
hyperparameter B is set to 5.

Main Results
Table 2 presents the main results of our experiments,
along with comparable approaches from the literature. ATG
demonstrates strong performance across all datasets. On the
SciERC dataset, ATG achieves the highest scores across
all metrics. It outperforms the second-best result by 0.2
in REL+ and surpasses the best generative approach, UIE
(Lu et al. 2022), by 2.1 points. On ACE 05, ATG pro-
vide a competitive performance, securing the second-highest
scores. The reported top-performing model, ASP (Liu et al.
2022), operates under a relaxed, undirected relation evalu-
ation, thereby limiting a fair comparison of results (Taillé
et al. 2021). On the CoNLL 2004 dataset, ATG exhibits its
superiority by outperforming the second-best result by 2.2
in terms of REL+. Overall, across all three datasets, our
proposed model either holds the top position or showcases
strong competitive performance.

Ablation Studies
Number of decoder layers The number of decoder layers
impact is illustrate on the Figure 6. It has a varying impact on
performance across the datasets. In SciERC, increasing the
number of decoder layers leads to a gradual improvement in
the performance, reaching a peak of 38.6 at 6 layer. For ACE
05, the score shows a slight improvement from 65.3 to 66.2
as the number of decoder layers increases from 1 to 6. For
the CoNLL 2004 dataset, the score fluctuates with different
numbers of decoder layers, achieving already strong perfor-
mance with only a single layer. Overall, the choice of the
number of decoder layers can have a noticeable impact on
REL+ performance but the effect may vary across datasets.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19482

37.0

38.0
SciERC

65.5

65.8

66.0
ACE 05

1 2 3 4 5 6

Number of decoder layers

78.0

79.0 CoNLL 2004

36.0

38.0 SciERC

62.0

64.0

66.0 ACE 05

1 2 3 4 5

Sentence augmentation

72.5

75.0

77.5

CoNLL 2004

37.5

38.0

38.5 SciERC

65.8

66.0
ACE 05

0.0 0.2 0.4 0.6 0.8 1.0

Top p

78.0

78.5 CoNLL 2004

Figure 6: Investigation of the effect of different choices on model performance (REL+). (Left) Effect of the number of decoder
layers, (Center) Impact of Sentence Augmentation, (Right) Study of different values of top-p for Nucleus Sampling.

Sentence augmentation The effect of sentence augmen-
tation size on REL+ performance is illustrated in Figure
6. The results reveal that increasing the number of sen-
tence augmentations always improves performance across
all datasets, except for CoNLL, where achieving state-of-
the-art (SOTA) results is possible with just a size of 2. How-
ever, the absence of sentence augmentation leads to a signif-
icant decrease in REL+, proving its importance.

Nucleus sampling The impact of different top p values in
nucleus sampling (Holtzman et al. 2019) on the performance
(REL+) is shown in Figure 6. The scores across all datasets
demonstrate a relatively stable trend, with minor variations
observed as the top p value changes. This can be attributed to
the application of constrained decoding, which ensures that
the output remains well-formed. However, the lowest values
of top p, corresponding to greedy decoding, consistently de-
liver the best performance.

Positional and structural smbeddings Table 3 illustrates
the importance of positional and structural encoding on the
Relation F1 score. When employing both encoding, ATG
achieves the best performance across all datasets (38.6 for

SciERC ACE 05 CoNLL 2004

Full 38.6 66.2 78.5
- Pos 36.4 66.0 78.3
- Struct 36.1 65.8 78.4
- Both 35.4 65.4 78.0

Table 3: Effect of positional (Pos) and structural embedding
(Struct) on REL+.

SciERC ACE 05 CoNLL 2004
0

20

40

60

80

| |=4.7

| |=4.9

| |=1.0
Sorted
Random

Figure 7: Impact of sequence ordering on REL+.

SciERC, 66.2 for ACE 05, and 78.5 for CoNLL 2004). Ex-
cluding positional encoding causes only slight performance
drops, since the span representations may contain some po-
sitional information. Omitting structural encoding leads to
similar, but slightly larger drops. Finally, when both are re-
moved, the scores decrease the most, indicating their impor-
tance for the task.

Sequence ordering Figure 7 compares the effects of
sorted and random sequence ordering across different
datasets. The results clearly show that the sorted ordering
approach consistently outperforms the random one. The dif-
ference in performance is particularly significant on SciERC
and ACE 05, with improvements of 4.7 and 4.9, respectively.
On the CoNLL 04 dataset, although the sorted approach still
leads, the difference narrows to 1. Interestingly, we initially
hypothesized that random ordering would deliver better per-
formance, given that any generation errors in a sorted order
could be difficult to rectify.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19483

<ST
ART

>

(0,
 1,

 'P
eo

p')

(4,
 5,

 'O
rg'

)

(7,
 7,

 'L
oc

')

<SE
P>

(0,
 1,

 'P
eo

p')

(4,
 5,

 'O
rg'

)

Work
_F

or

(4,
 5,

 'O
rg'

)

(7,
 7,

 'L
oc

')

OrgB
as

ed
_In

<START>

(0, 1, 'Peop')

(4, 5, 'Org')

(7, 7, 'Loc')

<SEP>

(0, 1, 'Peop')

(4, 5, 'Org')

Work_For

(4, 5, 'Org')

(7, 7, 'Loc')

OrgBased_In

1.00 0.53 0.37 0.18 0.29 0.21 0.10 0.11 0.15 0.09 0.04

0.00 0.47 0.34 0.18 0.11 0.15 0.05 0.03 0.08 0.04 0.02

0.00 0.00 0.29 0.42 0.16 0.16 0.14 0.09 0.09 0.05 0.03

0.00 0.00 0.00 0.21 0.17 0.09 0.19 0.07 0.09 0.11 0.02

0.00 0.00 0.00 0.00 0.27 0.19 0.17 0.04 0.07 0.08 0.02

0.00 0.00 0.00 0.00 0.00 0.21 0.22 0.38 0.06 0.02 0.05

0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.24 0.16 0.03 0.04

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.11 0.10 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.42 0.46

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.26

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

Figure 8: Decoder Self-Attention Visualization. This figure
illustrates the attention patterns among elements in the gen-
erated sequence.

Interpretability Analysis

Attention Maps

Here we analyze the attention of the model during the de-
coding step, which allow us to explain some of the model’s
decision. We investigate both the self-attention (Fig. 8) and
cross-attention (Fig. 9).

Self-attention The self-attention map, shown in Figure 8,
depicts the distribution of attention across preceding tokens
during generation. One notable observation is the model’s
tendency to focus on the head and tail entities that comprise
the relation when predicting relation types. For example,
when predicting the Work For relation, the model allocates
most of its attention weight to the tokens (0,1,Peop) and
(4,5,Org).

Cross-attention The cross-attention map in Figure 9 in-
dicates the specific areas in the input sequence that the de-
coded tokens attend to during generation. For entity labels in
the output sequence such as (0,1,Peop), (4,5,Org),
and (7,7,Loc), we can observe higher attention scores
for the words Alain, McGill, and Montreal, respec-
tively, in the input sequence. This indicates that the model
tends to focuses on the beginning of each entity span when
generating these entities in the output sequence. Further-
more, when predicting tail entities for relations, significant
attention is directed toward the prepositions ’at’ and ’in’ in
the input sequence. This suggests that the model has learned
to associate these prepositions with specific relations be-
tween entities.

(0,
 1,

 'P
eo

p')

(4,
 5,

 'O
rg'

)

(7,
 7,

 'L
oc

')

<SE
P>

(0,
 1,

 'P
eo

p')

(4,
 5,

 'O
rg'

)

Work
_F

or

(4,
 5,

 'O
rg'

)

(7,
 7,

 'L
oc

')

OrgB
as

ed
_In

Alain

Farley

works

at

McGill

University

in

Montreal

0.34 0.04 0.07 0.15 0.04 0.03 0.05 0.02 0.04 0.07

0.06 0.03 0.04 0.04 0.17 0.07 0.03 0.03 0.02 0.06

0.05 0.03 0.04 0.06 0.08 0.08 0.09 0.08 0.07 0.10

0.04 0.08 0.03 0.05 0.11 0.19 0.13 0.12 0.06 0.09

0.02 0.24 0.02 0.03 0.08 0.06 0.06 0.08 0.02 0.04

0.03 0.05 0.01 0.03 0.09 0.13 0.07 0.20 0.02 0.09

0.06 0.10 0.07 0.04 0.07 0.12 0.13 0.12 0.13 0.07

0.05 0.08 0.31 0.01 0.10 0.06 0.15 0.10 0.22 0.06

Figure 9: Decoder Cross-Attention Visualization. This map
shows how each target element in the decoder interacts with
and utilizes the original input text.

Learned Structure Embedding

To investigate the impact of the learned structure embed-
ding on model performance, we analyze the similarity be-
tween the structure embeddings learned during training, de-
picted in Figure 10. Notably, we observe a consistent pattern
across datasets: the embeddings for the Head and Tail ex-
hibit a high negative correlation. This finding may suggest
that the model learns to differentiate between the Head and
Tail entities, capturing their distinct characteristics.

ENode EHead ETail ERelation

E N
od
e

E H
ea
d

E T
ai
l

E R
el
at
io
n

1.00 -0.36 -0.14 -0.21

-0.36 1.00 -0.70 0.10

-0.14 -0.70 1.00 0.11

-0.21 0.10 0.11 1.00

Figure 10: Structure embedding similarity. This map shows
the cosine similarity between pairs of structure embedding.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19484

Embedding Dimension

ENode

EHead

ETail

ERelation

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Figure 11: Structure embedding values. This shows the val-
ues taken by the learned structure embeddings.

However, we do not have a clear interpretation of this phe-
nomenon. Additionally, Figure 11 illustrates structure em-
bedding values over 512 dimensions. Noticeably, EHead and
ETail show higher values, indicating that predicting head
and tail entities may be the most challenging for the model.

Related Works
Classification-based IE
In the field of information extraction (IE), traditional
pipeline models have been used, consisting of separate
stages for entity recognition and relation extraction (Roth
and Yih 2004). Entity recognition is performed to identify
mentioned entities (Chiu and Nichols 2015; Lample et al.
2016; Zaratiana et al. 2022a,b, 2023), followed by rela-
tion extraction to determine the relationships between these
entities (Zelenko, Aone, and Richardella 2002; Bach and
Badaskar 2007; Lin et al. 2016; Wu, Bamman, and Rus-
sell 2017). However, this approach suffers from error prop-
agation, where mistakes in entity recognition can negatively
impact the accuracy of relation extraction (Brin 1999; Roth
and Yih 2004; Nadeau and Sekine 2007). To address these
challenges, there has been a shift towards end-to-end mod-
els that jointly optimize both entity recognition and relation
extraction. This joint optimization aims to harness the inter-
play between the two tasks, thereby enhancing overall per-
formance (Sun et al. 2021; Zhao et al. 2021; Ye et al. 2022a).
Noteworthy directions in this domain include table-filling
methods (Wang and Lu 2020; Ma, Hiraoka, and Okazaki
2022), span pair classification (Eberts and Ulges 2019; Wad-
den et al. 2019), set prediction (Sui et al. 2020), augmented
sequence tagging mechanisms (Ji et al. 2020), fine-grained
triplet classification (Shang, Huang, and Mao 2022), and the
use of unified labels for the task (Wang et al. 2021).

Generative IE
Recent advancements in generative Information Extraction
(IE) emphasize the use of language models (LMs) to pro-
duce entities and relations, either as text or as a sequence of
actions (Paolini et al. 2021; Lu et al. 2022; Nayak and Ng

2020; Liu et al. 2022; Fei et al. 2022; Wan et al. 2023). Typ-
ically, these models employ pretrained encoder-decoder ar-
chitectures, such as T5 (Raffel et al. 2019) or BART (Lewis
et al. 2020), to encode an input text and subsequently decode
it into a structured output. Their primary advantage over
non-generative methods is their ability to seamlessly inte-
grate tasks by treating them as a unified generation process.
A comprehensive review of this approach is available in (Ye
et al. 2022b; Xu et al. 2023). Generative models have also
found applications in other IE tasks, including entity linking
(Cao et al. 2021), event extraction (Li, Ji, and Han 2021),
and document-level IE (Giorgi, Bader, and Wang 2022).

Constrained Decoding
In the generative IE paradigm, the model can in principle
generate any sequence over the LM’s vocabulary if the de-
coder is not constrained in some way. One might resort to
controlled to bias the model and guide the generation (Li
et al. 2022; Kumar, Paria, and Tsvetkov 2022; Amini, Du,
and Cotterell 2023). These approaches still generate a se-
quence over LM’s vocabulary that needs to be mapped to an
output graph using some kind of a parser that analyzes the
output and extracts a well-formed structure (Paolini et al.
2021). Another approach incorporates constraints explicitly
into the decoding algorithm to restrict the LM’s vocabu-
lary to allowed tokens. For instance, Cao et al. (2021) and
Josifoski et al. (2022) use constrained beam search to force
the output to a set of allowed entities and relations from a
knowledge base schema. Another solution is to build a cus-
tom decoder that is constrained to a tailored vocabulary and
decoding algorithm guaranteed to produce a linearized well-
formed structure. Liu et al. (2022) and Lu et al. (2022) use
a specialized decoder with some sort of explicit grammar
over a specific vocabulary to restrict the output to valid se-
quences. Our work falls in this category which can be for-
malized as generating words from a formal language de-
scribed by a grammar over a specialized alphabet (Willard
and Louf 2023; Geng et al. 2023).

Conclusion
In conclusion, our autoregressive text-to-graph framework
for joint entity and relation extraction has demonstrated its
effectiveness in achieving state-of-the-art or competitive re-
sults on multiple benchmark datasets. By directly generating
a linearized graph representation instead of plain text, ATG
successfully captures the structural characteristics, bound-
aries, and interactions of entities and relations. Moreover,
the pointing mechanism on dynamic vocabulary provides ro-
bust grounding in the original text, which also allows our
model’s decoding to be fully controllable.

Acknowledgments
This work was granted access to the HPC resources of
IDRIS under the allocation 2023-AD011014472 made by
GENCI. This work is partially supported by a public granto-
verseen by the French National Research Agency (ANR)
as part of the program Investissements d’Avenir (ANR-10-
LABX-0083).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19485

References
Amini, A.; Du, L.; and Cotterell, R. 2023. Structured
Voronoi Sampling. In Thirty-seventh Conference on Neural
Information Processing Systems.
Bach, N.; and Badaskar, S. 2007. A Review of Relation
Extraction.
Beltagy, I.; Lo, K.; and Cohan, A. 2019. SciBERT: A Pre-
trained Language Model for Scientific Text. In EMNLP
2019.
Brin, S. 1999. Extracting Patterns and Relations from the
World Wide Web. In The World Wide Web and Databases.
ISBN 978-3-540-48909-2.
Cao, N. D.; Izacard, G.; Riedel, S.; and Petroni, F. 2021. Au-
toregressive Entity Retrieval. In International Conference
on Learning Representations.
Carreras, X.; and Màrquez, L. 2004. Introduction to the
CoNLL-2004 Shared Task: Semantic Role Labeling. In
Proceedings of the Eighth Conference on Computational
Natural Language Learning (CoNLL-2004) at HLT-NAACL
2004.
Chen, D.; Fisch, A.; Weston, J.; and Bordes, A. 2017. Read-
ing Wikipedia to Answer Open-Domain Questions. In Pro-
ceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
Chen, T.; Saxena, S.; Li, L.; Fleet, D. J.; and Hinton, G.
2022. Pix2seq: A Language Modeling Framework for Ob-
ject Detection. In International Conference on Learning
Representations.
Chiu, J. P. C.; and Nichols, E. 2015. Named Entity Recog-
nition with Bidirectional LSTM-CNNs. Transactions of the
Association for Computational Linguistics.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics.
Eberts, M.; and Ulges, A. 2019. Span-based Joint Entity and
Relation Extraction with Transformer Pre-training. ArXiv,
abs/1909.07755.
Fei, H.; Wu, S.; Li, J.; Li, B.; Li, F.; Qin, L.; Zhang, M.;
Zhang, M.; and Chua, T.-S. 2022. LasUIE: Unifying In-
formation Extraction with Latent Adaptive Structure-aware
Generative Language Model. In Advances in Neural Infor-
mation Processing Systems.
Geng, S.; Josifoski, M.; Peyrard, M.; and West, R. 2023.
Grammar-Constrained Decoding for Structured NLP Tasks
without Finetuning. In EMNLP 2023.
Giorgi, J.; Bader, G. D.; and Wang, B. 2022. A sequence-to-
sequence approach for document-level relation extraction.
In Workshop on Biomedical Natural Language Processing.
He, P.; Gao, J.; and Chen, W. 2021. DeBERTaV3:
Improving DeBERTa using ELECTRA-Style Pre-Training
with Gradient-Disentangled Embedding Sharing. ArXiv,
abs/2111.09543.

Holtzman, A.; Buys, J.; Forbes, M.; and Choi, Y. 2019.
The Curious Case of Neural Text Degeneration. ArXiv,
abs/1904.09751.
Ji, B.; Yu, J.; Li, S.; Ma, J.; Wu, Q.; Tan, Y.; and Liu,
H. 2020. Span-based Joint Entity and Relation Extraction
with Attention-based Span-specific and Contextual Seman-
tic Representations. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics. Interna-
tional Committee on Computational Linguistics.
Josifoski, M.; De Cao, N.; Peyrard, M.; Petroni, F.; and
West, R. 2022. GenIE: Generative Information Extraction.
In NAACL 2022.
Kulikov, I.; Eremeev, M.; and Cho, K. 2022. Characteriz-
ing and addressing the issue of oversmoothing in neural au-
toregressive sequence modeling. In Proceedings of the 2nd
Conference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing (Volume
1: Long Papers).
Kumar, S.; Paria, B.; and Tsvetkov, Y. 2022. Gradient-based
Constrained Sampling from Language Models. In EMNLP
2022.
Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami,
K.; and Dyer, C. 2016. Neural Architectures for Named En-
tity Recognition. In NAACL 2016.
Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mo-
hamed, A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L.
2020. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Compre-
hension. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.
Li, S.; Ji, H.; and Han, J. 2021. Document-Level Event Ar-
gument Extraction by Conditional Generation. In NAACL
2021.
Li, X.; Thickstun, J.; Gulrajani, I.; Liang, P. S.; and
Hashimoto, T. B. 2022. Diffusion-LM Improves Control-
lable Text Generation. In Advances in Neural Information
Processing Systems.
Lin, Y.; Shen, S.; Liu, Z.; Luan, H.; and Sun, M. 2016.
Neural Relation Extraction with Selective Attention over In-
stances. In Annual Meeting of the Association for Computa-
tional Linguistics.
Liu, T.; Jiang, Y. E.; Monath, N.; Cotterell, R.; and Sachan,
M. 2022. Autoregressive Structured Prediction with Lan-
guage Models. In Findings of EMNLP 2022.
Loshchilov, I.; and Hutter, F. 2017. Decoupled Weight De-
cay Regularization. In International Conference on Learn-
ing Representations.
Lu, Y.; Liu, Q.; Dai, D.; Xiao, X.; Lin, H.; Han, X.; Sun,
L.; and Wu, H. 2022. Unified Structure Generation for Uni-
versal Information Extraction. In Proceedings of the 60th
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).
Luan, Y.; He, L.; Ostendorf, M.; and Hajishirzi, H. 2018.
Multi-Task Identification of Entities, Relations, and Coref-
erencefor Scientific Knowledge Graph Construction. In
EMNLP 2018.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19486

Ma, Y.; Hiraoka, T.; and Okazaki, N. 2022. Joint Entity and
Relation Extraction Based on Table Labeling Using Convo-
lutional Neural Networks. In Proceedings of the Sixth Work-
shop on Structured Prediction for NLP.
Murray, K.; and Chiang, D. 2018. Correcting Length Bias
in Neural Machine Translation. In Proceedings of the Third
Conference on Machine Translation: Research Papers.
Nadeau, D.; and Sekine, S. 2007. A survey of named entity
recognition and classification. Lingvisticae Investigationes.
Nayak, T.; and Ng, H. T. 2020. Effective Modeling of
Encoder-Decoder Architecture for Joint Entity and Relation
Extraction. In The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence, AAAI 2020, New York, NY, USA, February
7-12, 2020, 8528–8535. AAAI Press.
Paolini, G.; Athiwaratkun, B.; Krone, J.; Ma, J.; Achille, A.;
ANUBHAI, R.; dos Santos, C. N.; Xiang, B.; and Soatto,
S. 2021. Structured Prediction as Translation between Aug-
mented Natural Languages. In International Conference on
Learning Representations.
Raffel, C.; Shazeer, N. M.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2019. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. ArXiv, abs/1910.10683.
Ren, L.; Sun, C.; Ji, H.; and Hockenmaier, J. 2021. HySPA:
Hybrid Span Generation for Scalable Text-to-Graph Extrac-
tion. In Findings of ACL-IJCNLP 2021.
Roth, D.; and Yih, W.-t. 2004. A Linear Programming For-
mulation for Global Inference in Natural Language Tasks.
In Proceedings of the Eighth Conference on Computational
Natural Language Learning (CoNLL-2004) at HLT-NAACL
2004.
Shang, Y.-M.; Huang, H.; and Mao, X.-L. 2022. OneRel:
Joint Entity and Relation Extraction with One Module in
One Step. In AAAI Conference on Artificial Intelligence.
Sui, D.; Chen, Y.; Liu, K.; Zhao, J.; Zeng, X.; and Liu, S.
2020. Joint Entity and Relation Extraction with Set Predic-
tion Networks. IEEE transactions on neural networks and
learning systems, PP.
Sun, K.; Zhang, R.; Mensah, S.; Mao, Y.; and Liu, X. 2021.
Progressive Multi-task Learning with Controlled Informa-
tion Flow for Joint Entity and Relation Extraction. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
35(15): 13851–13859.
Taillé, B.; Guigue, V.; Scoutheeten, G.; and Gallinari, P.
2021. Let’s Stop Incorrect Comparisons in End-to-end Re-
lation Extraction! arXiv:2009.10684.
Vaswani, A.; Shazeer, N. M.; Parmar, N.; Uszkoreit, J.;
Jones, L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017.
Attention is All you Need. In NIPS.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer Net-
works. In Advances in Neural Information Processing Sys-
tems.
Wadden, D.; Wennberg, U.; Luan, Y.; and Hajishirzi, H.
2019. Entity, Relation, and Event Extraction with Contextu-
alized Span Representations. In EMNLP 2019.

Walker, C.; Strassel, S.; Medero, J.; and Maeda, K. 2006.
ACE 2005 Multilingual Training Corpus.
Wan, Z.; Cheng, F.; Mao, Z.; Liu, Q.; Song, H.; Li, J.; and
Kurohashi, S. 2023. GPT-RE: In-context Learning for Re-
lation Extraction using Large Language Models. In EMNLP
2023.
Wang, J.; and Lu, W. 2020. Two are Better than One:
Joint Entity and Relation Extraction with Table-Sequence
Encoders. In EMNLP 2020.
Wang, Y.; Sun, C.; Wu, Y.; Zhou, H.; Li, L.; and Yan, J.
2021. UniRE: A Unified Label Space for Entity Relation
Extraction. In ACL 2021.
Willard, B. T.; and Louf, R. 2023. Efficient Guided Genera-
tion for Large Language Models. arXiv:2307.09702.
Wu, Y.; Bamman, D.; and Russell, S. J. 2017. Adversarial
Training for Relation Extraction. In EMNLP 2017.
Xu, D.; Chen, W.; Peng, W.; Zhang, C.; Xu, T.; Zhao, X.;
Wu, X.; Zheng, Y.; and Chen, E. 2023. Large Language
Models for Generative Information Extraction: A Survey.
arXiv:2312.17617.
Xuewen, S.; Heyan, H.; Ping, J.; and Yi-Kun, T. 2021. Re-
ducing Length Bias in Scoring Neural Machine Translation
via a Causal Inference Method. In Proceedings of the 20th
Chinese National Conference on Computational Linguistics.
Yan, Z.; Zhang, C.; Fu, J.; Zhang, Q.; and Wei, Z. 2021. A
Partition Filter Network for Joint Entity and Relation Ex-
traction. In EMNLP 2021.
Ye, D.; Lin, Y.; Li, P.; and Sun, M. 2022a. Packed Levitated
Marker for Entity and Relation Extraction. In Proceedings
of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers).
Ye, H.; Zhang, N.; Chen, H.; and Chen, H. 2022b. Genera-
tive Knowledge Graph Construction: A Review. In EMNLP
2022.
Zaratiana, U.; Tomeh, N.; El Khbir, N.; Holat, P.; and
Charnois, T. 2023. Filtered Semi-Markov CRF. In Findings
of EMNLP 2023.
Zaratiana, U.; Tomeh, N.; Holat, P.; and Charnois, T. 2022a.
GNNer: Reducing Overlapping in Span-based NER Using
Graph Neural Networks. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics:
Student Research Workshop.
Zaratiana, U.; Tomeh, N.; Holat, P.; and Charnois, T. 2022b.
Named Entity Recognition as Structured Span Prediction. In
Proceedings of the Workshop on Unimodal and Multimodal
Induction of Linguistic Structures (UM-IoS).
Zelenko, D.; Aone, C.; and Richardella, A. 2002. Kernel
Methods for Relation Extraction. In Journal of machine
learning research.
Zhao, T.; Yan, Z.; Cao, Y.; and Li, Z. 2021. A Unified Multi-
Task Learning Framework for Joint Extraction of Entities
and Relations. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 35(16): 14524–14531.
Zhong, Z.; and Chen, D. 2021. A Frustratingly Easy Ap-
proach for Entity and Relation Extraction. In NAACL 2021.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19487

