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Abstract

Defect detection is a pivotal aspect ensuring product quality
and production efficiency in industrial manufacturing. Exist-
ing studies on defect detection predominantly focus on lo-
cating defects through bounding boxes and classifying defect
types. However, their methods can only provide limited infor-
mation and fail to meet the requirements for further process-
ing after detecting defects. To this end, we propose a novel
task called defect detection report generation, which aims to
provide more comprehensive and informative insights into
detected defects in the form of text reports. For this task, we
propose some new datasets, which contain 16 different ma-
terials and each defect contains a detailed report of human
constructs. In addition, we propose a knowledge-aware re-
port generation model as a baseline for future research, which
aims to incorporate additional knowledge to generate detailed
analysis and subsequent processing related to defects in im-
ages. By constructing defect report datasets and proposing
corresponding baselines, we chart new directions for future
research and practical applications of this task.

Introduction
Industrial defect detection aims to automatically identify and
locate defects or anomalies in products of different materi-
als, e.g., glass or steel, etc (Zhang et al. 2023a). These de-
fects or anomalies may include surface defects, cuts, cracks,
deformations, size deviations, and other issues that could im-
pact the quality and safety of the materials. Teaching a ma-
chine to automatically detect defects has become an emerg-
ing task in the computer vision area due to its vast potential
applications in industrial production scenarios (Zhang et al.
2023b; Lan and Huang 2023). Specifically, effective defect
detection contributes to enhancing monitoring and control
of product quality on the production line, which plays a cru-
cial role in ensuring the products meet quality standards and
reducing the rate of defective items.

Existing studies (Yang et al. 2023; Qiu, Wu, and Yu 2019;
Di et al. 2019) predominantly divide defect detection into
two consecutive subtasks, i.e., localization followed by clas-
sification. Defect localization refers to identifying the po-
sition of the defects within an image and framing it with
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Figure 1: A case of defect detection in Hazelnut. The defect
results are displayed in two forms of bounding box and text
report, in which the report includes the effect and solution.

bounding boxes. Defect classification involves matching the
defect in the framed bounding box with known candidate
defect types to determine the type of defect, e.g., cracks,
scratches, and blemishes, etc. Despite these methods are
capable of locating and classifying defects, they can only
provide limited information about the defects. This makes
it challenging to assist producers in gaining a comprehen-
sive understanding of the defect situation and devising so-
lutions. To overcome this limitation, we are inspired by re-
search in natural language processing areas such as medical
report generation (Kisilev et al. 2015; Liu et al. 2021a) and
attempt to describe the defects in the form of text. Specifi-
cally, text can provide detailed descriptions and explanations
of defects, offering a more intuitive expression of the causes
or solutions to the defects. As shown in Figure 1, the text
(i.e., Report (hard)) contains two main contents, i.e., defect
description of a hazelnut and comprehensive information of
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“Cut” defect type. Defect description describes the basic in-
formation of the location and type of the defect, while com-
prehensive information encompasses specific descriptions of
effects, their underlying causes, or proposed solutions.

In this paper, we propose a novel task, i.e., defect de-
tection report generation (DDRG), which aims to express
defect detection results in the format of report text. To the
best of our knowledge, no comparable dataset exists for this
DDRG task. As a first step in further research to fill this
gap and motivate the development of defect detection re-
port generation methods, we manually construct new defect
report datasets for the DDRG task. In detail, the construc-
tion of datasets involved 16 different materials, e.g., steel,
wood, or hazelnut. Each constructed report incorporates de-
fect characteristics and additional knowledge sources (e.g.,
Wikipedia) of comprehensive information as references for
report annotations. The constructed datasets could facilitate
training and thorough evaluation of such generation meth-
ods. As depicted in Figure 1, based on the differing con-
tent contained within the reports, the constructed datasets
can be categorized into two classes, i.e., Easy report dataset
and Hard report dataset. The Easy report dataset includes
solely defect descriptions, while the Hard report dataset ad-
ditionally incorporates comprehensive information. Both of
these datasets contribute to evaluating some defect detection
capabilities of the methods. Specifically, the Easy report
dataset highlights the traditional abilities of defect detection
models, i.e., localization and classification. In contrast, the
Hard report dataset goes beyond these traditional capabil-
ities and evaluate the model’s ability to acquire additional
knowledge to generate comprehensive information.

Different from existing image-to-text tasks such as im-
age captioning (Hirota, Nakashima, and Garcia 2023), the
DDRG task has two unique characteristics: i) Objective.
The DDRG task primarily concentrates on describing and
analyzing specific defects present in the image, rather than
focusing on depicting the whole image of these image de-
scription tasks. ii) Additional Knowledge. The DDRG task
may involve domain-specific background knowledge to ac-
curately describe defects and solutions, which goes beyond
the visual content of image descriptions. To this end, we pro-
pose a model targeting the above two characteristics, named
knowledge-aware report generation (KRG) model, which
is intended to serve as a baseline for future methods. Our
model contains four modules, multimodal feature extractor,
knowledge retriever, knowledge-aware encoder and decoder.
To facilitate the description focusing on the defects in an im-
age, multimodal feature extractor utilizes pre-trained model
VisualBERT (Li et al. 2020a) to align the image features and
defect type words, which enables image features to incorpo-
rate defect information. To acquire the knowledge related to
the defect, the knowledge retriever utilizes large-scale lan-
guage models as enhancers to retrieve the additional knowl-
edge related to all candidate defect types in the material.
Considering that not all additional knowledge is valid, the
knowledge-aware encoder is designed to extract and encode
target knowledge related to the defects in images. Finally,
the image features and extracted knowledge are used in the
decoder for report generation.

To summarize, our contributions are as follows:
• We propose a novel defect detection report generation

(DDRG) task, which enables a model to learn to express de-
fect information in text format in more detail and intuitively.

• We construct new datasets that can be used to evalu-
ate three capabilities of defect detection models, i.e., i) the
ability to describe defect description; ii) the ability to in-
tegrate additional knowledge; iii) the ability to resolve the
zero-shot situation. Specifically, the materials in production
are diverse and impossible to be comprehensively covered
due to the labor-intensive annotation process. Therefore, in
this paper, we try to annotate a wide variety of materials as
much as possible, in order to construct a suitable dataset that
drives the model towards achieving zero-shot capability.

• We propose two characteristics of DDRG and propose a
corresponding model named knowledge-aware report gener-
ation, which enables at least 38% improvement in BLEU-4
over the baselines and can be used as a future benchmark.
Experimental results show that our model design meets the
requirements of two characteristics to a certain extent, i.e.,
capture valid knowledge for report generation.

Related Work
The DDGR task aims to generate reports according to the
defect detection results, which is a combination task of de-
fect detection and image description.

Defect Detection Existing methods on defect detection
can be divided into supervised learning, unsupervised learn-
ing, and semi-supervised learning. Most of the supervised
learning methods make use of the variants of the CNN. Qiu
et al. (2019) propose a method composed of 3 stages, and a
fully convolutional network (FCN) is used in the segmenta-
tion stage. Hu et al. (2020) utilize Faster R-CNN to detect
surface defects on printed circuit boards (PCBs), demon-
strating its suitability for PCB manufacturing quality con-
trol. Shang et al. (2023) propose a DAT-Net that enhances
surface defect detection using a defect-aware Transformer
network that can efficiently model long-range dependencies.
Semi-supervised methods are also widely used in defect de-
tection. Both Li et al. (2019) and He et al. (2019) use semi-
supervised methods to tackle the surface defect classification
of steels, since most of the steel surfaces are unlabeled. Both
Hou et al. (2021) and Gong et al. (2019) adopt an encoder-
decoder structure for reconstruction. Besides, some studies
attempt to model the multi-class distribution via unsuper-
vised learning, such as You et al. (2022) propose a model
called UniAD, under this framework the anomaly detection
for multiple classes is accomplished. These methods can
solely provide defect location and type, but fail to provide
richer information like text format.

Image Captioning Image captioning aims to describe im-
ages in the form of meaningful text. Yao et al. (2018) and
Yang et al. (2019) explore combining semantic information
within the embedding. Yang et al. (2019) propose a vari-
ant of the self-attention operator for image captioning. Liu
et al. (2021b) apply the self-attention operators on the im-
age patches. Language model component in image caption-
ing aims at predicting a sequence of words with the given
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steel bottle cable capsule carpet grid hazelnut leather metal pill screw tile toothbrush transistor wood zipper sum
Original 1800 63 92 109 89 57 70 92 93 141 119 84 30 40 60 119 3058

Easy 927 22 56 17 40 47 32 38 46 59 44 34 24 16 55 52 1509
Hard 1543 53 85 76 78 56 56 79 74 112 100 60 30 33 60 107 2602
Len 98 148 166 146 151 175 142 149 165 162 147 148 176 145 176 158 -

Table 1: The number of deduplicated reports included in the datasets and the length of hard reports under 16 different materials.

embedding (Zhou et al. 2020). Li et al. (2020b) and Wang
et al. (2023) propose utilizing pre-trained models to embed
the tokens for this task. Luo et al. (2023) propose a novel
paradigm that leverages semantic prior from cross-modal re-
trieval to guide Diffusion Transformers in a cascaded man-
ner, yielding improved vision-language alignment and lin-
guistic coherence. These methods can provide a description
of the entire image but often ignore details related to defects.

Dataset Construction
Existing datasets for industrial defect detection tasks are in-
sufficient to support the evaluation of the defect detection
report generation (DDRG) task. The reasons are as follows:
i) Inadequate for Textual Demands. Defect reports of-
ten necessitate textual descriptions for defects of materials,
while image bounding boxes and classifications alone may
not fulfill these textual requirements. ii) Lack of Compre-
hensive Information. Merely providing location bounding
boxes and classifications may not offer sufficiently detailed
comprehensive information of defect, failing to adequately
convey the effects, causes, and solutions of defects. How-
ever, constructing a dataset suitable for the DDRG task from
scratch is labor-intensive.

Therefore, we propose to perform secondary processing
on existing datasets based on the defect detection task. In
a dataset we constructed, the defect report in each sample
mainly contains two parts, i.e., defect description and com-
prehensive information.

Defect Description Collection
Defect description refers to a detailed description of the de-
tected defect, including its location, defect type or charac-
teristics. To construct the descriptions, we design a series of
templates based on the box locations and classifications of
defects annotated in existing datasets, e.g., “There is a xxx
sized xxx-type defect in the xxx position of the xxx (mate-
rial like the pill).”. Through this approach, we can reduce the
manual effort required for defect description construction.

Comprehensive Information Collection
Comprehensive information contains more complex content
related to the defect, e.g., the effect, cause or solution of the
defect. Different from defect description collection, com-
prehensive information collection requires more human in-
volvement rather than being generated by rule templates.
Specifically, we build a comprehensive information annota-
tion web page that displays images with bounding boxes of
defects and text boxes below for entering comprehensive in-
formation like the effects of the defect. We first ask a group

of trained annotators to write down unique referring com-
prehensive information of the defects based on given image,
and then another group of trained annotators checks the con-
tent quality and makes appropriate revisions if necessary. To
ensure the quality of annotation, the annotators in the first
group are researchers with professional industrial produc-
tion or material background knowledge, and they combine
a large amount of additional knowledge such as Wikipedia
during the annotation process. The annotators in the second
group are front-line production personnel in the manufactur-
ing industry. Following the labeling standards for the defect
detection series datasets (Bao et al. 2021; Bergmann et al.
2019), we specify some labeling requirements: i) The cause
and solution need to be combined with the image back-
ground and defect characteristics. For example, for the same
“Cut” defect type, we need to generate consistent content
based on the specific material in the image. ii) The com-
prehensive information does not necessarily have to include
complete effects, causes, and solutions. We should choose
parts with high confidence as much as possible.

There are many existing datasets containing different ma-
terials that can be used for this secondary processing. For
the material selection in dataset construction, we have two
requirements, i.e., important or common. Thus, we select
to construct NEU-r and MVTec-r datasets based on the
NEU (Bao et al. 2021) and MVTec (Bergmann et al. 2019)
datasets, respectively. Specifically, the NEU dataset is about
the defect detection of steel, which is one of the most impor-
tant materials in industrial manufacturing; While the MVTec
dataset involves 15 of the most common materials in every-
day life, such as leather and wood. In addition, to gradually
verify whether the model has the ability of traditional de-
fect detection and incorporating additional knowledge, we
divide the two constructed datasets into two types, Easy and
Hard, respectively. Easy signifies that the report solely in-
cludes defect descriptions, whereas Hard encompasses ad-
ditional comprehensive information.

Data Diversity Analysis
Since defects may vary across images, the reports in our con-
structed dataset should be as diverse as possible. Therefore,
we performed repeated statistics on the constructed data set,
and the results are shown in Table 1. The “Original” indi-
cates the number of images each material contained in the
original dataset, which is also the number of our constructed
reports. We find that Easy report dataset has a large num-
ber of repeated reports, with a total repetition rate of about
50%. This is due to the fact that defect descriptions are gen-
erated based on rule templates. The Hard report dataset has
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Figure 2: Overview of our model KRG. The four modules
are highlighted in red font.

a lower repetition rate of about 14%. This is because the ar-
tificially constructed content containing comprehensive in-
formation has diversity according to defects or content com-
binations. And the “Len” represents the average length of
each Hard report under different materials. According to
this analysis, we consider that the constructed Hard report
dataset is diverse in report expressions.

Benchmark
In this DDRG task, given an image I in industrial manu-
facturing and the L candidate defect types T = [t1, ..., tL],
our goal is to generate a report R related to the defect. We
conduct a thorough evaluation of multiple mainstream meth-
ods for image description as an initial benchmark on our
datasets. Specifically, the benchmarks contain the neural net-
work model GRNN (Mostafazadeh et al. 2016), and the pre-
trained models CLIP (Radford et al. 2021) and VisualBERT
(Li et al. 2020a). We show that while each method can detect
certain types of defects and generate their defect descrip-
tions, none of the evaluation methods excels at generating
comprehensive information. This is due to the fact that addi-
tional knowledge related to defects usually needs to be inte-
grated when generating comprehensive information. To this
end, we design a new baseline model based on VisualBERT,
which is intended to serve as a baseline for future methods.

Proposed Method
We propose a knowledge-aware report generation (KRG)
model and the overall of our proposed model can be seen
in Figure 2. It consists of four modules: (i) Multimodal fea-
tures extractor, which aims to extract aligned visual features
of image I and textual features of defect types T . (ii) Knowl-
edge Retriever, which aims to retrieve knowledge related to
the defects of specific material from a knowledge base. (iii)
Knowledge-aware encoder, which aims to combine the im-
age features and defect-related knowledge to obtain the em-

bedding vector. (iv) Decoder module, which aims to gener-
ate a report based on the output of the knowledge-aware en-
coder. Details of each part of our framework are presented
in the following sections.

Multimodal Features Extractor Unlike the image cap-
tioning task, the DDRG task aims to describe the part of
the defect in an image. Thus, we employ the VisualBERT
to capture the rich semantics in this multimodal information
of given images I and defect types T . The VisualBERT in-
tegrates the BERT (Devlin et al. 2019) and the ResNet (He
et al. 2016) to process the defect type words and the im-
age patches. Specifically, we divide the input images into
numerous overlapping segments and apply ResNet for fea-
ture extraction on each segment. The extracted features then
serve as representations for their respective regions. We opt
for BERT and ResNet as the feature extractors owing to their
robust performance in text and image analysis domains, pro-
ficiently capturing and representing high-level features in-
herent in both text and images.

Inputs of defect type word and the image patches fea-
tures are jointly processed by multiple Transformer layers.
The rich interactions between words and patches enable the
model to capture complex relationships among them. Fur-
thermore, the model is allowed to implicitly discover use-
ful alignments between image patches and candidate defect
types, and then obtain new defect type representations ht =

{ht
i}

L
i=1 and image patches representations hv = {hv

i }
K
i=1,

where K represents the image is divided into K patches.

Knowledge Retriever Defect descriptions in reports can
be obtained with visual information, while other compre-
hensive information is difficult. The generation of compre-
hensive information usually requires additional knowledge,
which can provide the cause or solution ideas related to the
defect. Thus, we design a knowledge retriever to retrieve ad-
ditional knowledge related to each candidate defect type.

With the development of large-scale language models
(LLMs), LLMs as enhancers can provide more accurate and
comprehensive relevant knowledge than traditional knowl-
edge bases e.g., ConceptNet (Speer, Chin, and Havasi 2017).
Following the study of Brown et al. (2020), we utilize Chat-
GPT with prompt engineering to generate additional knowl-
edge for each candidate defect type, which contains EF-
FECT, CAUSE and SOLUTION. Specifically, the designed
template is as follows, “There are xxx (defect type) on the
xxx (material), will this have any effect?”. The prompt tem-
plate introduces the defect type and its product material in
detail, and then raises a related question about effect. Fi-
nally, we can retrieve relevant knowledge about all defect
types corresponding to each material.

Knowledge-aware Encoder For the same material, LLMs
may retrieve a series of similar knowledge. However, not all
knowledge is contributable, and effective knowledge needs
to be consistent with specific details (e.g., type, size, etc.)
of defects present in different images. Thus, we designed
a knowledge-aware encoder to extract and encode defect-
related knowledge. Specifically, the module utilizes a BERT
to tokenize each retrieved knowledge into individual sub-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19309



Dataset Type Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE CIDEr Acc

NEU-r

Easy
GRNN 40.20 38.08 35.83 23.42 30.39 56.69 2.59 46.08
CLIP 54.37 47.48 39.93 30.68 39.57 60.00 3.13 48.52

VisualBERT 50.83 49.67 38.48 30.24 45.32 58.47 4.54 49.77

Hard

GRNN 20.16 12.87 8.06 6.99 13.16 26.17 1.24 47.47
CLIP 20.55 18.69 10.41 11.01 19.92 26.80 1.53 55.47

VisualBERT 29.70 18.89 16.83 9.82 25.95 38.16 3.66 65.54
KRG 35.31 21.70 25.27 16.88 36.83 45.91 4.12 70.75

Zero-shot

GRNN 18.16 10.87 7.06 2.91 13.16 26.17 1.23 0
CLIP 19.90 13.66 9.76 3.43 11.21 26.88 2.30 6.40

VisualBERT 21.92 14.35 10.43 7.11 23.74 33.94 2.66 7.50
KRG 28.31 17.71 13.61 9.42 29.08 37.96 3.19 10.25

MVTec-r

Easy
GRNN 40.40 37.54 29.13 26.32 21.20 48.11 3.02 48.27
CLIP 50.83 44.11 36.98 29.07 30.90 52.49 3.80 48.72

VisualBERT 51.36 41.22 31.09 29.64 28.10 52.48 3.01 52.31

Hard

GRNN 19.57 26.47 15.95 13.45 14.13 27.89 1.12 50.84
CLIP 27.26 23.04 18.53 13.27 18.40 23.28 1.05 55.01

VisualBERT 26.40 24.66 20.71 14.02 17.31 25.94 1.34 57.84
KRG 46.51 31.70 23.98 19.43 26.93 32.38 3.85 61.65

Zero-shot

GRNN 17.09 12.64 9.67 7.97 15.16 20.25 1.22 0
CLIP 17.26 13.04 10.53 9.46 12.24 21.1 1.05 10.21

VisualBERT 14.96 13.10 11.50 9.98 16.52 21.16 1.10 13.65
KRG 32.60 23.67 15.82 11.26 22.30 25.86 2.54 23.65

Table 2: Main automatic metrics results of baselines and our model. Bold: the best performance in the column for each type.

word tokens using WordPiece tokenization and convert the
tokenized input into corresponding word embeddings,

hk
i,j = BERT (ki,j), (1)

where ki,j represents the j-th word in the knowledge corre-
sponding to the i-th defect type.

Then, a mean pooling over the word embeddings is im-
plemented to obtain a fixed-size representation for the i-th
knowledge, i.e.,

h̄k
i =

M∑
j=0

hk
i,j , (2)

where h̄k
i represents the the i-th knowledge representation

and M means that the i-th knowledge contains M words.
Similarly, we also use the mean pooling layer to obtain

the representation of the image and candidate defect types,

h̄v =
K∑
i=0

hv
i , (3)

h̄t =
L∑

p=0

BERT (tp), (4)

where h̄v denotes the whole image representation, while h̄t

represents the representation of all candidate defect types.
Additionally, K and L mean the image contains K patches
and L candidate defect types, respectively.

For a given image h̄v and their candidate knowledge rep-
resentations h̄k, the attention mechanism applies a fully-
connected layer and the softmax function to calculate the

normalized weights for each defect,

si =
exp(Ws(h̄

v ⊕ h̄k
i ) + bs)∑L

m=0 exp(Ws(h̄v ⊕ h̄k
m) + bs)

, (5)

where si denotes the weight of the i-th knowledge, Ws and
bs are learned parameters and ⊕ denotes the concatenation
operation. The additional knowledge h̃k can be calculated as
the weighted sum of L knowledge representations,

h̃k =

L∑
i=0

sih̄
k
i . (6)

Decoder Module We use an LSTM (Hochreiter and
Schmidhuber 1997) as the decoder to generate a report. Then
we initialize the decoder state with the image features h̄v

through Equation (3),
s0 = (h0, c0) = h̄v. (7)

In each decoder step, the decoder focuses on different im-
age patches. Thus, we set up a dynamic mechanism to force
the decoder to focus on different patches of the image, i.e.,

lt,i =
exp(Wq(ht ⊕ h̄v

i ) + bq)∑K
c=0 exp(Wq(ht ⊕ h̄v

c ) + bq)
, (8)

vt =
K∑
i=0

lt,ih
v
i , (9)

where ht represents the hidden state at the step t-1, and vt
represents the image representation at step t.

Subsequently, the decoder module leverages the image
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feature vt, knowledge representation h̃k, defect type h̄t, and
the last generated word embedding r̂t−1 to generate the cur-
rent hidden state,

st = LSTM(vt, h̃
k, h̄t, r̂t−1, st−1). (10)

Building upon the approach presented in (Ma et al. 2018),
we train a fully connected layer on st and subsequently em-
ploy a softmax activation to derive the distribution of word
probabilities at the step t,

r̂t = softmax(Wyst + by). (11)

Experiment
Baseline Models
(i) GRNN (Mostafazadeh et al. 2016) is a baseline model.
It utilizes GRU to decode image features obtained by VG-
GNet. (ii) CLIP is a model we devised, building upon the
foundation laid by Radford et al. (2021). This model in-
tegrates the characteristics of text and images by jointly
encoding defect type words and visual features, yielding
a cohesive cross-modal representation (iii) VisualBERT is
based on the work of Li et al. (2020a). The model jointly
encodes the defect types and patches in the image to obtain
the cross-modal representation.

Experimental Details
We implement all models in Pytorch and train them with two
P100 GPUs. We divide each image into K = 196 patches
for CLIP and VisualBERT. The decoder employs 350 hid-
den units, and dropout layers with a dropout probability
of Pdrop=0.4. During the training process, we fine-tune the
model’s performance by minimizing the cross-entropy loss
function. This optimization is achieved using the gradient
descent algorithm with the Adam optimizer (Kingma and
Ba 2015), initialized with a learning rate of 0.0001.

The division and usage details of datasets are as follows.
The NEU-r dataset comprises solely steel material. For con-
structing the zero-shot scenario, we train the model using the
MVTec-r dataset and then perform predictions on the NEU-
r test set. The MVTec-r dataset contains 15 different mate-
rials. We shuffle the data of different materials for training
and prediction. For the zero-shot scenario, we use the NEU-r
dataset for training and the MVTec-r test set for prediction.

Evaluation
Automatic Evaluation Metrics. We measure the perfor-
mance of the models used to generate questions with five
metrics: BLEU (1 to 4) (Papineni et al. 2002), ROUGEL

(Lin 2004), METEOR (Denkowski and Lavie 2014) and
CIDEr (Vedantam, Zitnick, and Parikh 2015), which are
standard evaluation metrics for natural language generation.
Human Evaluation Criteria. To further refine our assess-
ment, we also invited 5 volunteers with good English and in-
dustrial manufacturing education to conduct manual evalua-
tion (Xing et al. 2017). Specifically, we randomly select 50
samples of the same number in each model, and then eval-
uate them according to the following metrics: Fluency (F)
mainly reflects the fluency of generated report sentences, as
well as whether there are grammatical errors and unknown

Material Type Model F D C

NEU-r

Easy
GRNN 2.94 0.53 -
CLIP 3.10 0.61 -

VisualBERT 3.15 0.63 -

Hard

GRNN 2.42 0.56 0.38
CLIP 2.89 0.61 0.27

VisualBERT 2.95 0.65 0.31
KRG 3.26 0.67 0.58

Human 4.70 0.98 0.87

MVTec-r

Easy
GRNN 3.03 0.42 -
CLIP 2.97 0.52 -

VisualBERT 3.10 0.49 -

Hard

GRNN 2.20 0.47 0.22
CLIP 2.58 0.56 0.30

VisualBERT 2.42 0.52 0.19
KRG 2.97 0.63 0.49

Human 4.86 0.93 0.83

Table 3: The human evaluation results.

words (UNKs). Defect description (D) indicates whether the
generated results can accurately reflect information such as
the size, location and type of defects. Comprehensive Infor-
mation (C) indicates whether the generated results can accu-
rately reflect comprehensive information such as the effects,
causes or solutions of defects.

Flu takes values from 0 to 5 (Higher values represent
higher fluency), while F and C take a binary value (1 or 0).

Results and Analysis
Automatic Evaluation Results Table 2 shows the auto-
matic evaluation results of baselines. The results are divided
into two parts, i.e., evaluating the textual quality of the gen-
erated results and evaluating the accuracy of defect type
classification. For the first part, we have several findings:

• Easy report dataset. i) Compared to Hard report
dataset, we find that the three baselines achieve more com-
petitive results on the Easy report dataset. This is because
Easy report dataset only contains short text descriptions
of defects and is constructed through rule templates, so
models can effectively learn relevant information and tem-
plate formats. ii) The CLIP and VisualBERT models are
slightly better than the GRNN model. This is because the
CLIP and VisualBERT models introduce candidate defect
types as inputs, which have a certain guiding effect on the
positioning and classification of defect types.

• Hard report dataset. i) For Hard report dataset, three
baselines fail to perform satisfactorily. This is due to the
difficulty in obtaining comprehensive information solely
from images. Importantly, it presents a challenging task
for defect detection. ii) Our model KRG outperforms three
baselines in various metrics. For example, KRG improves
BLEU 4 by 53% and 38% compared with the best baseline
on the NEU-r and MVTec-r datasets, respectively. This in-
dicates that our model can effectively capture additional

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19311



Figure 3: Case study of sample output report generated by
humans, our model KRG, and CLIP.

knowledge related to comprehensive information to a cer-
tain extent, and utilize it for report generation.

• Zero-shot. Annotating defects in different materials typ-
ically incurs significant manual labor costs, while indus-
trial production often involves a diverse range of materials
that require detection. Therefore, we also attempted to as-
sess the zero-shot capability of each model. We find that
our model KRG is not affected by the dataset partition by
utilizing additional knowledge, so our model can still pro-
vide some effective information to generate results. But
overall all models perform poorly in this situation, which
also suggests an important direction for future research.

For the second part, we have several findings:

• Accuracy. i) We observe that all models yielded moderate
results in defect category determination. This is due to the
fact that the generative approach tends to perform com-
paratively less effectively than supervised classification
methods. ii) The accuracy rate obtained by the Hard re-
port dataset is higher than that of the Easy report dataset,
which indicates that the generation of comprehensive in-
formation will also have a certain impact on the content of
the defect description. iii) Both perform badly in the zero-
shot situation. There are different candidate defect types

for each material, and a GRNN model would fail to gen-
erate correct results without such information.

Human Evaluation Results To provide a clearer depic-
tion of the efficacy of human evaluations, we initially com-
pute the Fleiss’ Kappa Coefficients for each criterion. We
find that the results are high (i.e., greater than 0.4), which
indicates that our human evaluations are reliable. Table 3
shows the human evaluation results. We find that:
• First, the fluency of the results for the Easy type is sig-

nificantly higher compared to the Hard type. This is at-
tributed to the longer length of the Hard type dataset,
which presents a challenge commonly encountered in nat-
ural language generation tasks.

• Second, for metric D, the results for the Hard type exhibit
a slightly better performance than the Easy type. This in-
dicates that the generation of comprehensive information
to some extent prompts the model to produce more accu-
rate defect descriptions.

• Third, the baseline models perform poorly in metric C,
which is consistent with the results for the Hard report
dataset in automated evaluation. Our designed model man-
ages to capture relevant additional knowledge to some ex-
tent, thereby outperforming the baselines in metric C.

• Fourth, the results constructed by humans performed well
on the three indicators, which shows that the quality of the
datasets we constructed are recognized by multiple groups
of annotators and evaluators.

Case Study
Figure 3 shows defect detection report generated from the
human-constructed, CLIP, and our model KRG. We find that
(i) the model has some fluency problems in the process of
generating long text, such as CLIP will generate repeated
words. (ii) The baseline CLIP excels in generating defect de-
scriptions, whereas the model exhibits minimal capability to
generate comprehensive information. (iii) Our model KRG
is able to generate a report that include the effect and solu-
tion of defect. This indicates that the knowledge integration
method of our model can capture and utilize effective addi-
tional knowledge for report generation to a certain extent.

Conclusion
In this paper, we propose a new task called defect detec-
tion report generation, which can describe defects in detail
and give additional information in the form of text. Exist-
ing datasets on defect detection only contain defect location
boxes and defect categories. For this task, we first propose
corresponding new datasets, which contain 16 different ma-
terials. Specifically, each report in the constructed dataset
contains two parts, i.e., defect description and comprehen-
sive information. In addition, we design a knowledge-aware
report generation model. Our model extracts relevant knowl-
edge from large-scale models according to candidate defect
types, and then focuses on the parts related to image content
for generation. Experiments show that the DDRG task we
proposed is difficult to be solved by existing methods. Our
model provides a way to incorporate additional knowledge
that can serve as a baseline for future research.
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