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Abstract

Existing multimodal summarization approaches focus on fus-
ing image features in the encoding process, ignoring the indi-
vidualized needs for images when generating different sum-
maries. However, whether intuitively or empirically, not all
images can improve summary quality. Therefore, we pro-
pose a novel Dynamic Image Utilization framework for mul-
timodal Summarization (DIUSum) to select and utilize valu-
able images for summarization. First, to predict whether an
image helps produce a high-quality summary, we propose an
image selector to score the usefulness of each image. Second,
to dynamically utilize the multimodal information, we incor-
porate the hard and soft guidance from the image selector.
Under the guidance, the image information is plugged into
the decoder to generate a summary. Experimental results have
shown that DIUSum outperforms multiple strong baselines
and achieves SOTA on two public multimodal summarization
datasets. Further analysis demonstrates that the image selec-
tor can reflect the improved level of summary quality brought
by the images.

Introduction
With the development of vision-language pretraining, mul-
timodal summarization has achieved significant progress in
recent years. Image information can help enhance or supple-
ment text information to produce high-quality summaries.
When fed an image and a text, multimodal summarization
methods try to fuse multimodal information and generate a
summary. Existing studies mainly concentrate on effectively
integrating visual information into the process of feature en-
coding (Zhu et al. 2018; Li et al. 2018; Xiao et al. 2023; Qiu
et al. 2022; Liang et al. 2023).

However, there remains an important issue that has re-
ceived little attention: Whether an image helps improve the
quality of the summary? As shown in Figure 1, the green
part underlined text represents the content corresponding to
the image. It can be observed that the image in Figure 1
(a) is related to a part of the article but does not signif-
icantly contribute to generating the summary. In contrast,
the image in Figure 1 (b) is associated with both the arti-
cle and the summary. So that the image can help highlight
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Article: the gulf emirate of dubai is to replicate 
ancient and modern wonders of the world in a #.#-
billion-dollar city to be shaped like a falcon .
Ref Summary: world wonders come to dubai.

Article: a suicide car bomber killed four security 
agents in an attack on a us diplomatic convoy in the 
northern iraqi town of mosul , a us official said tuesday.
Ref Summary: four killed in suicide bomb strike on us 
diplomatic convoy.

（a）

（b）

Figure 1: Examples of useful and useless images. The green
part indicates that it is associated with the left image.

dataset
text-input

(ROUGE-1)
multi-input
(ROUGE-1)

dynamic-input
(ROUGE-1)

MMS 49.16 49.23 54.64
MSMO 41.92 41.85 45.49

Table 1: The influence of feeding different source modalities
on the datasets of MMS (Li et al. 2018) and MSMO (Zhu
et al. 2018).

the core content of the article. The above two cases indicate
that different samples require different modality information
to obtain accurate summaries. To verify whether the exist-
ing model can meet the individual needs of different source
modalities, we conduct an empirical study to explore the in-
fluence of providing different source modalities. As shown
in Table 1, text-only and multimodal input summarization
models are trained on the standard benchmarks. In the ex-
periment, we test each sample with the text-only and multi-
modal models, and then report the higher ROUGE-1 score as
the dynamic-input result. Ideally, the dynamic result means
the upper bound that can be obtained by dynamically utiliz-
ing the source inputs. It also indicates that if we correctly
choose the source inputs for each sample, the quality of the
summary could be greatly improved.

Existing studies focus on fusing all image information
with different methods (Zhang, Zhang, and Pan 2022; Liang
et al. 2023), such as attention-based fusion (Li et al. 2018;
Libovický and Helcl 2017; Calixto, Liu, and Campbell
2017a), gated-based fusion (Li et al. 2020; Zhou et al. 2017)
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and hierarchical-based fusion (Zhang et al. 2022; Qiu et al.
2022). However, they ignore whether an image is effective
for the summarization task. Consequently, multimodal mod-
els do not perform better than the unimodal variants on all
samples. Some studies try to design more refined architec-
ture to utilize the images. Xiao et al. (2023) propose a fil-
tering module to obtain helpful images for the summary
coarsely. Li et al. (2022) apply ReLU to the attention acti-
vation function to abandon the unaligned images. However,
they only consider incorporating images during the encoding
process, making them unable to measure summary-effective
image contribution. Specifically, although these methods
can obtain more efficient multimodal encoding, there is still
a gap between image contribution and summary quality im-
provement. As analyzed above, we believe evaluating the ef-
fectiveness of images directly through their contribution to
the summary can further improve the summary quality.

To address this problem, we propose a Dynamic Image
Utilization framework to select images dynamically for mul-
timodal summarization. First, we propose an image selec-
tor to score each image according to two-dimensional fea-
tures. The image selector predicts whether the image helps
produce a higher-quality summary than unimodal input.
Specifically, we optimize the image selector with the self-
labeling method, which defines image contribution accord-
ing to whether multimodal input can help produce higher-
quality summaries compared to the unimodal one. Then,
the decoder dynamically utilizes the multimodal information
under the guidance of the image selector. In particular, the
image information is plugged into an temporary state with
hard and soft guidance from the image selector. The decoder
then utilizes the temporary state to generate the summary.
Through these steps, the model can acquire more summary-
effective image information and provide better multimodal
information for summarization.

Our contributions are summarized as follows:

• We propose a Dynamic Image Utilization framework for
multimodal summarization to select and dynamically uti-
lize summary-effective images for summarization.

• We innovatively design an image selector to score the
usefulness of each image and plug the valuable image
with the guidance of the image selector for summariza-
tion.

• Experimental results show that our method outperforms
strong baselines and achieves SOTA on MMS and
MSMO datasets, which demonstrates the conjecture that
some multimodal summarization does not require im-
ages. Besides, extensive analysis proves that the image
selector can reflect the improved level of summary qual-
ity brought by the images.

Related Work
Multimodal Summarization Tasks. With the rapid
progress of multimedia, many forms of multimodal sum-
mary tasks have emerged in the multimodal field, such as
multimodal sentence summarization (Li et al. 2018; Jan-
gra et al. 2021), multimodal summarization with multimodal

output (Zhu et al. 2018; Liang et al. 2023), video summariza-
tion (Sanabria et al. 2018; Yu et al. 2021; Mahasseni, Lam,
and Todorovic 2017; Wang et al. 2019), multimodal opin-
ion summarization (Im et al. 2021), topic-aware multimodal
summarization (Mukherjee et al. 2022). Although multi-
modal summarization receives increasing attention, current
studies usually focus on injecting the image information
into the process of multimodal encoding: Fu, Wang, and
Yang (2020) apply bi-hop attention to align different source
modalities and bridge the gap between article and video. Li
et al. (2020) propose a multimodal selective gate network to
select the core text content from visual signals. Zhang et al.
(2021) investigate image locations for multimodal summa-
rization via a stack of multimodal fusion blocks, which
can formulate the high-order interactions among images and
texts. Zhang et al. (2023) enhance the multimodal semantic
coverage with multiple visual-aware tasks. However, they
neglect that not all images bring positive gains to the sum-
mary. Consequently, the redundancy or interference of im-
age information for multimodal models is inevitable.

Effective Vision Encoding. Some studies have noticed
the influence of non-textual modalities on the summary.
Liang et al. (2023) design two summary-oriented vision
modeling tasks to enhance vision representation, which ex-
ploits more accurate visual features to generate summaries.
Xiao et al. (2023) design a coarse-to-fine network to model
different image contributions for summarization. It acquires
more explicit image contributions and provides better multi-
modal encoding for summarization. Li et al. (2022) exploit
ReLU-based cross-attention to align text and vision features
and abandon unaligned visual features with low-value atten-
tion. However, they generally learn the image feature implic-
itly. Specifically, they only consider the image effectiveness
in the encoding process and ignore the individualized needs
for images when generating different summaries.

In general, existing studies focus on: 1) Integrating all
image information; 2) Implicitly incorporating image infor-
mation at the encoding layer while ignoring the summary-
effectiveness of the image. Inspired by the above studies, we
propose DIUSum, which considers image summary effec-
tiveness for better generating the final summary.

Proposed Methods

Overview

In this section, we introduce the details of DIUSum. It is a
challenge to simultaneously consider selecting and dynam-
ically utilizing valuable images during the training process.
To address this issue, we introduce a mutil-stage training
method, which enables the model to accomplish different
goals across different stages. As depicted in Figure 2, the
model is initiated in the first stage (§). In the second stage,
we design an image selector and optimize it with the self-
labeling method (§). In the third stage, the decoder dynam-
ically utilizes multimodal information with the guidance of
the image selector (§).
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Figure 2: DIUSum framework. “TxtEnc” and “ImgEnc” represent the feature extractor of the text and image, respectively.
“Selc” represents the image selector module.

Stage 1: Model Initializing
The purpose of this phase is to obtain a reliable summary
model for subsequent phases. Given a dataset D consists
of N triples(t, v, s) with text t, image v, summary s. The
textual and visual features are extracted separately, which
makes the model utilize different modalities dynamically.
Then we adopt a straightforward yet effective concatenation
fusion to leverage different source modalities for individual
requirements.

Textual Feature Extraction. To obtain textual features,
we leverage a pre-trained BERT model to extract contextual
features h from text t.

h = BERT(t) (1)

where h ∈ Rn×d. Here, d represents the hidden dimension
of the BERT model. n denotes the number of tokens in t.

Visual Feature Extraction. In the process of acquiring
visual features, we adopt a pre-trained model VGG-19 as
the extractor. A 4096-dimensional fully-connected layer is
extracted as the global feature, denoted as v′ ∈ R4096.
Next, we utilize a fully connected layer to map v′ to the d-
dimensional feature g ∈ Rd:

g = VGG(v)Wt + bt (2)

where Wt and bt are learnable weights in the fully connected
layer.

Summary Model Initializing. The objective of the de-
coder is to generate a target summary ŝ = {⟨cls⟩, · · · , ŝi,
· · · , ⟨sep⟩} with special tokens ⟨cls⟩, ⟨sep⟩, respectively.
The visual modality g and textual modality h are concate-
nated together as multimodal inputs m for the decoder as:

m = g ⊕ h (3)

where ⊕ indicates the concatenation of two vectors. Af-
terward, the textual sequence is generated through a
transformer-based decoder. The decoder takes the predicted
tokens s0;i−1 and fusion feature m as inputs and produces
the current tokens as outputs:

si = TransDec(m, s0;i−1) (4)

where the notation s0;i−1 represents the sequence of tokens
preceding the ith token.

During the summary task training phase, we apply nega-
tive log-likelihood for the target word sequence as the gen-
eration loss:

Lgen =
1

I

I∑
i=1

(− logP (ŝi)) (5)

where I stands for steps of decoding. And the model is
trained with Lgen for T1 epoch(s).

Stage 2: Image Selector Optimizing
The second phase is dedicated to the optimization of the
image selector. Here, we define images that help improve
the quality of summaries as summary-effective images. In-
tuitively, summary-ineffective images should not be used
during the summarization process. Following the motivation
above, the image selector tries to determine whether the im-
age is summary-effective.

Image Selector Goal. We propose an image selec-
tor module to directly measure whether the image is
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summary-effective P (C|t, v). The core challenge of mod-
eling P (C|t, v) is defining the goal of optimizing the im-
age selector. To bridge the gap between the role of im-
ages for humans and automatic summarization, we propose
a self-labeling method to define the target of the selector. As
shown in Figure 2, self-labeling obtains feedback from sum-
maries when providing multimodal and unimodal informa-
tion, respectively. Then it calculates the difference between
the above two for the summary. The self-label result of the
image selector is formulated as follows:

F(g) = Re(s; ŝ|h, g)− Re(s; ŝ|h) (6)

Q̂ =

{
1, F (g) ≤ 0

0, otherwise
(7)

where Re(·) is the reward of reflecting how similar the gen-
erated summary s is to the reference summary ŝ. Specifi-
cally, because Q̂ is obtained at training for each batch, we
expect Re(·) to be both computationally efficient and reflec-
tive accurate. Li et al. (2018) point out that the accuracy of
the first three words can reflect the overall accuracy of the
summary. Therefore, Re(·) is calculated with the edit dis-
tance of the first k tokens of the generated summary s and
the reference summary ŝ. Based on comparing the reward of
giving different inputs, we could obtain Q̂, which stands for
the label that determines whether v is summary-effective. Fi-
nally, the multimodal information (h, g) and the correspond-
ing self-label Q̂ are formed into a new triple (h, g, Q̂), which
is taken as training data for the image selector.

By feeding different source modalities to generate the
summary and compare their feedback, the self-label can
have a global view of the image contribution and determine
whether it is helpful for generating a better summary.

Image Selector Module. Given the multimodal informa-
tion (h, g), the goal of the image selector module is to pre-
dict Q̂. We believe that the usefulness of images is related to
the following aspects: 1) Whether the text-only information
is sufficient to provide a summary; 2) Whether the genera-
tion of the final summary relies on multimodal information.
Therefore, the image selector judge with two-dimensional
information: text-only feature h0 and multimodal feature
(h0, g). First, we project bi-modal features (h0, g) to vec-
tors of the same dimension with h0.

xM = Linear(h0 ⊕ g) (8)
Then we employ a two-layer MLP to classify the image:

q = MLP(h0 ⊕ xM ) (9)
where q is the prediction value of the image selector for
whether the image v is summary-effective or not.

During the phase of optimizing the image selector (shown
in Figure 2-Stage 2), we add a binary cross-entropy loss:

Lselc(q, Q̂) = BCE(q, Q̂) (10)
By minimizing the cross-entropy loss, the image selector is
able to have a global and prior view of the benefits the image
brings for summary generation.

Training Objectives. To maintain the ability of genera-
tion, the summary task and the image selector are optimized
together:

L = Lgen + αLselc(q, Q̂) (11)
where α is the weight for image selector optimization. The
optimization of the image selector includes the acquisition
and fitting of the self-label Q̂. As a result, the predictions of
the image selector in this phase are not utilized for dynamic
guiding. In addition, to ensure the image selector optimiza-
tion process is reliable and stable, the training epoch T2 in
this stage is set to T2 > 1. Accordingly, the self-label Q̂ does
not rely only on the last trained model from the first stage.

Stage 3: Image Dynamically Utilizing
The primary target of the third stage is to facilitate the model
with the dynamic utilization of the image. After optimizing
the image selector, it can provide guidance to utilize the im-
age information dynamically.

Image Plugging. With prediction results from the image
selector, the fixed model framework is unable to decide
whether to send images to the decoder automatically. There-
fore, we plug the image information into a temporary state
with hard and soft guidance from the image selector.

First, the hard guidance assists in incorporating an image
selectively based on the prediction category. The formula is
mathematically represented as:

qB =

{
1, q ≥ 0.5

0, otherwise
(12)

temp-s = qB · g + (1− qB) · h0 (13)
where qB indicates the binary classification prediction of
the image selector: 1 denotes the image being summary-
effective, and 0 indicates it is summary-ineffective. When
the image is summary-ineffective, the text starting feature
h0 is plugged into the temporary state to guarantee the mean-
ingfulness of temp-s.

Furthermore, the score value q also indicates the proba-
bility assigned by the selector to the usefulness of the im-
age, which is the soft guidance. In other words, q serves as
a quantitative measure of the image’s utility for summariza-
tion. To maximize the potential of this signal, we simulta-
neously inform the decoder about the extent of image util-
ity, building on the presumption that the image is indeed
summary-effective. Equation 13 is replaced with:

temp-s = q · qB · g + (1− qB) · h0 (14)
By employing the aforementioned approach, we not only
prevent summary-ineffective images from being fed to the
decoder but also navigate the model in assigning appropri-
ate weights to images during summary generation.

The temporary state temp-s and textual modality h are
concatenated together as multimodal inputs m′ for the de-
coder. Thus for decoding, the equation 3 is replaced with:

m′ = temp-s⊕ h (15)
Through hard and soft guidance, the summary-effective im-
ages are dynamically fed into the decoder.
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Training Objectives. To maintain the ability of the image
selector, the summary task and the image selector are also
optimized together. The self-labels obtained at the end of the
second stage are employed as fixed labels Q̂F of the image
selector. The training loss is calculated as follows:

L = Lgen + βLselc(q, Q̂
F ) (16)

where β is the weight for image selector optimization. It is
worth mentioning that β is not a hyperparameter. In particu-
lar, compared to the generation task, the image selector task
is relatively simpler, making the model prone to over-train
the image selector to reduce the overall loss rapidly. There-
fore, to avoid the model excessively optimizing the image
selector while preserving its capabilities, we set β to de-
crease linearly with the current stage training epochs ep:

β = α− γ ∗ ep (17)

where γ represents the linear decline rate. The training
epoch in this stage is set to T3.

By employing the multi-stage training strategy, on the one
hand, we guarantee both the reliability and stability of im-
age selector training. On the other hand, it allows the model
to progressively acquire the ability to dynamically utilize
source modalities for generating high-quality summaries. In
the inference phase, the model propagates forward accord-
ing to this stage. Therefore, the multi-stage training strategy
also ensures the consistency of the model training and infer-
ence phases.

Experiment
Settings
We experiment with the MMS (Li et al. 2018) and MSMO
(Zhu et al. 2018) datasets. MMS and MSMO contain 66,000
and 314,575 examples, respectively. Each sample in MMS
is a triple of sentence, image, and summary, while the sam-
ple in MSMO is a triple of sentence, several images, and
summary. Our task involves the input of a text and an im-
age to generate a summary. As a result, our method retain
a random image for each sample in the MSMO dataset and
discard other images. We call this dataset MSMO (Single
Img). Some statistical information is shown in Table 2.

We set both the text embedding dimension and the hid-
den dimension as 768. The batch size is set to 8. For texts
in MMS dataset, we use the max text encoding length of
60, and the max text decoding length is 20. While for texts
in MSMO dataset, we use the max text encoding length
of 300, and the max text decoding length is 120. We use
the BertAdam (Kingma and Ba 2014) optimizer and set the
learning rate as 1e−4, with the warmup portion as 0.1. When
calculating the edit distance of the first k tokens of the gener-
ated and the reference summary, k is set to 5 and 8 for MMS
and MSMO, respectively. The MSMO and MMS datasets
have inconsistent scales and summary lengths, which leads
to distinct parameter settings for each dataset during the
multi-stage training process. For MMS dataset, the training
epoch for three stages is T1 = 15, T2 = 5, T3 = 10, and the
learning weights of the image selector are α = 1, rt = 0.1.
For MSMO dataset, the training epoch for three stages is

Dataset Subset Size Avg.Len (S) Avg.Len (R)

MMS
train 62,000 21.68 7.72
dev 2,000 24.35 7.68
test 2,000 22.97 7.67

MSMO
train 293,964 720.87 70.12
dev 10,355 766.08 70.02
test 10,256 730.80 72.16

Table 2: Statistical information about datasets MMS and
MSMO. “Avg.Len (S)” and “Avg.Len (R)” denote the av-
erage number of words in the source text (S) and reference
summary (R), respectively.

T1 = 8, T2 = 2, T3 = 10, and the learning weights of the
image selector are α = 0.5, rt = 0.05. The base model
trains 30 and 20 epochs for MMS and MSMO, respectively.
In the test phase, we employ beam search and set the beam
size as 4 to generate the summary.

Comparative Methods
Lead: Exploiting the first eight words as the summary.
SEASS (Zhou et al. 2017): It constructs a second-level sen-
tence representation with a sentence encoder and a selective
gate for summarization.
Doubly-Attn (Calixto, Liu, and Campbell 2017b): It em-
ploys dual attention mechanisms to narrow the gap between
the image and the translation.
MAtt (Li et al. 2018): It proposes modality attention and
image filtering for multimodal summarization.
CFSum (Xiao et al. 2023): It focuses on modeling different
contributions of images for summarization and effectively
enhances the multimodal representation for summarization.
PGN (See, Liu, and Manning 2017): It generates the cur-
rent summary word by copying words from the source text
or producing new words from the generator.
MSMG (Zhu et al. 2020): It proposes a multimodal objec-
tive function to close the distance between model output and
multimodal reference.
MMRank (Zhu et al. 2021): It presents an unsupervised
graph-based summarization model covering both single-
modal and multimodal output summarization.
BertAbs: It is our base model with a text encoder BERT, an
image encoder VGG and a transformer decoder.
BertAbs-txt: BertAbs is fed only with textual modality.

Automatic Evaluation Results
Our methods are reported with seven automatic metrics, in-
cluding ROUGE-1, ROUGE-2, ROUGE-L (Lin and Hovy
2002), BLEU (Papineni et al. 2002), BERTScore (Zhang*
et al. 2020), MoverScore (Zhao et al. 2019), and edit dis-
tance of the first 5 tokens denoted as ED-top5. More details
of evaluation scripts are given in the appendix.

Results On MMS. We compare our work with our base-
lines and other work on the MMS dataset. Table 3 shows the
results of different models. The results show that BertAbs
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Method R-1 ↑ R-2 ↑ R-L ↑ BLEU ↑ BS ↑ MS ↑ ED ↓
Lead 33.30 13.27 31.55 39.37 83.94 20.47 4.20
SEASS △ 44.86 23.03 41.92 - - - -
Doubly-Attn △ 41.11 21.75 39.92 - - - -
MAtt 44.50 23.37 41.85 43.50 86.42 30.75 3.75
CFSum 47.86 25.64 44.64 48.83 86.98 32.36 3.67
BertAbs-txt 49.14 26.14 46.05 48.99 87.12 34.74 3.62
BertAbs 49.20 26.35 46.21 49.28 87.17 34.76 3.63
DIUSum 50.39* 27.34* 47.33* 50.68* 87.36* 35.28* 3.59*

Table 3: Experimental results on MMS. “△” marks the results from Li et al. (2018). “BS, MS, ED” represent BERTScore,
MoverScore, and edit distance, respectively. The ↑ indicates that the higher value of the indicator is better, while ↓ indicates the
opposite. “*” indicates the model performs significantly better than the BertAbs by the 95% confidence interval (p < 0.05).

Datasets Method R-1 ↑ R-2 ↑ R-L ↑

MSMO
(Multi Imgs)

Lead 39.35 17.01 32.54
PGN 39.76 18.19 36.51
CFSum 38.62 16.05 36.19
MSMG 41.16 18.35 37.85
MMRank 41.72 17.33 -

MSMO
(Single Img)

BertAbs-txt 41.92 19.40 38.99
BertAbs 41.85 19.33 38.94
DIUSum 42.23 19.83 39.34

Table 4: Experimental results on MSMO.

performs comparably with BertAbs-txt, indicating that uti-
lizing the image information uniformly could not help im-
prove the generated summary quality. DIUSum builds on
BertAbs and introduces an image selector to dynamically
utilize different source modalities. Generally, our method
DIUSum outperforms the baselines BertAbs and BertAbs-
txt. And it achieves 1.19 higher points on ROUGE-1 than
BertAbs, which achieves SOTA on MMS dataset. This
proves that image selector plays a significant role in multi-
modal summarization. In addition, DIUSum has the lowest
ED-top5 among all methods, which indicates its strength in
generating the first few words of the summary.

Results On MSMO. To further validate our method, we
experiment on the MSMO dataset shown in Table 4. The
results show that BertAbs-txt is even better than BertAbs,
suggesting that most of the images in the MSMO (Single
Img) dataset negatively impact the performance of BertAbs.
In contrast, DIUSum obtains 0.38 higher points on ROUGE-
1 than BertAbs. This proves that DIUSum can generalize
to the dataset where images are harmful. Furthermore, it is
worth mentioning that DIUSum exploits only one image
in the MSMO dataset, which surpasses other methods us-
ing multiple images. This further demonstrates the signifi-
cance of providing more summary-effective images to the
model. However, our method is not significantly improved

on MSMO (Single Img) due to some (image, summary)
pairs lacking strong correlations, thereby limiting the per-
formance boost of DIUSum.

Ablation Study
Ablation Study. To investigate the effectiveness of differ-
ent components, we further compare DIUSum with several
variants in Table 5.

Effectiveness of Image Selector. In the test phase, we test
each example with text-only (#1b/#2b) and multimodal in-
puts (#1a/#2a) to generate summaries, respectively, and se-
lect the higher ROUGE-1 score as the dynamic-input results
(#1c/#2c). The percentage of #1c/#2c in Table 5 represents
the improvement of the dynamic result compared to the mul-
timodal input. Compared with BertAbs, it can be observed
that 1) the gap between “dynamic-input” and “multi-input”
in DIUSum is smaller. This indicates that our method cor-
rectly exploits source modalities leading to better results.
2) The “text-input” performance of #2b also shows an im-
provement compared to #1b. This is ascribed to the fact that
during the training process in the third stage, we restrict the
model from using summary-ineffective images, which max-
imize the utilization of textual information.

Effectiveness of Hard/Soft Guidance. Removing the soft
or hard guidance results in model #3a/#3b. Comparing #2a,
#3a, and #3b shows that: 1) Plugging images without soft
guidance impairs the model performance. This may ascribe
to the disparity in representation with only 0 or 1 hard
guidance. 2) Removing hard guidance leads to performance
drops, which implies that soft guidance cannot completely
eliminate the influence of invaluable images. In summary,
combining soft and hard guidance produces the best results.

Necessity of Multi-Stage. Model #4a removes the ini-
tialization of the first stage. Model #4b merges Stage 2
and Stage 3, in which the image selector is optimized
and utilized simultaneously. The drastic performance drop
of model #4a proves that it is vital to optimize DIUSum
with model initialization. Model #4b performs worse than
BertAbs. This is because the training and guiding of the im-
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# Method R-1
1a BertAbs (multi-input) 49.20
1b w/ text-input 49.33
1c w/ dynamic-input 50.01 (+1.64%)
2a DIUSum (multi-input) 50.39
2b w/ text-input 49.98
2c w/ dynamic-input 50.53 (+0.27%)
3a w/o soft guidance 49.88
3b w/o hard guidance 50.09
4a w/o Stage 1 49.44
4b merge Stage 2 & 3 48.88

Table 5: Ablation study about DIUSum on MMS.

age selector appear at the same stage, resulting in the im-
age selector optimizing oscillations and failing to converge.
In brief, both ablations prove that applying the multi-stage
training strategy is necessary.

Analysis for Image Selector

0.97 0.75 0.91 
0.64 

0.98 0.86

0.0 

0.5 

1.0 

MMS MSMO

F1 score of image selector summary-effective images
Average soft guidance

Figure 3: Statistics about the prediction of image selector.

Although the image selector improves the performance of
the model in terms of metrics, we still wish to know how the
image selector performs on different datasets. As depicted in
Figure 3, the orange box represents the F1 score of the image
selector, where ground truth labels are acquired by compar-
ing text-input and multi-input results to deduce image ef-
fectiveness. The purple and green boxes represent the per-
centage of summary-effective images, and the average value
of the soft guidance for summary-effective images in the test
set, respectively. First, the 0.97 and 0.75 F1 scores of the im-
age selector on two datasets confirm that the image selector
is capable of predicting summary-effective images. Second,
it can be observed that the percentage of summary-effective
images in the MMS dataset is greater than that in the MSMO
dataset. Third, the image selector assigns lower soft guid-
ance to images in the MSMO dataset. This discrepancy is
attributed to the construction process of the datasets: For
the MSMO dataset, the relevant images are automatically re-
trieved with the source text, and many of these images may
be irrelevant to the final summary. In contrast, the MMS
dataset is created by manually labeling the most matching
images. Consequently, a higher percentage of images in the

0 1 2 3 4 5 6

visual words (R) w/o copied

visual words (R)

visual words (S)

words copied from (S)

objects in image

summary-effective summary-ineffective

0 1 2 3 4 5 6

R words aligned w/o copied
words copied from S

R words aligned
S words aligned
objects in image

summary-effective summary-ineffective
0 1 2 3 4 5 6

non-copied R words aligned
R words copied from S

R words aligned
S words aligned
objects in image

summary-effective summary-ineffective

Figure 4: The number of ablated features. “S” and “R” de-
note the source text and reference summary, respectively.

MSMO dataset are classified as summary-ineffective by the
image selector, and lower scores are assigned to the image
usage. This explains the limited performance improvement
of DIUSum on the MSMO dataset. Additionally, it demon-
strates that the image selector can reflect the improved level
of summary quality brought by the images.

Furthermore, we aim to understand the characteristics
of the summary-effective and summary-ineffective images.
Figure 4 plots the average number of ablated features of
the two types of images, with 30 randomly selected im-
ages from each category. The following conclusions could
be safely drawn through the fined-grained analysis: (1) An
object detection tool identifies objects in the image with
confidence over 0.8. Notably, summary-ineffective images
contain fewer objects, offering limited guidance for summa-
rization. (2) We manually align the image with words in the
source text (or reference summary). Fewer words align with
the summary-ineffective images. It indicates that summary-
ineffective images have less correlation with the text. (3)
In the summary-ineffective image sample, more words in
the summary are copied from the source text, which illus-
trates that the effectiveness of an image is related to the ab-
stractness of text generation. (4) Fewer non-copied reference
words align with images in the summary-ineffective image
samples (0.53 on average). This confirms that if the image
merely visually represents copied reference words, the text
modality often suffices to generate the summary without the
help of the images. Across multiple dimensions, summary-
effective images show favorable trends, confirming the ra-
tionality of our approach.

Conclusion
Based on the observation that existing multimodal summa-
rization models cannot meet the individual needs of differ-
ent source modalities, this paper focuses on dynamically
utilizing image information for summarization. Therefore,
we propose a novel framework DIUSum to select and uti-
lize valuable images for summarization. The core module
of DIUSum is the image selector, which selects summary-
effective images and guides the incorporation of multi-
modal information for the decoder. Experimental results
have shown that DIUSum can improve the quality of the
summary. Furthermore, fine-grained analysis demonstrates
that the image selector can reflect the improved level of sum-
mary quality brought by the images.
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