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Abstract

The ‘pre-train, prompt, predict’ paradigm of large language
models (LLMs) has achieved remarkable success in open-
domain question answering (OD-QA). However, few works
explore this paradigm in multi-document question answer-
ing (MD-QA), a task demanding a thorough understanding
of the logical associations among the contents and structures
of documents. To fill this crucial gap, we propose a Knowl-
edge Graph Prompting (KGP) method to formulate the right
context in prompting LLMs for MD-QA, which consists of
a graph construction module and a graph traversal module.
For graph construction, we create a knowledge graph (KG)
over multiple documents with nodes symbolizing passages or
document structures (e.g., pages/tables), and edges denoting
the semantic/lexical similarity between passages or document
structural relations. For graph traversal, we design an LLM-
based graph traversal agent that navigates across nodes and
gathers supporting passages assisting LLMs in MD-QA. The
constructed graph serves as the global ruler that regulates the
transitional space among passages and reduces retrieval la-
tency. Concurrently, the graph traversal agent acts as a local
navigator that gathers pertinent context to progressively ap-
proach the question and guarantee retrieval quality. Extensive
experiments underscore the efficacy of KGP for MD-QA, sig-
nifying the potential of leveraging graphs in enhancing the
prompt design and retrieval augmented generation for LLMs.
Our code: https://github.com/YuWVandy/KG-LLM-MDQA.

Introduction
Due to the emergence of large language models (LLMs),
the ‘pre-train, prompt, and predict’ paradigm has revolution-
ized natural language processing (NLP) in real-world ap-
plications, such as open-domain question answering, fact-
checking, and arithmetic reasoning (Chen et al. 2017;
Thorne et al. 2018; Asai et al. 2019; Karpukhin et al. 2020;
Aly et al. 2021; Qin et al. 2023; Zou and Caragea 2023;
Liu, Dong, and Zhang 2023). However, no significant ef-
forts have investigated this framework in the scenario of
multi-documental question answering (MD-QA), which en-
joys practical usage in academic research, customer support,
and financial/legal inquiries that require deriving insightful
analysis from multiple documents (Tessuto 2011; Bolino,
Long, and Turnley 2016).

Copyright © 2024, Association for the Advancement of Artificial
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Figure 1: MD-QA performance when prompting ChatGPT
with the context retrieved using different strategies.

To investigate the capability of LLMs for MD-QA,
we randomly sample multi-document questions from the
development set of 2WikiMQA (Ho et al. 2020) and
MuSiQue (Trivedi et al. 2022b), and then prompt LLMs in
four different strategies for the answer1. Successfully an-
swering these questions requires knowledge from multiple
Wikipedia documents. As shown in Figure 1, on 2WikiMQA
and MuSiQue, directly prompting LLMs without provid-
ing any context, i.e., None, performs far worse than when
prompting with supporting facts 2 provided as contexts, i.e.,
the Golden one. This demonstrates the limitation of fulfill-
ing MD-QA using solely the knowledge encoded in LLMs.
One common solution to overcome this limitation in conven-
tional OD-QA and single document question-answering (D-
QA) (Xu et al. 2020; Mathew, Karatzas, and Jawahar 2021)
is to retrieve grounding contexts and derive faithful answers
from the contexts, i.e., retrieve-and-read (Zhu et al. 2021; Ju
et al. 2022). However, unlike OD-QA and D-QA, the pri-
mary challenge of MD-QA roots in its demands for alterna-
tively retrieving and reasoning knowledge across different
documents (Pereira et al. 2023; Caciularu et al. 2023). For
example, successfully answering questions in Figure 2(a)-
(b) requires reasoning over distinct passages from two dif-
ferent documents (i.e., Wikipedia pages). Moreover, each
document is a compilation of multi-modality structured data
(e.g., pages, sections, paragraphs, tables, and figures) and
some questions may specifically ask for the content in cer-

1Detailed experimental setting is presented in Section 13.
2Supporting facts: passages assumed to contain the answer.
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Figure 2: Three popular questions that require reasoning and retrieving over passages/pages/tables from multiple documents.
(a) Bridging questions rely on sequential reasoning while (b) Comparing questions rely on parallel reasoning over different
passages. (c) Structural questions rely on fetching contents in the corresponding document structures.

tain structures, which necessitates a comprehensive grasp of
these complex document structures. For example, the ques-
tion in Figure 2(c) asks about the difference between Page 1
and Table 2, which is unanswerable if using heuristic meth-
ods like BM25 or deep-learning ones like DPR (Karpukhin
et al. 2020). Building on top of previous challenges, the ad-
vent of LLMs introduces new complexities.

For the challenge of alternatively retrieving and reasoning
knowledge across different documents, although previous
works train a multi-hop retriever (Xiong et al. 2020; Yavuz
et al. 2022) to imitate such process by sequentially fetch-
ing the next passage based on the already-retrieved ones,
none of them explore the potential of engaging LLMs into
this process. More recent works design different prompt-
ing strategies such as Chain/Tree/Graph-of-thought (Trivedi
et al. 2022a; Wei et al. 2022; Yao et al. 2023; Yao, Li, and
Zhao 2023) to guide LLMs approaching answers progres-
sively. However, prompting non-open-sourced LLMs back
and forth incurs forbiddable latency as well as unaffordable
consumption. In addition, how to integrate different docu-
ment structures into the prompt design so that LLMs can
understand them is still an open-ended question.

Given the above challenges, we propose a knowledge
graph prompting (KGP) method for enhancing LLMs in
MD-QA. Specifically, we construct a KG over the given doc-
uments with nodes symbolizing passages or document struc-
tures and edges denoting their lexical/semantic similarity be-
tween passages or intra-document structural relations. Then
for the first challenge of alternative reasoning and retrieving
knowledge across different documents, we design an LLM-
based KG traversal agent, which can alternatively generate
the next evidence to approach the question, i.e., reasoning,
and select the most promising neighbor to visit from the con-
structed KG based on the generated evidence, i.e., retrieval.
Moreover, we apply the instruction fine-tuning strategy to
augment the reasoning capability of the LLM-based KG
traversal agent and hence refrain from repeatedly prompting
non-open-sourced LLMs for evidence generation. For the
multi-modality challenge, we add different types of nodes
to the KG characterizing different document structures and

hence enabling content retrieval within those specific struc-
tures. We highlight our contributions as follows:

• Generally-applicable KG Construction. We propose
three KG construction methods over documents, with pas-
sages or document structures as nodes and their lexical/se-
mantical similarity or structural relations as edges. Then
we empirically evaluate the quality of the constructed
KGs in MD-QA by checking the level of overlap between
the neighborhood and the supporting facts for each ques-
tion (Figure 5). Additionally, we provide a comprehensive
summary of both our proposed and existing KG construc-
tion methods in Table 5 in Supplementary.

• Engaging KG for Prompt Formulation. We design a
Knowledge Graph Prompting (KGP) method, which lever-
ages the LLM-based KG traversal agent to retrieve the
question-relevant contexts by traversing the constructed
KG. Moreover, we fine-tune this agent to adaptively tra-
verse the most promising neighbors for approaching the
question based on the visited nodes (retrieved passages).

• Case Studies Verifying MD-QA Framework. We com-
pare the performance of MD-QA when using different
types of LLM agents in graph traversal (Table 2) on the
KGs constructed over different numbers of documents
(Figure 7(c)). We conduct case studies on visualizing KGP
for MD-QA in Section 8.7 in Supplementary.

Notations
Following (Tian et al. 2023a), let G = (V, E) be a knowl-
edge graph constructed from a set of documents D, where
the node set V = {vi}ni=1 representing document structures
(e.g., passages/pages/tables, etc.) and the edge set E ⊂ V×V
representing the connections among different nodes (e.g.,
semantic/lexical similarity and belonging relations among
document structures, etc.). Let X = {Xi}ni be node fea-
tures and Xi corresponds to the feature of node vi, the form
of which could be the text for the passage, the markdown for
the table and the page number for the page.
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Figure 3: Knowledge Graph Construction. We split each document in the document collection into passages. For each passage,
we either directly obtain their embeddings via pre-trained encoders or extract their keywords to build bag-of-word (BOW)
features. Then we connect two passages based on their embedding similarity or whether they share common keywords. Addi-
tionally, we extract tables/pages via Extract-PDF API and add them as structural nodes to the KG. If pages include passages
and tables, we add a directed edge to denote the belonging relations. The table nodes include the markdown formatted content
of that table as Figure 8 in Supplementary has empirically shown that LLMs are able to understand tables in this format.

Knowledge Graph Construction
Despite numerous well-established KGs (Hoffart et al. 2013;
Tian et al. 2023b), they treat nodes/edges as entities/rela-
tions, which necessitates sophisticated relational extraction
techniques and thereby limits their applicability in general
domains (Huang et al. 2021). Additionally, their primary fo-
cus on the Wikipedia domain also restricts their usage for
answering non-Wikipedia questions such as ones over legal
or financial documents. To remedy this issue, we propose
generally applicable KG construction methods.

We first analyze two representative questions in Fig-
ure 2(a)-(b) to motivate our KG construction. Answering
these two questions necessitates the deduction of logical as-
sociations among different passages. These associations are
encoded either through 1) lexical similarity: common key-
words shared among different passages, e.g., ‘Alf Clausen’
bridges passage S1 and passage S2 in Figure 2(a), or 2) se-
mantic similarity: syntactic elements that convey semantic
relations, e.g., ‘nationality’ and ‘American director’ in Fig-
ure 2(b). This motivates us to construct the graph by mod-
eling passages as nodes and their lexical/semantic similarity
as edges. More specifically in Figure 3, we split each docu-
ment into individual passages, and for each passage Si, we
add a node vi to the KG with its feature being the text of that
passage Xi. Then we add edges by checking the lexical/se-
mantic similarity between pairs of passage nodes.

TF-IDF KG Construction For adding edges according
to lexical similarity, we first apply TF-IDF (Ramos et al.
2003) keyword extraction and filtering over each document,
which reduces the dimension of bag-of-word (BOW) fea-
tures, sparsifies the constructed graph and increases the
graph traversal efficiency. In addition, we add the document
title into the extracted keyword set since some questions fo-
cus on title entities. We collect the extracted keywords from
all documents to form the keyword space W and then con-
nect two passages if they share any common keyword in W .

KNN-ST/MDR KG Construction For adding edges ac-
cording to semantic similarity, we can readily employ pre-
existing models such as sentence transformers to gener-
ate passage embedding Xi for each node vi and subse-
quently compute pairwise similarity matrix to construct the
K-nearest neighbor (KNN) graph. However, these off-the-
shelf models, typically trained on tasks not so-related to
MD-QA, may not adequately encapsulate necessary logical
associations in their embedding similarity demanded by the
question. To overcome this problem, we follow the train-
ing strategy of MDR (Xiong et al. 2020) and train a sen-
tence encoder by predicting the subsequent supporting facts
based on previously supporting facts, thereby endowing the
encoder with reasoning capability. Consequently, the em-
bedding similarity and the corresponding constructed KNN
graph fundamentally encapsulate the necessary logical asso-
ciations between different passages.

TAGME Moreover, we employ TAGME (Min et al. 2019)
to extract Wikipedia entities from each passage and con-
struct the graph based on whether two passage nodes share
common Wikipedia entities.

In addition to passage nodes, we further add structural
nodes into the graph by extracting document structures via
Extract-PDF 3. In this paper, we only consider adding pages
and tables but the constructed KG can include more differ-
ent types of document structures. The feature of table nodes
is the markdown since LLMs can understand this as demon-
strated in Figure 8 in Supplementary. The feature of page
nodes is the page number and we add directed edges from
it to sentence/table nodes in that page. Note that we do not
aim to propose a one-size-fits-all KG construction method.
Instead, we seek to compare the merits and limitations of
various methods in Table 5, offering guidance on which KGs
are best suited for specific scenarios.

3https://developer.adobe.com/document-services/docs/
overview/pdf-extract-api/
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Figure 4: LLM-based KG traversal agent for context retrieval. For questions on document structures (left), we employ LLM
to extract structures and retrieve their corresponding contents (the content of pages are passages belonging to that page and
the content of tables is the markdown-formatted text). For questions on document content, we concatenate it with the currently
retrieved context and prompt the LLM to generate the next evidence to answer the question. By comparing the similarity
between the candidate neighboring sentences and the generated passage, we determine the next passage node to traverse.
Correspondingly, the candidate neighbors are updated for the next round of traversal.

Figure 5: Quality of KGs on HotpotQA. For each KG Con-
struction method, as the average number of neighbors in-
creases (KG becomes denser) in the right y-axis, the SF-
EM increases while the precision decreases. KNN-MDR
achieves a better trade-off than TF-IDF and KNN-ST. KGs
constructed by TAGME are denser than others.

To verify the constructed KGs indeed encode the neces-
sary information for MD-QA, we randomly sample ques-
tions from HotpotQA and construct KGs over the set of
documents for each of these questions using our proposed
methods. We vary the hyperparameters to control the spar-
sity of the constructed KG and measure how much percent-
age of the supporting facts are covered by neighbors of the
seeding passages initially searched by TF-IDF. More details
about the four construction methods and their hyperparame-
ters are included in Section 8.5 in Supplementary. As shown
in Figure 5, as the constructed graph becomes denser, the
chance that the neighboring node passages hit the support-
ing facts increases (i.e., SF-EM increases) although the re-
dundant information also increases (i.e., the precision de-
creases). Given the common keywords shared between one
passage to all other passages are typically far less than the

total number of passages across all documents, the density of
the constructed graph by TF-IDF would be upper-bounded,
causing lower SF-EM (evidenced by SF-EM below 0.7 in
Figure 5 for TF-IDF curve). For TAGME, we empirically
find it identifies a larger quantity of entities mentioned in
a single passage, which leads to a denser graph and causes
the starting SF-EM of TAGME to be already around 0.95.
In addition, since KNN-MDR is pre-trained by predicting
the next supporting facts (Xiong et al. 2020) on HotpotQA,
it achieves better trade-off than KNN-ST where the embed-
dings are directly obtained from the sentence transformer
without dataset-specific pre-training.

To summarize, although high SF-EM indicates that the
supporting facts for most questions are fully covered by
the neighbors of seeding passages, low precision signifies
that most of these neighboring passages are irrelevant to the
question. Therefore, if we blindly perform graph traversal
without any question-tailored adaptation, our retrieved con-
texts would include redundant passages and compromise the
capability of LLMs in MD-QA. To remedy this issue, we
next introduce an LLM-based KG traversal agent to adap-
tively visit neighboring passages that are most conducive to
answering the given question.

LLM-based KG Traversal Agent
One way to enable adaptive knowledge graph traversal is
to rank the candidate nodes, i.e., the already-visited nodes’
neighbors, to determine which nodes to visit next. The sim-
plest way is to apply heuristic-based fuzzy matching or
embedding-based similarity ranking, which cannot capture
the intrinsic logical relations between the already traversed
paths and the nodes to visit next. Instead, we introduce an
LLM-based KG traversal agent, which is a fine-tuned LLM
to guide the KG traversal toward the next most promising
passages for answering the question based on the informa-
tion collected from the currently visited nodes.

Given a question q asking about the document content, the
LLM-based graph traversal agent reasons over previously
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visited nodes/retrieved passages {sk}jk=0 and then generates
the next passage sj+1 as follows:

sj+1 = argmax
v∈Nj

ϕ(g(Xv), f(||jk=0Xk)), (1)

where ||jk=0Xk concatenates the textual information of pre-
viously retrieved passages/visited nodes. For the choice of
f , one way is to employ encoder-only models like Roberta-
base (Asai et al. 2019; Xiong et al. 2020; Yavuz et al. 2022)
and correspondingly g would be another encoder model with
ϕ(·) being the inner product measuring the embedding sim-
ilarity. Another way is to employ encoder-decoder models
such as T5 (Brown et al. 2020; Touvron et al. 2023) and
correspondingly g would be an identity function with ϕ(·)
measuring the textual similarity. To mitigate the hallucina-
tion issue and enhance the reasoning capability (Wei et al.
2022; Ji et al. 2023) of the LLM traversal agent, we fur-
ther instruction fine-tune f (Chung et al. 2022) by predicting
the next supporting facts based on previous supporting facts,
thereby integrating commonsense knowledge encoded orig-
inally in their pre-trained parameters with the enhanced rea-
soning capability inherited from the instruction fine-tuning.
After visiting the top-scoring nodes selected from the candi-
date neighbor queue by Eq (1), the candidate neighbor queue
is updated by adding neighbors of these newly visited nodes.
We iteratively apply this process until hit the preset budget.
Next, we illustrate the above process with an example in Fig-
ure 4 and present the algorithm thereafter.

Figure 4 presents the content-based question asking ‘In
what year was the creator of the current arrangement of
Simpson’s Theme born?’. We use TF-IDF search to initial-
ize the seeding passage Node 1, which reads: ‘Alf Heiberg
Clausen (born March 28, 1941) is an American film com-
poser’. Subsequently, we prefix the currently retrieved-
context (Node 1) with the question and prompt the LLM to
generate the next evidence required to approach the question
one step closer. Because we augment the reasoning capabil-
ity of the LLM by instruction fine-tuning, it is expected to
recognize the logical association between the question and
the currently retrieved context. Consequently, it can predict
the subsequent passage that maintains logical coherence, al-
beit may contain factual mistakes, i.e., ‘Alf Clausen (born
April 16, 1941) is an American composer of film and tele-
vision scores.’ To rectify this potential factual mistake, we
select nodes from the candidate neighbors that match the
most with the LLM-generated passage, in this case, Node
4 ‘Alf Heiberg Clausen (born March 28, 1941) is an Ameri-
can film composer’. Since this passage sources directly from
documents, it inherently ensures the validity of the informa-
tion. Then we prompt LLMs along with the retrieved context
Node 1 and 4 for the answer.

Additionally, for questions asking about document struc-
tures, we extract the document structure names and locate
their corresponding structural nodes in the KG. For the table
node, we retrieve its markdown formatted content while for
the page node, we traverse its one-hop neighbor and obtain
passages belonging to that page.

Here we present the algorithm for our proposed KGP
method for MD-QA. Given a question, we first apply LLM

Algorithm 1: LLM-based KG Traversal Algorithm to Re-
trieve Relevant Context for Content-based Question.

Input: A question q over a set of documents D, the
constructed KG G = {V, E ,X} over D, the
fine-tuned LLM-guided graph traversal fGT, the
preset context budget K, the TF-IDF search
function g.

1 Initialize seed passages Vs = g(V,X , q)
2 Initialize the retrieved passage queue P = [{vi}|vi ∈ Vs]
3 Initialize the candidate neighbor queue C = [Ni|vi ∈ Vs]
4 Initialize the retrieved passage counter k =

∑
Pi∈P |Pi|

5 while queue P and queue C are not empty do
6 Pi ← P.dequeue(), Ci ← C.dequeue()
7 V ′

i = Graph Traversal({q} ∪ Pi, Ci, k) by Eq (1)
8 for v ∈ V ′

i do
9 P.enqueue(Pi ∪ {v}), C.enqueue(Nv)

10 k ← k + 1
11 if k > K then
12 Terminate
13 return Retrieved Passage Queue P

to classify whether the question is asking about the docu-
ment structure or content. If the question focuses on the doc-
ument structure, we extract the structural keywords such as
Page or Table, and retrieve the content in the correspond-
ing structural nodes in KG. If the question focuses on the
document content, we follow the step according to Algo-
rithm 1. Specifically, we first initialize seeding passages Vs

and the reasoning path queue P by TF-IDF search. Then
for each seeding passage vi ∈ Vs, we add its neighbor-
ing passage nodes Ni into the candidate neighbor queue C
(lines 1-4). After that, we iteratively dequeue the earliest en-
queued reasoning path/candidate neighborhood Pi/Ci from
P/C and employ the fine-tuned LLM-based graph traver-
sal agent to rank the dequeued neighbors in Ci by Eq. (1)
(lines 5-7). Last, we select top-k passage nodes V ′

i from Ci to
visit next based on their rank and correspondingly update the
candidate neighbor queue and reasoning path queue (lines 8-
13). The above process terminates when either the candidate
neighbor queue becomes empty or the prefixed budget K for
the retrieved passages is met. The time and space complexity
are thoroughly analyzed in Section 8.3 in Supplementary.

Experiment
In this section, we conduct experiments to verify the pro-
posed knowledge graph prompting method (KGP) for MD-
QA. In particular, we answer the following questions:

• Q1 - Section 13: How well does KGP perform MD-QA
compared with existing baselines?

• Q2 - Section 13-13: How do the quality of the con-
structed KG and the LLM-based graph traversal agent
impact the MD-QA performance?

Due to the space limitation, we comprehensively introduce
our experimental setting, including dataset collection, base-
lines, and evaluation criteria, in Supplementary 8.1-8.2.
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Method HotpotQA IIRC 2WikiMQA MuSiQue PDF-T Rank
Acc EM F1 Acc EM F1 Acc EM F1 Acc EM F1 Struct-EM w PDF-T w/o PDF-T

None 41.80 19.00 30.50 19.50 8.60 13.17 44.40 18.60 25.07 30.40 4.60 10.58 0.00 8.53 9.00
KNN 71.57 40.73 57.97 43.82 25.15 37.24 52.40 31.20 42.13 44.70 18.86 30.04 – 7.00 7.33
TF-IDF 76.64 45.97 64.64 47.47 27.22 40.80 58.40 34.60 44.50 44.40 21.59 32.50 – 4.85 5.00
BM25 71.95 41.46 59.73 41.93 23.48 35.55 55.80 30.80 40.55 44.47 21.11 31.15 – 6.92 7.25
DPR 73.43 43.61 62.11 48.11 26.89 41.85 62.40 35.60 51.10 44.27 20.32 31.64 – 5.31 5.50
MDR 75.30 45.55 65.16 50.84 27.52 43.47 63.00 36.00 52.44 48.39 23.49 37.03 – 3.07 3.08
IRCoT 74.36 45.29 64.12 49.78 27.73 41.65 61.81 37.75 50.17 45.14 22.46 34.21 – 4.00 4.08
KGP-T5 76.53 46.51 66.77 48.28 26.94 41.54 63.50 39.80 53.50 50.92 27.90 41.19 67.00 2.69 2.75
Golden 82.19 50.20 71.06 62.68 35.64 54.76 72.60 40.20 59.69 57.00 30.60 47.75 100.00 1.00 1.00

Table 1: MD-QA Performance (%) of different baselines. The best and runner-up are in bold and underlined. None: no passages
but only the question is provided. Golden: supporting facts are provided along with the question. PDF-T stands for PDFTriage.

Figure 6: The performance/latency increases as the KG den-
sity increases. The results are averaged across 100 randomly
sampled questions on HotpotQA.

Performance Comparison on MD-QA

We compare the MD-QA performance of the proposed
KGP-T5 and other baselines in Table 1. First, baselines
‘None/Golden’ perform the worst/best because they provide
no/golden context. All other baselines achieve the perfor-
mance in-between because the retrieved context only covers
the partial of the golden supporting facts. Our KGP-T5 ranks
the best except for the Golden. The 2nd-performing baseline
MDR fine-tunes a RoBERTa-base encoder by predicting the
next supporting fact based on the question and the already
retrieved contexts (Xiong et al. 2020). Their pretext task
equips the model with the reasoning capability of the knowl-
edge across different passages and hence increases the qual-
ity of the retrieved contexts. The other deep-learning-based
retriever DPR achieves much worse performance than MDR
since it only fine-tunes the encoder by maximizing the sim-
ilarity between the query and its supporting facts regardless
of their sequential order, demonstrating the importance of
understanding the logical order of different knowledge when
solving MD-QA (Xiong et al. 2020). When comparing per-
formance across datasets, we find that all baselines perform
better on HotpotQA than IIRC. This is because questions
in HotpotQA are generally simpler than in IIRC. Existing
works (Jiang and Bansal 2019) have shown some questions
in HotpotQA can be easily answered following shortcuts
while questions in IIRC sometimes necessitate arithmetic
skills, e.g., ‘How many years did the event last when Wing-
field lost his fortune?’, which poses unique difficulty due to
LLMs’ inferior arithmetic capability (Yuan et al. 2023).

Traversal HotpotQA 2WikiMQA MuSiQue
Agent Acc EM F1 Acc EM F1 Acc EM F1
TF-IDF 73.5 43.8 63.1 58.1 35.1 46.0 44.7 21.9 32.9
MDR 75.7 46.1 65.8 60.9 37.2 51.3 51.2 27.8 41.1
ChatGPT 77.8 46.0 66.6 61.6 36.2 49.4 50.6 26.9 38.7
LLaMA 75.7 46.2 66.3 62.5 37.6 52.5 50.8 26.7 40.0
T5 76.5 46.5 66.8 63.5 39.8 53.5 50.9 27.9 41.2

Table 2: Comparing LLM-based KG Traversal Agents.

Moreover, our proposed method achieves 67% Struct-EM
on PDFTriage, whereas no existing baselines are designed
to handle these structural questions, e.g., ‘What is the dif-
ference between Page 1 and Page 2’ or ‘In Table 3, which
station has the highest average flow rate?’.

Impact of the Constructed Graph

We construct KGs with varying densities by varying the
hyperparameters of TF-IDF/KNN-ST/KNN-MDR/TAGME,
and studying its impact on the performance and the neighbor
matching time of MD-QA using KGP-T5. Since the LLM-
based graph traversal agent selects the next node to visit
from neighbors of already visited nodes, the chance that it
hits the supporting facts increases as neighbors increase. In
contrast, the neighbor matching efficiency decreases as the
candidate pool, i.e., Nj in Eq (1), increases. As evidenced
in Figure 6, we observe a similar trend, i.e., as KG density
increases, the F1/EM increases and stays stable while the
latency for selecting the most promising neighbors to visit
next also increases. KNN-MDR achieves better performance
than KNN-ST when the density of the two constructed KGs
is the same. This is because the encoder in KNN-ST is
pre-trained on wide-spectrum datasets while the encoder in
MDR is specifically pre-trained on the HotpotQA by the pre-
text task of predicting the next supporting facts. Therefore,
the embedding similarity and the corresponding neighbor re-
lations better reflect the logical associations among differ-
ent passages, which aligns with the better constructed KG
by KNN-MDR than KG by KNN-ST in Figure 5. Com-
pared with KNN-MDR/ST, TAGME delivers superior per-
formance at the cost of increasing latency since the gener-
ated KG by TAGME is denser than KGs by KNN-ST/MDR.
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Figure 7: (a)-(b): Performance first increases and then decreases as the branching factor increases. The results are averaged
across 100 sampled questions on 2WikiMQA and MuSiQue. (c): Performance/Efficiency increases/decreases as the number of
documents increases on MuSiQue. KGP-T5 achieves higher performance/efficiency than DPR.

Impact of Graph Traversal Agent
Here we study the influence of using different LLM agents to
traverse over TAGME-constructed KG on MD-QA. Specif-
ically, we compare agents that select the next neighbor to
visit randomly or intelligently via guidance from ChatGPT,
LLaMA, T5, and MDR in Table 2. Because the random
agent only blindly traverses the KG without any guidance
from LLM, it unavoidably collects irrelevant passages and
hence achieves the worst performance than others under
LLMs’ guidance. This aligns with our previous observation
on the low precision in Figure 5 and further demonstrates the
necessity of using LLMs to guide the graph traversal. Inter-
estingly, we find that KGP-T5 performs better than LLaMA
even though the parameters of LLaMA-7B are more than the
ones with T5-0.7B. We hypothesize this is because LLaMA-
7B requires more data to fine-tune than T5-0.7B.

Sensitivity Analysis
Here we perform the sensitivity analysis of the branching
factor (the number of nodes selected from candidate neigh-
bors to visit next). In Figure 7(a)-(b), the performance first
increases as the branching factor increases because more
passage nodes selected from the candidate neighbors lead to
more reasoning paths to reach the final answer. However, as
we fix the context budget to ensure fair comparison (i.e., the
total number of passages we are allowed to retrieve for each
question is the same across all baselines), the performance
declines as the branching factor increases because the num-
ber of initial seeding nodes diminishes, leading to reduced
coverage of the KG. Furthermore, we compare the efficiency
of KGP when the constructed KG includes different num-
bers of documents in Figure 7(c). KGP consistently achieves
higher performance than other baselines and higher effi-
ciency than embedding-based DPR. TF-IDF is slightly faster
than KGP because it is a purely heuristic-based method.

Related Work
Question answering Question Answering (QA) aims to
provide answers to users’ questions in natural language (Zhu
et al. 2021; Pandya and Bhatt 2021), and most QA sys-
tems are composed of information retrieval (IR) and an-
swer extraction (AE) (Mao et al. 2021; Ju et al. 2022;

Liu and Qin 2022). In IR, the system searches for
query-relevant factual passages using heuristic methods
(BM25) (Robertson, Zaragoza et al. 2009) or neural-ranking
ones (DPR) (Karpukhin et al. 2020). In AE, the final an-
swer is extracted usually as a textual span from related pas-
sages. Although this framework has been broadly applied
in O-QA (Mao et al. 2021) and D-QA (Xu et al. 2020;
Mathew, Karatzas, and Jawahar 2021), no previous work fo-
cus on MD-QA, which demands alternatively reasoning and
retrieving knowledge from multiple documents. To tackle
this issue, we construct KGs to encode logical associations
among different passages across documents and design an
LLM-based graph traversal agent to alternatively generate
the reason and visit the most matching passage node.
Pre-train, Prompt, and Predict with LLMs With the
emergence of LLMs, the paradigm of ‘pre-train, prompt,
predict’ has gained magnificent popularity in handling a
wide spectrum of tasks (Gururangan et al. 2020; Liu et al.
2023; Yu et al. 2023). This approach begins with pre-training
LLMs by pretext tasks to encode world knowledge into
tremendous parameters (Wu et al. 2023) followed by a
prompting function to extract pertinent knowledge for down-
stream tasks (Yang et al. 2023). Recent advancements ex-
plore different prompting strategies to enhance LLMs’ rea-
soning capabilities (Wei et al. 2022; Jin et al. 2023). In con-
trast to that, our work offers a novel perspective by trans-
forming the prompt formulation into the KG traversal.

Conclusion
Answering multi-document questions demands knowledge
reasoning and retrieving from different documents across
various modalities, presenting challenges for applying the
paradigm of ‘pre-train, prompt and predict’ with LLMs.
Recognizing the logical associations among passages and
structural relations within documents, we propose a Knowl-
edge Graph Prompting method (KGP) for aiding LLMs in
MD-QA. The KGP constructs KGs from documents with
nodes as sentences or document structures, and edges as
their lexical/semantic similarity/structural relations. As con-
structed KGs may contain irrelevant neighbors, we further
design an LLM-based graph traversal agent that selectively
visits the most promising node in approaching the question.
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