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Abstract

We study the problem of completing various visual docu-
ment understanding (VDU) tasks, e.g., question answering
and information extraction, on real-world documents through
human-written instructions. To this end, we propose Instruct-
Doc, the first large-scale collection of 30 publicly avail-
able VDU datasets, each with diverse instructions in a uni-
fied format, which covers a wide range of 12 tasks and in-
cludes open document types/formats. Furthermore, to en-
hance the generalization performance on VDU tasks, we de-
sign a new instruction-based document reading and under-
standing model, InstructDr, that connects document images,
image encoders, and large language models (LLMs) through
a trainable bridging module. Experiments demonstrate that
InstructDr can effectively adapt to new VDU datasets, tasks,
and domains via given instructions and outperforms existing
multimodal LLMs and ChatGPT without specific training.

Introduction
Building document artificial intelligence (Document AI) ca-
pable of reading and comprehending real-world documents,
including webpages, office documents, mobile UIs, etc., has
been a long-cherished goal. Toward this goal, numerous
works on visual document understanding (VDU) have ad-
dressed a wide range of tasks, such as document question
answering (QA) (Mathew, Karatzas, and Jawahar 2021) and
information extraction (Jaume, Ekenel, and Thiran 2019).
Document data contain both textual and visual objects, with
content spread structurally across various locations depend-
ing on diverse document types and formats. To address this
complexity, previous works have proposed models that aim
to improve interactions among text/layout/visual modali-
ties (Xu et al. 2021; Appalaraju et al. 2021). However, the
diversity of documents and tasks poses a challenge in de-
veloping a unified model that can comprehend intricate rela-
tionships between text and visual objects across a wide range
of document types, formats, and tasks.

To improve the generalizability and adaptivity of unseen
vision-language tasks, visual instruction tuning (Xu, Shen,
and Huang 2023; Liu et al. 2023a) has been introduced. This
approach involves training multimodal large language mod-
els (MLLMs) on a collection of images, task inputs, and in-
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structions. However, according to (Liu et al. 2023b), most of
the previous visual instruction tuning datasets have primar-
ily focused on understanding visual (non-textual) objects in
scene images and existing models struggle with accomplish-
ing tasks that require visual document understanding abili-
ties. While recent works (Zhang et al. 2023; Ye et al. 2023a)
attempt to deal with the issue, they still exhibit limitations
when generalizing to unseen tasks and documents.

In this paper, we propose InstructDoc1, the first large-
scale visual instruction tuning dataset that covers a wide
range of VDU tasks and datasets (12 diverse tasks created
from 30 openly available datasets). Each dataset has di-
verse instructions annotated by experts, following a unified
instruction schema, composed of user’s intent and answer
style, for VDU tasks. As shown in Figure 1, InstructDoc re-
quires a rich set of abilities, including understanding docu-
ment layout, visual representations of texts, and relation ex-
traction of objects (e.g., graphs and charts) over open docu-
ment types/formats with handcrafted instructions.

Furthermore, to enhance the generalization performance
on VDU tasks, we present a Instruction-based Document
reading and understanding model, InstructDr, which uni-
fies the visual, text, and layout modalities of documents
by bridging the gap between a vision encoder and a large
language model (LLM) through a new bridging module
called Document-former. The Document-former converts
documents into a useful feature for the LLM. Experiments
show that InstructDr achieves the highest zero-shot perfor-
mance among existing MLLMs and outperforms ChatGPT
on a wide range of VDU datasets with instructions.

Related Work
Visual document understanding. Visual documents are
ubiquitous and used in diverse applications, including QA
on business documents (Mathew, Karatzas, and Jawahar
2021), information extraction on receipts (Jaume, Ekenel,
and Thiran 2019), and classification over large document
collections (Harley, Ufkes, and Derpanis 2015). Due to this
diversity, previous works have generally been domain/task-
specific, lacking the sharing of underlying data, model ar-
chitectures, and objectives (Xu et al. 2020; Appalaraju

1Our dataset and codes are publicly available at https://github.
com/nttmdlab-nlp/InstructDoc
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Multi-page QA w/ Multi-hop 
& Discrete & Visual Reasoningon Form on Slide deck on Figure 

Input: There are 4 categories for selection:
“title”, “key”, “value”, and “other”.
Please output the category corresponding to the text
“CASE FORM”. 

Output: title

Input: Respond to the question " What is the difference in the competition 
media percentage between East and the region with 12% of journalists? " 
with a short answer based on the content of the multi-page document.
 Answers contain either:
- a span inside of the document
- a list of spans inside of document (each span should be separated by ",")
- not exist explicitly as a span of the document (the answer should be freely 
generated text)
Output: 5% (11%-6%)

Input: Please write a one-sentence description of what is 
presented in the figure.

Output: Robustness of the generalization error with respect to a 
Gaussian corruption noise added to the input, and the model 
trained with the combination of input noise and Jacobian 
regularization is more robust.

Key Information Extraction Captioning

Figure 1: Examples of InstructDoc dataset. The input defines intent (blue), query and options (green), and answer style (pink).
query and options and outputs are from original datasets.

et al. 2021; Huang et al. 2022). Although pixel-based meth-
ods (Kim et al. 2022; Lee et al. 2023) can simplify archi-
tectures, these methods have high computational costs (due
to the encoding of high-resolution images) and can have de-
graded performance on new tasks. We leverage the reason-
ing abilities of LLMs and perform all VDU tasks in a unified
sequence-to-sequence format with instructions, resulting in
improved generalization performance.

Instruction-following language models. Training LLMs
with instructions on various NLP tasks has proven effective
in improving zero-shot performance of unseen tasks (Wei
et al. 2021; Iyer et al. 2022). Flan (Wei et al. 2021; Long-
pre et al. 2023), PromptSource (Bach et al. 2022), and Nat-
ural Instructions (Mishra et al. 2022) collected instructions
and datasets for a variety of general NLP tasks, such as ma-
chine reading comprehension and summarization tasks on
plain-text documents. In contrast, we tackle the challenge of
understanding real-world documents organized in non-plain
text formats (e.g., HTML and PDF).

Visual instruction tuning. Researchers have recently ex-
plored the application of LLMs to vision-language tasks by
distilling the output of LLMs (Liu et al. 2023a; Zhu et al.
2023; Ye et al. 2023b) or training with handcrafted instruc-
tions (Xu, Shen, and Huang 2023; Dai et al. 2023). However,
as pointed out in (Liu et al. 2023b), these models strug-
gle with tasks requiring document understanding abilities
because they do not assume that text might be contained
in images during instruction tuning. To mitigate this issue,
LLaVAR (Zhang et al. 2023) and LLMDoc (Ye et al. 2023a)
fine-tune MLLMs with instruction tuning on document im-
ages. However, these approaches have trouble understand-
ing diverse real-world documents because (i) the datasets
provide a few document and task types, hindering zero-shot
generalization; and (ii) the models simply encode documents
via vision encoders and cannot explicitly learn document
meta-information (e.g., document layout). In contrast, the
InstructDoc covers diverse VDU tasks and open document
types/formats, and InstructDr learns rich representations of
the underlying structure of documents with instructions.

InstructDoc Dataset
Problem Formulation
All of the tasks in InstructDoc are simply defined as: given
an instruction T and a document image I , a model out-
puts an answer A. Each task is composed of one or more
datasets, where the dataset D is associated with the set of K
instructions T D = {TD

1 , ..., TD
K } and contains N instances

{(T D, Ij , Aj)}Nj=1. Here, we randomly select the instruc-
tion from T D for every instance. Note that we allow the
utilization of external OCR engines to derive the answer in
our setting, as in the previous VDU benchmark (Borchmann
et al. 2021). Our goal is to enable the model to perform a
wide range of VDU tasks with instructions rather than im-
proving the accuracy of text recognition (Zhang et al. 2023).

We mainly evaluate the models’ ability to perform zero-
shot learning scenarios. Specifically, we fine-tune a model
on a collection of instruction tasks and evaluate it on unseen
datasets defined three types: (i) TestCross-Dataset: datasets not
used during training, but whose tasks exist in training set; (ii)
TestCross-Task: datasets and associated tasks entirely unseen
during training; and (iii) TestCross-Domain: datasets, tasks, and
document types entirely unseen during training.

Dataset Collection
In this section, we describe the collection process of the In-
structDoc dataset. InstructDoc is designed to cover a wide
range of VDU tasks with instructions that require reasoning
among document layout, images, and text.

Source dataset collection. Figure 2 shows the source
datasets in InstructDoc. We collected 30 publicly available
datasets and 12 tasks in VDU areas from DUE (Borchmann
et al. 2021) as well as through manual searches. Following
the task clusters defined in previous works (Wei et al. 2021;
Dai et al. 2023), we divided the QA datasets that require dif-
ferent reasoning abilities into different tasks. As a result, we
divided the collected datasets into the following tasks:
• Key Information Extraction (KIE) assigns each word a

semantic entity label from predefined categories (Šimsa
et al. 2023; Jaume, Ekenel, and Thiran 2019; Sun et al.
2021; Park et al. 2019; Huang et al. 2019).
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Figure 2: Datasets used in InstructDoc. InstructDoc covers a wide range of VDU tasks and document types and formats.

• Single-page QA is a task of QA on single-page docu-
ments and focuses on document layout and textual con-
tent understanding (Tanaka, Nishida, and Yoshida 2021;
Chen et al. 2021; Mishra et al. 2019; Mathew, Karatzas,
and Jawahar 2021; Tüselmann et al. 2022).

• Single-page QA w/ Discrete Reasoning requires var-
ious arithmetic abilities, including addition, sorting, or
counting (Zhu et al. 2022).

• Single-page QA w/ Visual Reasoning requires a set
of abilities, including object (e.g., icon) recognition,
commonsense understanding, and relation extraction on
single-page documents (Lu et al. 2021; Kembhavi et al.
2016; Lu et al. 2022; Kembhavi et al. 2016).

• Single-page QA w/ Discrete & Visual Reasoning re-
quires both discrete and visual reasoning (Mathew et al.
2022; Masry et al. 2022) on single-page documents.

• Multi-page QA w/ Multi-hop & Discrete & Visual
Reasoning requires understanding the content relation-
ship via multi-hop reasoning as well as discrete/visual
reasoning on multi-page documents (Tanaka et al. 2023;
Landeghem et al. 2023).

• Document NLI is a task of natural language inference
that predicts the entailment relationship between two
sentences in a document (Borchmann et al. 2021)

• Dialogue involves a human-agent interaction on the basis
of document images (Zhang et al. 2023).

• Captioning involves producing descriptions of docu-
ments (Hsu, Giles, and Huang 2021; Wang et al. 2021).

• Classification involves classifying a document from a set
of candidate labels (Harley, Ufkes, and Derpanis 2015).

• Document Layout Analysis (DLA) determines a docu-
ment’s components with bounding boxes (Li et al. 2020;
Pfitzmann et al. 2022)

• Image-Text Matching (ITM) requires the model to de-
termine whether a given OCR text and image match.

Query rephrasing. We found that two KIE datasets
(FUNSD and CORD) are challenging because they con-
tain abbreviated queries that are difficult for humans to
comprehend. To bridge the gap between humans and
machines, we replace these queries with complete and
more easily understandable phrases (e.g., menu.vatyn→
menu whether price tax included).

Instruction annotation. For each dataset, we manually
crafted five to ten distinct instruction templates in a unified
format. For QA tasks, the answers have diverse styles in the
original datasets; for example, DocVQA’s answer is extrac-
tive, which requires the model to extract a contiguous span
of words from the document, but VisualMRC’s answer is
generative, which is not limited to the word spans. Hence,
an instruction that sufficiently describes an arbitrary VDU
task should include intent and answer style or only intent.
Specifically, as shown in Figure 1, intent describes how the
task can be performed and answer style describes how the
model generates the output. If each dataset provides query
and options, we fill it in annotated instruction templates.

Data split. We split InstructDoc into 23 held-in and seven
held-out datasets. For the held-out evaluation, we aim to un-
derstand how instruction tuning on the held-in datasets im-
proves the zero-shot generalization performance on unseen
datasets, including (i) TestCross-Dataset: FUNSD and CORD
datasets, (ii) TestCross-Task: ChartQA, InfoVQA, and Tab-
Fact datasets, and (iii) TestCross-Domain: DUDE and Slide-
VQA datasets. All other datasets were held-in ones to train
our model. Note that the held-out datasets were carefully se-
lected in order to avoid data contamination.

Comparison with Related Datasets
Table 1 shows the statistics of InstructDoc and other VDU
instruction tuning datasets, including LLaVAR (Zhang et al.
2023) and DocOwl (Ye et al. 2023a). InstructDoc has three
unique key properties; First, it is the first dataset to address
open document types, including multi-page documents and
has the highest standard deviation in the number of OCR to-
kens (1442.8) compared with LLaVAR (93.1) and DocOwl
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(a) Our InstructDr for a single-page document (b) Our InstructDr for a multi-page document

Trainable parameters

Frozen parameters

Learnable 
tokens

Figure 3: InstructDr model. We update only the parameters of Document-former and the projection FFN layer during training.

LLaVAR DocOwl InstructDoc

Both Single/Multi-page docs ✓
Instruction annotation ✓ ✓
Answer style annotation ✓
#Document types 8 7 Open
#Seed datasets 1 8 30
#Task clusters 1 3 12
#Avg.±Std. IT words - 5±0 20.3±11.2

#Avg.±Std. IT - 1±0 7.4±2.4

#Avg.±Std. OCR words 52.5±93.1 270.1±807.2 443.2±1442.8

#Avg.±Std. Answer words 34.5±27.5 1.9±2.7 5.88±17.7

Table 1: Statistics of InstructDoc and other VDU instruction
tuning datasets. We excluded data other than the VDU tasks
from DocOwl. IT denotes instruction templates.

(807.2). This implies that our dataset is a more challeng-
ing setting. Second, InstructDoc covers the widest range of
tasks, offering four times more tasks compared with Do-
cOwl, while LLaVAR provides only a single task. Finally,
InstructDoc provides a more extensive set of instructions
(20.3 words and 7.4 templates) and annotates various answer
styles within the instructions to deal with various VDU tasks
that require diverse abilities. In contrast, the instructions in
DocOwl are limited (five words and a single template) and
LLaVAR has only machine-generated instructions, and they
may not generalize well to reformulations and new tasks.

Our Model
Figure 3 depicts our model, InstructDr (Instruction-based
Dument reading and understanding model). We use pre-
trained BLIP-2 (Li et al. 2023), a state-of-the-art MLLM
connected with instruction-tuned FlanT5 (Chung et al.
2022), as the base model. We extend BLIP-2 in three key
ways; (i) equipping it with Document-former, an enhanced
Q-former module that can capture and convert the visual and
textual content/layout of documents into representations of
the LLM, (ii) conducting multi-task instruction tuning with

unified formats, and (iii) encoding multiple images in paral-
lel to facilitate understanding of multi-page documents.

Spatial-aware Document Feature Extraction
Document image/OCR and instruction encoding. To
encode a document image, we use a pre-trained CLIP (Rad-
ford et al. 2021) vision encoder to extract its visual features
zvis. Additionally, we process the document image using
an OCR engine and apply a sub-word tokenizer to obtain
M word tokens {si}Mi=1 and their corresponding bounding
boxes {(x1

i , y
1
i , x

2
i , y

2
i )}Mi=1, where (x1, y1) and (x2, y2) rep-

resent the coordinates of the top-left and bottom-right cor-
ners, respectively. To learn the visual layout of the image,
we construct a spatially aware OCR representation zocr

i =

zword
i +zbbox

i with learnable embedding layers W{s,x,y,h,w},
where OCR text features are calculated as zword

i = Ws(si)
and spatial features are calculated as zbbox

i = Wx(x1
i , x

2
i )+

Wy(y1i , y
2
i )+Wh(y2i −y1i )+Ww(x2

i −x1
i ). Similarly, we

encode an instruction by Ws and obtain its features zins.

Document-former. We introduce Document-former,
which is a trainable module to bridge the gap between
an image encoder and an LLM, enabling extraction of
document content/layout that LLMs can understand. The
architecture of Document-former is a stack of Transformer
blocks with cross-attention layers. To map document
features into the LLM’s space, we use a set of m learnable
tokens ztoken ∈ Rd, where d is the dimension of the hidden
size. These tokens ztoken interact with zvis through cross-
attention layers and with the input sequence, composed of
zins and zocr, through self-attention layers. As a result, we
obtain zdoc and transform it via a projection feed-forward
network (FFN) layer to hdoc ∈ Rm×dLLM

, which have the
same dimension dLLM as the LLM’s input embedding.

Multimodal Document Large Language Model
Connecting document features to LLM. The LLM re-
ceives the document embeddings hdoc, the instruction, and
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Cross-Dataset Cross-Task Cross-Domain

Model Modal #TuP #ToP FUNSD CORD ChartQA InfoVQA TabFact DUDE SlideVQA Held-out
eF1/F1 eF1/F1 RAcc./F1 ANLS/F1 Acc./F1 ANLS/F1 EM/F1 Avg.

LLMDoc V 388M 7B -/- -/- -/- 38.2†/- 60.2†/- -/- -/- -/-
LLaVA TV 13B 13B 12.0/1.3 0.2/ 5.1 0.0/1.7 3.4/3.5 0.0/0.0 6.5/5.9 0.0/2.3 3.1/2.8
LLaVAR TV 13B 13B 12.0/2.0 0.1/10.8 0.0/3.0 6.2/4.6 0.0/2.1 8.1/5.1 0.0/6.2 3.8/4.8
MiniGPT-4 TV 3.1M 7B 12.0/2.2 0.2/ 2.1 0.0/0.4 4.3/0.5 0.3/0.2 5.9/1.1 0.0/0.4 3.2/1.0
mPLUG-Owl TV 388M 7B 12.0/6.7 0.2/15.0 0.0/0.3 5.6/5.3 0.0/2.6 5.8/5.5 0.0/0.4 3.4/5.1
InstructBLIP TV 103M 3.4B 16.8/15.0 4.9/9.5 3.3/7.2 8.7/7.3 33.6/33.7 11.0/8.8 5.2/9.0 11.9/12.9
BLIP-2 TV 103M 3.4B 19.6/19.6 32.0/51.9 23.6/21.5 48.2/36.7 58.6/58.6 39.8/35.4 28.3/38.8 35.7/37.5

BLIP-2 trained on IDoc TV 103M 3.4B 26.0/26.1 33.8/54.7 24.7/21.2 47.8/35.4 58.8/58.8 43.9/40.4 30.1/38.8 37.9/39.3
InstructDr (Ours) TLV 103.1M 3.4B 38.2/38.1 46.0/62.7 29.4/22.3 50.9/37.6 59.4/59.4 45.2/41.6 31.9/40.2 43.0/43.1

Table 2: Zero-shot performance of InstructDr and MLLMs on VDU tasks. “T/L/V” denotes the “text/layout/visual” modality of
documents. #TuP/#ToP denotes the number of tuning/total parameters. The highest zero-shot performances are marked in bold.
†denotes the supervised performance reported in the original paper, as it is not publicly available. IDoc denotes InstructDoc.

OCR tokens as input and outputs the answer A, token by
token. The parameters of the LLM are initialized from an
instruction-tuned FlanT5.

Parameter-efficient multi-task instruction tuning. To
achieve task-agnostic learning, we formulate the process of
learning all held-in tasks in a unified sequence-to-sequence
abstraction through instructions. To train the LLM effi-
ciently, we update only the parameters of the Document-
former (including W{s,x,y,h,w}) and the projection FFN
layer, while keeping other parameters frozen during train-
ing. We optimize the model by minimizing the negative log-
likelihood between the ground-truth and predictions.

Multi-page document understanding. We also support
performing reasoning across multiple document pages. As
shown in Figure 3b, each image is processed individually by
the image encoder and Document-former, and their resulting
document embeddings are mean-pooled together before be-
ing fed into the LLM. The OCR input to the LLM consists
of concatenated tokens extracted from each page.

Experiments
Experimental Setup
We mainly conducted evaluations under three zero-
shot settings, including TestCross-Dataset, TestCross-Task, and
TestCross-Domain. Furthermore, we evaluated our model under
the task-specific fine-tuning setting.

Baselines. We compared InstructDr with seven state-of-
the-art (SOTA) MLLMs, including LLaVA (Liu et al.
2023a), MiniGPT-4 (Zhu et al. 2023) and mPLUG-Owl (Ye
et al. 2023b), which align CLIP visual encoder with Vi-
cuna (Chiang et al. 2023) trained on a dialogue gener-
ated by GPT-4 (OpenAI 2023); BLIP-2 (Li et al. 2023),
which connects a FlanT5 with a vision encoder; Instruct-
BLIP (Dai et al. 2023), which fine-tunes BLIP-2 with in-
structions on scene images; and LLMDoc (Ye et al. 2023a)
and LLaVAR (Zhang et al. 2023), which fine-tune mPULG-
Owl/LLaVA on the DocOwl/LLaVAR datasets. Addition-
ally, we used Supervised SOTA models (Appalaraju et al.

2023; Chen et al. 2023; Huang et al. 2022; Landeghem et al.
2023) on each dataset and two text-based LLMs, ChatGPT
(gpt-3.5-turbo-0613) and GPT-4. To control the an-
swer’s length, we added control phrases (e.g., use 1 to 3
words to answer) to the selected instructions.

Evaluation metrics. We followed the evaluation protocol
of each dataset, we used ANLS (Biten et al. 2019) for In-
foVQA, DUDE, Text-VQA and ST-VQA, EM for Slide-
VQA, Relaxed Accuracy (RAcc.) for ChartQA, entity F1
(eF1) for FUNSD and CORD, Accuracy (Acc.) for TabFact,
and ROUGE-L for VisualMRC as evaluation metrics. Ad-
ditionally, we used F1 as the optional metrics.

Implementation details. Following (Wei et al. 2021),
we balanced the training instances of different tasks by
sampling a maximum of 5k instances for each held-in
dataset while keeping all evaluation instances. We used the
AdamW (Loshchilov and Hutter 2017) with a weight decay
of 0.05. We applied a linear warmup during the initial 1,000
steps and used a cosine learning rate decay with a minimum
learning rate of 0. We set the number of learnable tokens m
to 32. All images of the model input were resized to 224.
We trained on eight A100 (40G) GPUs for three epochs and
completed the training within two hours. If each dataset does
not provide OCR, we extracted it via the Google Vision API.

Experimental Results and Analysis
Does our model outperform existing MLLMs? Table 2
shows that our model achieved the highest performance on
all datasets compared with other MLLMs. InstructDr con-
sistently outperformed its original backbone, BLIP-2, by
a significant margin, indicating that instruction tuning on
InstructDoc effectively enhances performance on unseen
VDU datasets, tasks, and domains. In contrast, InstructBLIP,
which is instruction-tuned BLIP-2 trained on scene images,
performed worse than BLIP-2. This is because that Instruct-
BLIP does not assume that the images might contain text
during instruction tuning. BLIP-2 fine-tuned on Instruct-
Doc falls short of achieving the same level of performance
compared with InstructDr, indicating that InstructDr is bet-
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Cross-Dataset Cross-Task Cross-Domain

Model Modal FUNSD CORD ChartQA InfoVQA TabFact DUDE SlideVQA Held-out
eF1/F1 eF1/F1 RAcc./F1 ANLS/F1 Acc./F1 ANLS/F1 EM/F1 Avg.

Supervised SOTA models TLV 92.1/- 97.7/- 72.3/- 54.8*/- 83.2*/- 46.1*/- 33.5/41.7 -/-

ChatGPT T 21.8/21.2 30.4/49.3 16.0/16.8 37.8/29.5 52.5/52.4 34.5/32.3 11.7/23.8 29.2/32.2
GPT-4 T 47.5/47.5 69.4/81.7 20.9/27.6 49.9/46.5 68.8/68.8 46.3/45.1 21.0/36.4 46.3/50.5

InstructDr (Ours) TLV 38.2/38.1 46.0/62.7 29.4/22.3 50.9/37.6 59.4/59.4 45.2/ 41.6 31.9/40.2 43.0/43.1

Table 3: Zero-shot performance on VDU tasks of InstructDr and supervised SOTA models and powerful text-based LLMs. *
denotes the performance on different splits we used because they evaluated on the leaderboard and F1 cannot be used.

CORD TabFact DUDE Held-out
Model eF1 Acc. ANLS Avg.

InstructDr 46.0 59.4 45.2 43.0

w/o Document-former 38.5 58.8 44.6 40.2
w/o Spatially OCR features 33.8 58.8 43.9 37.9
w/o Mean pooling (concat.) - - 43.8 -

w/o Instructions in test 24.0 4.0 38.9 28.0
w/o Instructions in train 17.3 58.2 34.0 28.9
w/o Instructions in both 0.4 3.7 24.4 21.3
w/o Query rephrasing 30.9 - - -
w/o Answer style annotation - - 44.2 -

Table 4: Ablation study of the architecture and instructions.
We report the scores when the ablation can be conducted.

ter suited for comprehending diverse real-world documents.
This conclusion is further supported by the results presented
in Table 4, where ablations of Document-former, spatial
information, and strategy of gathering multi-page features
have a significant negative impact on performance.

How well does our model perform in comparison with
supervised SOTA models and powerful LLMs? As
shown in Table 3, our model outperformed ChatGPT on
all datasets. Additionally, InstructDr achieved competitive
results with supervised SOTA models and GPT-4 on the
DUDE and SlideVQA datasets that require multiple reason-
ing skills (e.g., discrete, visual, and multi-hop reasoning).
This indicates that our model can effectively learn diverse
skills through instruction tuning with InstructDoc.

What is the role of instructions? As shown in Table 4,
removing instructions (i.e., only query and options as the
model input) significantly decreased zero-shot performance
during training or/and test time, indicating the effectiveness
of incorporating instructions. This result was observed on
the high-quality instruction-tuning datasets (Wei et al. 2021;
Xu, Shen, and Huang 2023). Moreover, our instruction an-
notations, including query rephrasing and answer styles,
helped to improve the zero-shot performance.

Does our model have robustness towards diverse instruc-
tions? Figure 4 shows the performance variance when the
models were given five different instructions; InstructDr ex-
hibited the smallest performance variance and outperformed

BLIP-2 InstructDr w/o 
 Instructions in train

InstructDr w/o 
 Multiple instructions

InstructDr
10

15

20

25

30

35

40

45

50

AN
LS

Worst performance
Avg. performance

Best performance

Figure 4: Comparison of zero-shot performance on DUDE
for five different instructions. w/o Multiple instructions de-
notes our model trained with a single instruction per dataset.

KIE (1) + Class. + ITM + Cap. + Dial. + DLA (6) + QAs (9)
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Cross-Dataset Avg.
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Cross-Domain Avg.
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Figure 5: Model performance as the number of task clusters
used in training. (·) denotes the number of tasks.

the other models. This indicates InstructDoc empowers the
model with the ability to deal with a variety of instructions.
Our results also suggest that using multiple instructions per
dataset is important for achieving decent performance.

What is the impact of diverse task clusters? As shown
in Figure 5, as the number of task clusters increases, we can
observe an improvement in models’ zero-shot performance.

Are our model weights effective for task-specific
fine-tuning? We further fine-tuned InstructDr (only
Document-former module) on a specific dataset to inves-
tigate the knowledge and transferability of our instruction-
tuned model weights. Table 5 shows the fine-tuning perfor-
mance on held-in (VisualMRC) and held-out (DUDE, Slide-
VQA) tasks. InstructDr achieved state-of-the-art finetuning
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You must extract the answer to the question "What was the total 
forecast for University of Minnesota operations and 
maintenance for 2010-2011?"  after (…) or summing values. If 
you could not answer the question, the answer is 'none’.

ChatGPT: none
BLIP-2: -$220,590
InstructDr: 1,077,755

Could you use 5 to 10 words to describe what you perceive 
in the UI image?

ChatGPT: No image available. Text description only.
BLIP-2: Search page
InstructDr: Search page for finding various music in 
music learning app

Respond to the question ”What is the AMOUNT 
CLAIMED?" with a short answer based on the content of 
the document. Answers contain a span inside of document.

ChatGPT: $166.25
BLIP-2: $166.25
InstructDr: $166.25

Figure 6: Qualitative examples. Outputs are correct (green) and incorrect (red) answers. (...) denotes ellipsis.

VisualMRC DUDE SlideVQA
Model ROUGE-L ANLS EM F1

Supervised SOTA models 52.2 46.1 33.5 41.7

BLIP-2 60.5 45.6 36.9 46.5
InstructDr 61.1 46.8 37.7 47.3

Table 5: Fine-tuning performance in held-in (VisualMRC)
and held-out (DUDE, SlideVQA) tasks on the test set.

Image type in TextVQA ST-VQA
Model instruction tuning Acc. ANLS ANLS

BLIP-2 - 48.7 64.8 39.1
InstructBLIP Daily scene 52.8 67.3 45.7

InstructDr Documents 53.8 68.1 43.3

Table 6: Zero-shot performance of scene-text VQA task.

performance on VisualMRC, DUDE, and SlideVQA using
a unified model. Compared with BLIP-2, InstructDr exhib-
ited superior fine-tuning performance on both held-in/out
datasets, validating InstructDr as a better weight initializa-
tion model for task-specific fine-tuning.

Can our model also understand images other than doc-
uments? Table 6 shows the zero-shot performance of
scene-text VQA (Singh et al. 2019; Biten et al. 2019) on
scene images, which are the unseen image types in Instruct-
Doc but were used for training our base model, BLIP-2. Note
that ST-VQA’s images include the part of COCO (Lin et al.
2014) that InstructBLIP was trained on. This result indicates
that InstructDr can effectively learn visual reasoning skills
without forgetting the abilities of the original backbone.

Qualitative examples. Figure 6 visualizes output ex-
amples, where the left/center/right examples require
table/visual/hand-written text understanding skills. Chat-
GPT gave incorrect answers because it can only consider
text information. Moreover, while BLIP-2 could not follow

instructions (e.g., use 5 to 10 words) and extract items from
structured text, InstructDr accomplished diverse VDU tasks
with instructions. As shown in the right example, all models
affected OCR quality, causing incorrect answers.

Limitations
Despite its impressive performance on various VDU tasks
with instructions, InstructDr suffers from noisy OCR pre-
dictions, whose performance depends highly on OCR text
qualities (right of Figure 6). We argue that our approach
is more cost-efficient and accurate because another ap-
proach, the pixel-based ones (Kim et al. 2022; Chen et al.
2023), requires a large amount of computation to encode
high-resolution images and cannot use document meta-
information (e.g., bounding boxes). Moreover, since In-
structDoc only contains a single document-text pair per
instance, it cannot learn the correlation among multiple
document-text pairs and lacks an in-context learning capa-
bility. The same observation has also been reported in the
Flamingo (Alayrac et al. 2022) and BLIP-2. Finally, while
we have constructed diverse VDU tasks, the number of tasks
and corresponding instructions are still limited. We plan to
consider utilizing automatic generation and augmentation
techniques to increase the variety of instructions available.

Conclusion
We introduced a new large-scale instruction-tuning dataset,
InstructDoc, to lay the foundation for building general-
purpose VDU models that can follow natural language in-
structions. We also introduced a simple yet effective instruc-
tion tuning model, InstructDr, which unifies the vision, text,
and layout modalities of documents by bridging the gap be-
tween a vision encoder and an LLM with Document-former.
We performed a comprehensive study on instruction tuning
with InstructDoc and demonstrated its generalization capa-
bility to a wide range of VDU datasets, tasks, and domains
with instructions. We believe that our dataset will facilitate
research on developing general-purpose document artificial
intelligence systems.
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