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Abstract

Prior studies on audio-visual speech recognition typically as-
sume the visibility of speaking lips, ignoring the fact that
visual occlusion occurs in real-world videos, thus adversely
affecting recognition performance. To address this issue, we
propose a framework that restores occluded lips in a video
by utilizing both the video itself and the corresponding noisy
audio. Specifically, the framework aims to achieve these
three tasks: detecting occluded frames, masking occluded ar-
eas, and reconstruction of masked regions. We tackle the
first two issues by utilizing the Class Activation Mapping
(CAM) obtained from occluded frame detection to facilitate
the masking of occluded areas. Additionally, we introduce
a novel synthesis-matching strategy for the reconstruction
to ensure the compatibility of audio features with different
levels of occlusion. Our framework is evaluated in terms of
Word Error Rate (WER) on the original videos, the videos
corrupted by concealed lips, and the videos restored using
the framework with several existing state-of-the-art audio-
visual speech recognition methods. Experimental results sub-
stantiate that our framework significantly mitigates perfor-
mance degradation resulting from lip occlusion. Under -5dB
noise conditions, AV-Hubert’s WER increases from 10.62%
to 13.87% due to lip occlusion, but rebounds to 11.87% in
conjunction with the proposed framework. Furthermore, the
framework also demonstrates its capacity to produce natural
synthesized images in qualitative assessments.

Introduction
Audio-visual speech recognition aims to transcribe spoken
words by utilizing both lip movements and speech signals.
It has recently gained substantial attention because of the
lip-reading module’s capability to maintain robustness in
the presence of acoustic noise, which used to significantly
degrade speech recognition performance. Additionally, this
lip-reading module finds widespread application in other
speech-related tasks, such as speech extraction (Pan et al.
2021; Pan, Ge, and Li 2022) and speaker verification (Shi
et al. 2022).

Many current methods in lip-reading or audio-visual
speech recognition assume that the lips are clearly visible
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(a) Partial occlusion

(b) Full occlusion

Figure 1: Examples of lip occlusion.

in the video, without any occlusion. However, this assump-
tion is overly optimistic in the real world, as a microphone
or a hand can easily obstruct the view of a speaking lip
(Hong et al. 2023). Unfortunately, state-of-the-art audio-
visual speech recognition methods (Hong et al. 2022; Ma,
Petridis, and Pantic 2021) are known to be susceptible to
lip occlusion, resulting in an increase in error rate of up to
65% (Hong et al. 2023). To address this significant degrada-
tion in audio-visual speech recognition, a study introduced a
module for dynamically assessing modality reliability. This
module is integrated into the audio-visual speech recogni-
tion network to circumvent the utilization of corrupted vi-
sual frames in videos affected by lip occlusion (Hong et al.
2023). However, this approach does not involve the restora-
tion of occluded lips in corrupted videos, and as a result, it
cannot directly leverage the capabilities of existing audio-
visual speech recognition methods that assume no lip occlu-
sion.

Inspired by speech enhancement techniques (Zhang et al.
2020, 2022) that restore clear speech from noisy recordings,
we aim to mitigate the adverse effects of lip occlusion on
audio-visual speech recognition by restoring occluded lips.
Considering the partially occluded lip shown in Fig. 1a as
an example, our goal is to remove the object occluding the
lip and restore the occluded region. When the lip is com-
pletely occluded, as illustrated in Fig. 1b, restoring the lip
using solely the input image becomes a challenging task. In
such instances, we depend on synchronized audio to supple-
ment the visual information.
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To achieve lip restoration, our objectives encompass three
tasks: (1) detecting occluded frames, (2) masking occluded
areas, and (3) reconstruction of masked regions.

Based on the concept of Class Activation Map
(CAM) (Zhou et al. 2016; Jin, Sharma, and Tan 2021), which
demonstrates how a classification network can roughly lo-
calize a subject class within an image, we employ the CAM
from occluded frame detection to aid in masking occluded
areas. Here, optimizing the detection of occluded frames in-
volves a loss function that classifies an image into occluded
or occlusion-free categories.

The diverse range of occlusion levels presents a signif-
icant challenge in the reconstruction of masked regions.
While an audio feature correlates with the shape of a fully
synchronized lip, completing the lip with varying degrees
of occlusion using the same audio feature poses a com-
plex task. To tackle this challenge, we introduce a novel
synthesis-matching strategy for the reconstruction that em-
ploys audio features to envision a complete lip during the
synthesis stage and then enhances the complete lip using un-
masked regions during the matching stage.

Specifically, during the synthesis step, we follow the ap-
proach of talking face generation (Prajwal et al. 2020; Wang
et al. 2023; Park et al. 2022) by masking the lower half of
the occluded face. This supplementary mask confines the au-
dio feature’s role to imagining only the lower half of the
face containing the complete lips. Additionally, we utilize a
detected occlusion-free frame as a visual reference for the
mouth’s appearance, aiding the audio feature in envisioning
the complete lip. Nonetheless, the synthesized image from
the synthesis step could be inaccurate due to the presence of
noisy audio features. Thus, in the matching step, we input
a combination of the synthesized image and the occlusion-
masked face into an auto-encoder-decoder network, produc-
ing a high-fidelity image. In summary, this paper makes the
following contributions:

• Given the corresponding noisy audio and the video, we
address the adverse effect of lip occlusion on audio-
visual speech recognition by restoring occluded lips in
a video. We propose a framework of audio-visual lip
restoration (AVLR) to achieve this target.

• We introduce a novel synthesis-matching strategy to
make audio features compatible with various degrees of
occlusion while obtaining high-fidelity images.

• Experiments confirm that our method can substantially
alleviate the deterioration of audio-visual speech recog-
nition resulting from lip occlusion. Under -5dB noise
conditions, AV-Hubert’s WER increases from 10.62 to
13.87 due to lip occlusion, but rebounds to 11.87 in con-
junction with the proposed framework.

Related Work
Audio-visual Speech Recognition Audio-visual speech
recognition leverage lip reading to complement speech
recognition, since speech recognition is vulnerable under
noise but more informative than lip reading without noise
(Wang, Qian, and Li 2022).

Audio-visual fusion is a unique module in audio-visual
speech recognition, distinguishing it from speech recogni-
tion or lip reading. Concatenation or multiplication of fea-
tures from feature extractors or encoders are common strate-
gies (Afouras et al. 2018; Petridis et al. 2018; Yu et al. 2020).
Besides, cross-modal attention is adopted to enhance inter-
action between audio and visual modalities (Sterpu, Saam,
and Harte 2020; Paraskevopoulos et al. 2020). Different
from feature fusion, there are some works that conduct a fu-
sion of prediction from different modalities via some strate-
gies, such as addition with fixed weights (Luettin, Potami-
anos, and Neti 2001) or dynamic weights (Stewart et al.
2013; Abdelaziz, Zeiler, and Kolossa 2015). However, the
above fusion methods only consider audio corruption and
do not pay attention to the corruption of videos.

In (Hong et al. 2023), the authors claim to be the first to
address video corruption in audio-visual speech recognition.
They tackle this issue by enhancing fusion methods, specif-
ically by calculating reliability scores for modalities and
merging features using attention and scores. In (Afouras,
Chung, and Zisserman 2019), for audio-visual enhancement,
the authors employ a two-step strategy to obtain speaker em-
bedding in the first round when the visual modality is cor-
rupt. However, unlike our AVLR, both two methods do not
attempt to restore occluded lips from corrupted videos.

In (Yu et al. 2021), the authors evaluate their audio-visual
speech recognition method in various scenarios, including
occluded videos and occluded videos treated with an in-
painting method. However, this inpainting method does not
utilize audio information, posing a challenge when dealing
with fully occluded lips.

Talking Face Generation Talking face generation is to
synthesize videos of lip movements consistent with given
audio and identity images (Prajwal et al. 2020; Wang et al.
2023) and optional pose cues (Zhou et al. 2021) and emo-
tional cues (Liang et al. 2022). Methods of talking face
generation can be categorized into reconstruction and in-
termediate methods (Park et al. 2022). Intermediate meth-
ods follow a media (e.g. landmarks (Chen et al. 2019; Zhou
et al. 2020) or 3D meshes (Song et al. 2022)) to bridge in-
puts and outputs. Reconstruction methods mostly employ an
auto-encoder-decoder architecture with extra discriminators
to penalise degraded visual quality (Zhou et al. 2019), in-
accurate synchronization (Prajwal et al. 2020), and reading
intelligibility (Wang et al. 2023).

Talking face generation is different from audio-visual lip
restoration as follows: 1). Lip restoration can only use noisy
audio while talking face generation usually adopts clean
speech. 2). Talking face generation constructs entire lips de-
pending on audio features but lip restoration might need to
restore lips under different degrees of occlusion given the
same audio clip.

Proposed Method
The use of our audio-visual lip restoration (AVLR) frame-
work for audio-visual speech recognition under adverse con-
ditions of acoustic noise and lip occlusion is depicted in Fig.
2. Given a pair of a corrupted video affected by lip occlusion
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Figure 2: Audio-visual speech recognition with audio-visual
lip restoration (AVLR).

Xv ∈ RT×3×H×W and a noisy audio feature Fa ∈ RT×da

extracted from noisy audio Xa, our AVLR restores occluded
lips and outputs the recovered video X ′

v , where T , da, dv
are numbers of frames, visual feature and audio feature di-
mensions, H and W are height and width. Subsequently,
any existing trained audio-visual speech recognition meth-
ods mentioned in the related work section can be employed
to process X ′

v and Xa to predict spoken words Y ′ ∈ RL×C

without re-training, where L and C are the length of spo-
ken words and the number of potential word classes, respec-
tively.

AVLR, illustrated in Fig. 3, restores occluded lips to mit-
igate the degradation of audio-visual speech recognition
caused by lip occlusion. Specifically, we describe the AVLR
using two subsections below: (1) detecting occluded frames
and generating masks of occlusion to mask the occlusion;
and (2) reconstructing masked regions given an occlusion-
masked image Iorm, an image providing a cue of mouth ap-
pearance Is, and a synchronized noisy audio clip Xa.

Occluded-Frame Detection and Mask Generation
In this phase, our goal is to determine the occluded frames
within a video and compute the respective occlusion masks
for lip restoration. Furthermore, an additional objective for
each occluded frame is to choose the temporally nearest un-
obstructed frame as a reference for mouth appearance.

As shown in Fig. 3, the detection network contains a
downsampling module, a Resnet (He et al. 2016), a global
average pooling layer and a linear layer. The detection net-
work is trained with a binary cross-entropy loss:

Ldet = yd · log(Fd(x
i
v))+ (1− yd) · log(1−Fd(x

i
v)), (1)

where yd ∈ [0, 1] is the binary ground truth to indicate
whether an image contains a concealed lip, xi

v denotes the
i-th image in a video.

As the detection network progressively learns to differ-
entiate whether the lip in an image is occluded, CAM can
provide a rough localization of the occlusion (Zhou et al.

2016), which is expressed as:

mcam =

k∑
wk · fk

g , (2)

where fg is the feature before the global average pooling
layer, w is the weight of the linear layer after the global av-
erage pooling layer, and k is the channel index of fg .

To refine CAM, we adopt another Resnet and feed it with
the concatenation of the CAM and fdown. The refined mask
mfine is optimized also by a binary cross-entropy loss with
mask labels:

Lmask =
1

HW

∑
H

∑
W

(mh,w
gt log(mh,w

fine)+

(1−mh,w
gt ) log(1−mh,w

fine)), (3)

where mh,w
gt ∈ [0, 1] represents the mask ground truth, indi-

cating whether the pixel at position ”h, w” within an image
belongs to an occlusion region.

Subsequently, we apply the mask mfine on the corre-
sponding occluded image as Eq. 4. This leads to the creation
of an occlusion-masked image denoted as Iorm.

Iorm = mfine · Iocc. (4)

Reconstruction of Missing Lip Regions
In this phase, our goal is to complete the masked regions of a
lip given an occlusion-masked image Iorm, an image Is pro-
viding mouth appearance, and a noisy audio clip Xa. Mouth
appearance herein refers to a human-dependent aspect in-
stead of human-independent visemes which are analogous
to phonemes in the context of lip reading (Bear and Harvey
2017).

To reduce the disparity in pose between Iorm and Is,
we opt for an occlusion-free image that is temporally clos-
est to Iorm as the appearance cue Is. During training, we
randomly select Is to prevent the chance of the nearest
occlusion-free frame having a similar mouth shape (viseme)
to that of Iorm. As mentioned in the introduction, we pro-
pose a synthesis-matching strategy to make audio features
compatible with different extents of occlusion. In the synthe-
sis module, audio clips are designed to generate the full lip.
To this end, we mask the lower-half face of Iorm and ob-
tain I2m, which removes the influence of the residual visible
mouth on the synthesis module and ensures that the synthe-
sis module generates a mouth that depends solely on Fa and
the appearance cue Is. This pre-processing is widely used
in talking face generation (Prajwal et al. 2020; Wang et al.
2023; Park et al. 2022).

To synthesize an image with a lip shape consistent with
the audio clip, the synthesis module adopts an auto-encoder-
decoder architecture. The encoder of the synthesis module
down-samples the concatenation of the I2m and the Is to a
smaller size (1 × 1). The decoder gradually up-samples the
audio feature, with skip connections between the encoder
and the decoder, and generates a face image Isyn at the end.
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Figure 3: The framework of audio-visual lip restoration.

However, the Isyn may be inaccurate due to noisy audio
features. Additionally, even though the lower-half face in the
Isyn could seem reasonable, it might lack sharpness and not
necessarily be properly aligned with the corresponding re-
gion in the Iorm.

To make the Isyn more consistent with the Iorm, a match-
ing module is employed. We concatenate the Isyn with the
Iorm and pass them through another auto-encoder-decoder
with skip connections. Finally, an Imat is obtained. It should
be noted that the matching module only conducts shallow
downsampling and does not reduce the concatenation to the
size of 1 × 1. We use an L1 loss to optimize the synthesis
module and the matching module, as shown in Eq. 5:

Lrec = |Imat − Igt|+ |Isyn − Igt|. (5)

where Igt is the ground-truth image.
To ensure the visual realism of Imat, we apply a GAN

loss (Park et al. 2022; Liang et al. 2022; Goodfellow et al.
2020), which is widely employed in talking face generation
(Prajwal et al. 2020; Wang et al. 2023; Park et al. 2022):

Lgen = E[log(1−D(Imat))], (6)

Ldisc = E[log(1−D(Igt))] + E[log(D(Imat))], (7)
where D is a discriminator. Lgen reduces implausible con-
tent in images by learning to fool the discriminator.

Lip Reading Loss
A frozen lip reading network is proven to be effective to pe-
nalize the synthesized lip that looks reasonable but inconsis-
tent with ground-truth spoken word (Wang et al. 2023). We

employ this loss to suppress inaccuracy brought by noisy
audio. The frozen lip-reading network, which acts as a lip-
reading expert, takes recovered video X ′

v as input and gen-
erates predicted spoken words Y ′. Following (Wang et al.
2023), we choose the lip-reading network of AV-Hubert (Shi
et al. 2022) as the lip-reading expert, which is formed by
1) a front-end (3D Convolution Neural Network (CNN) and
ResNet-18 (He et al. 2016)) to extract local temporal fea-
tures 2) a transformer encoder to extract global context fea-
ture Rv ∈ RT×f where f is the feature dimension 3) a
transformer decoder to predict spoken words Y ′. Finally, the
cross-entropy loss is applied between Y ′

text and ground-truth
text Y :

Llip = −Y logP (Y ′|X ′
v). (8)

Even though the lip-reading expert is frozen, the gradient
from the Llip still back-propagates to X ′

v . As there are some
synthesized images present in X ′

v , the gradients will also
further back-propagate to AVLR and ensure that the synthe-
sized images have correct lip shapes.

Contrastive Loss
Since the audio is noisy, we improve the audio features Fa

by contrastive loss, which is proven to be effective to en-
hance audio-visual synchronization and visual intelligibility
on talking face generation based on clean speeches (Wang
et al. 2023). Contrastive loss aims to reduce the distance be-
tween a frame of Fa and its temporally-aligned frame of vi-
sual features Rv , and increase the distance with other frames
of Fa. We select infoNCE (Oord, Li, and Vinyals 2018) to

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19147



achieve this loss, expressed as:

θ(x, x′) = exp(Fc(x) · Fc(x
′)/τ), (9)

Lcont = −
∑
i∈Υ

log
θ(F i

a, R
i
v)

θ(F i
a, R

i
v) +

∑j∈Υ
i̸=j θ(F i

a, F
j
a )

(10)

where Υ indicates a set covering all frames detected as oc-
cluded, Fc is a linear layer and τ is a pre-defined constant.
x and x′ denote two feature vectors.

Summarizing all losses, our proposed AVLR is optimized
as follows, we omit weights of losses for concision:

L = Ldet+Lmask+Lcont+Lrec+Llip+Lgen+Ldisc. (11)

Experiments
Quantitative Evaluation Metrics
Our main objective is to mitigate the negative impact of lip
occlusion on audio-visual speech recognition. To evaluate
this, we employ several state-of-the-art (SOTA) audio-visual
speech recognition methods. We conduct experiments on
each method to compare the WER on original clean videos
without lip occlusion, videos with lip occlusion Xv , and
videos that have undergone lip occlusion recovery through
AVLR X ′

v . It’s important to note that these methods are
solely trained on original clean videos and are not re-trained
using the recovered videos.

Methods for Evaluation
To prove our AVLR is compatible with different audio-
visual speech recognition methods without re-training, we
adopt some methods with different fusion and decoding
models: TM-CTC (Afouras et al. 2018), Conformer (Ma,
Petridis, and Pantic 2021), P&U net (Wang, Qian, and Li
2022), AV-Hubert (Shi et al. 2022). TM-CTC (Afouras et al.
2018) is a simple but effective method with Connection-
ist Temporal Classification (CTC) loss which assumes that
frames are temporally independent, and is widely employed
by other works as a baseline. Conformer (Ma, Petridis, and
Pantic 2021) employ both attention loss and CTC loss to get
rid of CTC’s assumption and repress non-monotonic align-
ments of attention loss. Inspired by human speech percep-
tion studies that lip movements come in advance and cue
listeners when and on which frequency of speech should
be focused, P&U net (Wang, Qian, and Li 2022) firsts de-
code spoken words from lip movements and provides it as
a prior to speech via a factorized-excitation feed-forward
network. AV-Hubert (Shi et al. 2022) is a self-supervised
method which employs clustering indices of Mel-Frequency
Cepstral Coefficients (MFCC) as pseudo labels to make use
of massive audio-visual data without text annotation. In or-
der to better show the influence of video modality, all WER
are calculated between ground truth and hypothesis without
a language model involved.

Dataset
Our AVLR is trained on LRS2 (Afouras et al. 2018) which
encompasses 224 hours of audio-visual data along with text
annotation. There are about 144482 utterances that have a
duration of less than 6 seconds.

Method Occlusion 10dB 5dB 0dB -5dB

TM-CTC ✗ 13.8 18.8 29.5 46.8
✓ 16.4 25.5 42.7 66.7

AVLR ✓ 13.9 19.4 31.7 52.5

AV-Hubert ✗ 3.48 3.80 5.18 10.62
✓ 3.48 3.95 6.58 13.87

AVLR ✓ 3.45 3.87 5.69 11.87

P&U net ✗ 5.7 7.4 11.4 21.2
✓ 6.7 9.2 16.3 32.6

AVLR ✓ 6.1 8.1 13.2 25.0

Conformer ✗ 8.2 11.1 19.0 33.4
✓ 8.9 13.1 25.8 48.7

AVLR ✓ 8.4 11.6 20.5 37.2

Table 1: Audio-visual speech recognition on the LRS2
dataset. For each method, we present a triple performance
assessment (original videos, corrupted videos with occlu-
sion, and recovered videos using our AVLR) across varying
Signal-to-Noise Ratio (SNR) (from 10dB to -5dB). Values
in the table are WERs.

In the evaluation phase, we assess all chosen audio-visual
speech recognition methods based on their WER on LRS2
and LRS3 datasets (Afouras et al. 2018). The evaluation
is conducted under three conditions: original clean videos,
corrupted videos Xv , and recovered videos X ′

v . The LRS3
dataset is a large audio-visual speech recognition dataset de-
rived from TED talks, offering a distinct environment com-
pared to LRS2, which is assembled from BBC programs.
Both datasets share a common audio sampling rate of 16
kHz and a video frame rate of 25 frames per second.

Implementation Details
Before applying the AVLR procedure, we follow the pre-
processing steps outlined in (Prajwal et al. 2020; Wang et al.
2023). This includes utilizing a face detection module to
identify faces, cropping them using bounding boxes, and re-
sizing them to dimensions of 96 × 96. We simulate lip oc-
clusion following (Hong et al. 2023) which employs objects
in the Naturalistic Occlusion Generation dataset (Voo, Jiang,
and Loy 2022). In detail, we add an object to about 30%
frames by aligning its centre with one of the mouth land-
marks. The downsample block in the occluded-frame detec-
tion and the matching module downsamples reduces the size
of input images to 1/4. The discriminator only distinguishes
lower-half faces between Imat and Igt. The selection of the
lip-reading expert follows (Wang, Qian, and Li 2022) which
chooses AV-Hubert base which is pre-trained on the Vox-
celeb2 (Chung, Nagrani, and Zisserman 2018) and LRS3
(Afouras et al. 2018), and finetuned on the LRS2 (Afouras
et al. 2018). Note that AV-Hubert pre-processes images with
an affine transformation to eliminate scalar and rotation in-
fluences. In this work, we fine-tune the lip-reading expert
without employing the affine transformation, allowing it to
be adaptable to a broader range of scenarios.
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Method Occlusion 10dB 5dB 0dB -5dB

AV-Hubert ✗ 1.8 2.3 4.5 11.7
✓ 1.8 2.5 5.2 15.2

AVLR ✓ 1.9 2.4 4.8 13.3

P&U net ✗ 4.0 5.8 11.2 27.9
✓ 5.7 9.1 18.3 42.1

AVLR ✓ 4.4 6.3 12.1 31.1

Conformer ✗ 6.1 9.7 21.3 42.8
✓ 6.7 10.9 26.7 56.8

AVLR ✓ 6.2 9.8 22.5 46.5

Table 2: Audio-visual speech recognition on the LRS3
dataset. For each method, we present a triple performance
assessment (original videos, corrupted videos with occlu-
sion, and recovered videos using our AVLR) across varying
SNR (from 10dB to -5dB). Values in the table are WERs.

Quantitative Results
In Tab. 1, we assess the efficacy of our AVLR across vari-
ous SOTA audio-visual speech recognition models. It is ev-
ident that the WERs for all methods increase in the pres-
ence of lip occlusion. However, upon utilizing our AVLR
model to restore occluded facial features, the WERs de-
crease substantially, approaching levels comparable to those
observed without occlusion, particularly at noise levels ex-
ceeding 0 dB. When noise is more dominant such as a
noise level of -5 dB, although the gap between WERs
on original videos and recovered videos slightly widens,
the AVLR still manages to alleviate a significant degree
of degradation. Specifically, the AVLR reduces degrada-
tion by 71.4% (14.2/19.9), 61.5%(2/3.25), 66.7%(7.6/11.4),
and 75%(11.5/15.3) for TM-CTC, AV-Hubert, P&U net, and
conformer, respectively.

We further confirm the effectiveness of our AVLR by val-
idating it on the LRS3 dataset and show results in Tab. 2.
Notably, our AVLR successfully mitigates the degradation
resulting from lip occlusion across all methods on the LRS3
dataset, especially for P&U net (Wang, Qian, and Li 2022)
and Conformer (Ma, Petridis, and Pantic 2021). For these
two methods, AVLR almost relieves degradation when SNR
exceeds 0. Even under the challenging noise condition of -5
SNR, AVLR also achieves significant improvement. Thanks
to self-supervision on a larger dataset, AV-Hubert is much
more robust to lip occlusion. However, AVLR still relieves
degradation under noise lower than 0 dB. These results also
demonstrate that our AVLR has good generalization across
datasets since we do not train our AVLR on LRS3. It’s worth
noting that the AV-Hubert (large) model utilized in Table 1
is finetuned without the affine transformation preprocessing,
thus exhibiting slight performance variations compared to
the model reported in (Shi et al. 2022).

Qualitative Results
In this section, we illustrate the effectiveness of our pro-
posed AVLR by evaluating the quality of the recovered im-
ages. In Figure 4, we showcase 4 instances of restored lip

!" !#$$ !%&' !('

Figure 4: The visualization of restoration of occluded lips.
Is, Iocc, Imat and Igt refer to the appearance cue, the oc-
cluded input, the output of the AVLR, and the ground-truth
image, respectively.

images. For each sample, Is is selected from the nearest
frame to Iocc that is devoid of any occlusion, ensuring that
the chosen Is possesses a similar pose to Iocc. The AVLR
model is trained to restore Imat to capture the precise viseme
from the ground truth Igt. Here, a viseme corresponds to a
group of phonemes that share identical lip shapes (Bear and
Harvey 2017). We can see the Imat approaches the Igt well.

Results of Detection and Masking
We use two simple metrics ”recall” and ”precision” to mea-
sure the accuracy of the detection of occluded frames and the
masking of occluded areas. Specifically, the recall and the
precision are True Positives / (True Positives + False Nega-
tives) and True Positives / (True Positives + False Positives),
respectively.

For the detection, the recall is the number of the correct
prediction of occluded frames divided by that of all occluded
frames, which is 99.74%. The precision in the detection is
99.91%. For the masking, the recall is the number of the
correct prediction of occluded pixels divided by that of all
occluded pixels, which is 96.04%. The precision is 98.40%.

Comparison of Synthesis-Matching Strategy and
Talking Face Generation
Intuitively, methods of talking face generation also have
the potential to complete occluded-masked images. Here,
we compare the synthesis-matching strategy with two talk-
ing face generation methods, i.e. Wav2lip (Prajwal et al.
2020) which works on enhancing synchronization and Talk-
lip (Wang et al. 2023) which is proven to generate videos
with good intelligibility. The input to Wav2lip and Talklip is
a combination of an occlusion-masked image, an image of
the appearance cue and an audio clip.
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Figure 5: The relationship between performance and the ra-
tio of occluded frames using the LRS2 dataset. Results are
computed utilizing the P&U net and a noise level of 0 dB.

Method SSIM PSNR LSE-C LSE-D WER%

Wav2lip 93.30 34.14 7.58 6.70 35.26
TalkLip 92.50 32.99 7.49 6.69 32.39
Ours 93.66 33.26 7.77 6.48 29.87

- Lcont 93.83 33.24 7.67 6.53 31.70
- Lcont,lip 93.22 32.42 7.57 6.63 33.77

Table 3: Comparison with talking face generation methods
and ablation study of contrastive loss and lip-reading loss.
”- Lcont” means contrastive loss is not utilized. WER is the
lip-reading performance based on AV-Hubert. Ours means
the synthesis-matching strategy.

We adopt PSNR (Vougioukas, Petridis, and Pantic 2020;
Park et al. 2022; Jin, Yang, and Tan 2022) and SSIM (Wang
et al. 2004; Liang et al. 2022; Jin et al. 2022) metrics to mea-
sure visual quality and LSE-D, LSE-C (Prajwal et al. 2020)
to measure audio-visual synchronization, and WER to mea-
sure lip reading performance (Wang et al. 2023). The superi-
ority of our proposed synthesis-matching approach over two
SOTA talking face generation methods is readily apparent
in terms of lip-speech synchronization and visual reading
intelligibility. Although the improvement in visual quality is
not distinct from quantitative results. We find that the syn-
thesized images by Wav2Lip and TalkLip are not natural,
remaining a subtle occlusion mask or artifacts. We will pro-
vide a qualitative comparison in the supplementary.

Ablation Study of Contrastive Loss and
Lip-Reading Loss
Despite the effectiveness demonstrated in enhancing reading
intelligibility and synchronization in (Wang et al. 2023), we
undertake an ablation study of these two losses. This is be-
cause the context of the lip restoration task is not the same as
that of talking face generation. The results of this study are
presented in Tab. 3. It is observed that the contrastive loss
and lip-reading loss are capable of enhancing synchroniza-
tion and reading intelligibility, which is consistent with that

Type SI-SDRi↑ SDRi↑ PESQi↑ STOli↑
Original 11.4 11.8 1.02 0.20
Corrupted 9.1 9.8 0.83 0.15
Recovered 11.3 11.7 1.00 0.20

Table 4: Performance of our AVLR on the audio-visual
speech extraction task.

in (Wang et al. 2023).

AVLR on Other Audio-Visual Tasks
To validate that the recovered videos are task-independent,
we make a comparison of original videos, corrupted videos,
and recovered videos on the audio-visual speech extraction
task using the USEV network(Pan, Ge, and Li 2022). The
SI-SDRi and SDRi represent the improvements in the sig-
nal quality of the extracted speech qualities. The PESQi and
STOIi represent the improvements in the perceptual quality
and intelligibility of the extracted speech. The USEV net-
work is pre-trained and fixed, without re-training on occlu-
sion data. We listed the results in Tab. 4, and it is seen that
the performance of all metrics drops significantly when the
video is corrupted compared to the original video. When our
proposed AVLR is used to restore the occluded lips, the per-
formance of USEV is on par with the original video, show-
ing the effectiveness of our AVLR.

Ablation of the Ratio of Occluded Frames
Since the ratio of occluded frames can vary in real-world
scenarios, we illustrate the correlation between audio-visual
speech recognition performance and this ratio, as shown in
Fig. 5. It is evident that degradation intensifies as the ratio
increases, regardless of whether AVLR is applied. Never-
theless, we can discern that the discrepancy between the per-
formance on corrupted videos and recovered videos widens,
signifying that the AVLR mitigates the detrimental impact
of lip occlusion on audio-visual speech recognition.

Conclusion
This paper addresses a relatively less explored issue: the
detrimental impact of lip occlusion on audio-visual speech
recognition, by proposing a framework (AVLR) to re-
store occluded lips. To achieve the final target, the AVLR
framework encompasses three main tasks: detecting oc-
cluded frames, masking occluded areas, and reconstruction
of masked regions. To ensure audio features align well with
varying degrees of occlusion in the reconstruction of masked
regions, we introduce a novel synthesis-matching inpaint-
ing strategy. Empirical findings validate its superiority to
one-step talking face generation methods. Besides the re-
construction, AVLR can accurately detect occluded frames
in a video and estimate the mask of occlusion. Overall,
our AVLR can markedly mitigate the degradation in audio-
visual speech recognition attributed to lip occlusion, both
within individual datasets and across them.
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