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Abstract

Game theory, as an analytical tool, is frequently utilized to
analyze human behavior in social science research. With the
high alignment between the behavior of Large Language
Models (LLMs) and humans, a promising research direc-
tion is to employ LLMs as substitutes for humans in game
experiments, enabling social science research. However, de-
spite numerous empirical researches on the combination of
LLMs and game theory, the capability boundaries of LLMs in
game theory remain unclear. In this research, we endeavor to
systematically analyze LLMs in the context of game theory.
Specifically, rationality, as the fundamental principle of game
theory, serves as the metric for evaluating players’ behavior
— building a clear desire, refining belief about uncertainty,
and taking optimal actions. Accordingly, we select three clas-
sical games (dictator game, Rock-Paper-Scissors, and ring-
network game) to analyze to what extent LLMs can achieve
rationality in these three aspects. The experimental results
indicate that even the current state-of-the-art LLM (GPT-4)
exhibits substantial disparities compared to humans in game
theory. For instance, LLMs struggle to build desires based on
uncommon preferences, fail to refine belief from many sim-
ple patterns, and may overlook or modify refined belief when
taking actions. Therefore, we consider that introducing LLMs
into game experiments in the field of social science should be
approached with greater caution.

Introduction
Game theory (Roughgarden 2010; Dufwenberg 2011) is a
mathematical theory for evaluating human behavior. Due to
its highly abstract representation of real-life situations (Os-
borne and Rubinstein 1995), it becomes a standard analytical
tool (Charness and Rabin 2002; Cachon and Netessine 2006)
in the field of social science (e.g., economics, psychology,
sociology, etc.). With the rapid development of Large Lan-
guage Models (LLMs) (Ouyang et al. 2022; OpenAI 2023),
a significant advancement is the high alignment between the
behavior of LLMs and humans (Bai et al. 2022; Ouyang
et al. 2022; Fan et al. 2024). As a result, many researchers
consider LLMs as human-like research subjects (Dillion
et al. 2023) and analyze LLMs’ professional competence in
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Figure 1: Overview of a player’s behavior in game theory.

social science through game experiments (Chen et al. 2023;
Akata et al. 2023; Johnson and Obradovich 2023). How-
ever, despite the strong motivation for the combination of
LLMs and game theory (Horton 2023; Guo 2023), the pre-
liminary researches mainly treat LLMs and game theory em-
pirically as analytical tools in social science (Aher, Arriaga,
and Kalai 2022; Park et al. 2022; Akata et al. 2023; Bybee
2023), without systematically analyzing LLMs in the con-
text of game theory. As a result, many fundamental aspects
of LLMs in game theory remain unclear. For example, what
research subjects cannot LLMs play? What types of games
are LLMs not good at playing? What kind of game processes
are LLMs more suitable for? And so on.

We consider it necessary to systematically analyze LLMs
in the context of game theory, because such analysis can
clarify the capability boundaries of LLMs and provide fur-
ther guidance for the widespread use of LLMs in social sci-
ence research. Essentially, the role of game theory is to eval-
uate the behavior of the research subjects (players) (Rough-
garden 2010), as shown in Fig. 1, a player needs to take an
action a ∈ A based on preference P and perceived game in-
formation I (e.g., game rules and historical records) in order
to win the game. And rationality, as the fundamental princi-
ple of game theory, is the metric for evaluating players’ be-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17960



havior (Roughgarden 2010; Dufwenberg 2011). A rational
player is considered to possess three characteristics (Zagare
1984; Osborne and Rubinstein 1995) as:

• build a clear desire for the game.
• refine belief about uncertainty in the game.
• take optimal actions based on desire and belief.

Specifically, desire D(·) represents a player’s (concrete)
opinion of each consequence within a game, determined by
a player’s (abstract) preference P . Belief ΩI is refined from
the game information I, and represents a player’s subjective
judgment of uncertainty (e.g., opponent’s action). Taking the
optimal action a ∈ A requires a player to reason by combin-
ing desire D(·) and belief ΩI in the game process. More
details can be found in Section .

In this research, we consider the three characteristics of a
rational player as a reasonable perspective for systematically
analyzing LLMs in the context of game theory. Accordingly,
we select three classical games (dictator game, Rock-Paper-
Scissors, and ring-network game) for these three charac-
teristics, respectively. With the dictator game, we find that
LLMs have the basic ability to build a clear desire. However,
when assigned uncommon preferences, LLMs often suffer
from decreased mathematical ability and inability to under-
stand preferences. With Rock-Paper-Scissors, we observe
that LLMs cannot refine belief from many simple patterns,
which makes us pessimistic about LLMs playing games that
require refining complex beliefs. Nonetheless, GPT-4 ex-
hibits astonishingly human-like performance in certain pat-
terns, able to become increasingly confident of refined belief
as the game information increases. With the ring-network
game, we consider that LLMs cannot autonomously follow
the player’s behavior in Fig. 1. Explicitly decomposing the
behavior in the game process can improve the ability of
LLMs to take optimal actions, but the phenomenon of over-
looking / modifying refined belief remains unavoidable.

In summary, our research systematically explores the ca-
pability boundaries of LLMs in the context of game theory
from three perspectives, and we consider that our research
can pave the way for the smooth introduction of LLMs in
the field of social science.

Related Work
LLMs in Social Science
A significant advantage of LLMs is the high alignment with
human behavior (Bai et al. 2022; Ouyang et al. 2022). There-
fore, from the perspective of cost and efficiency, many social
science researches began to employ LLMs to replace hu-
mans as research subjects (Aher, Arriaga, and Kalai 2022;
Argyle et al. 2023; Bybee 2023; Park et al. 2022). For ex-
ample, in order to explore fairness and framing effects in
sociology, LLMs were introduced into the classic game ex-
periments (Horton 2023), which demonstrated the potential
of LLMs to deal with social issues; in the research of con-
sumer behavior (Brand, Israeli, and Ngwe 2023), the behav-
ior of LLMs was consistent with economic theory in many
respects (i.e. downward-sloping demand curves, diminish-
ing marginal utility of income, and state dependence); in fi-

nance research (Chen et al. 2023), LLMs’ decisions in bud-
getary allocation scenarios received higher rationality scores
compared to humans; and in psychology experiments (Dil-
lion et al. 2023), the behavior of LLMs was highly consistent
with the mainstream values of society.

While these researches demonstrate the rationality of
LLMs replacing human research subjects in certain social
science domains, there is still a lack of systematic analysis
of the capability boundaries of LLMs in social science.

Game Theory
Game theory, as a mathematical theory, provides a frame-
work for analyzing and predicting the behavior of rational
players under conditions of uncertainty (Roughgarden 2010;
Dufwenberg 2011). Game theory was originally developed
in economics (Ichiishi 2014), and a wide range of economic
behaviors, such as market competition, auction mechanism,
and pricing strategies, were modeled as game experiments
(Samuelson 2016). With the rapid cross-fertilization of sci-
entific theories (Shubik 1982), game theory was also applied
to politics, sociology, psychology, and other fields of social
science (Larson 2021; Dillion et al. 2023).

The research on the performance of LLMs in game the-
ory has the following advantages: strong operability, the ex-
perimental design of game theory is often relatively simple;
strong analyzability, game theory has comprehensive theo-
retical support for the experimental results; strong general-
ization, game theory is a high-level abstraction of many phe-
nomena in the field of social science.

Preliminaries of Game Theory
The core of game theory (Roughgarden 2010) is to guide
players to take optimal actions under conditions of uncer-
tainty1. Generally, a game is modeled in five parts:
• Game information I, e.g., game rules, historical records.
• A set A of actions from that players can take.
• A set C of possible consequences of action.
• A consequence function g : A → C that associates a

consequence with each actions.
• A desire function Dc : C → R, which is determined by

the player’s preference P . For any c1, c2 ∈ C, the player
prefers c1 if and only if Dc(c1) > Dc(c2).

To eliminate uncertainty in the game process, almost
all game researches employ the belief theory (Morgen-
stern 1945; Lindley and Savage 1955). That is, a rational
player will estimate a (subjective) probability distribution
for any uncertainty based on I, and this is referred to as
the player’s belief (Osborne and Rubinstein 1995). Specif-
ically, the player is assumed to have a belief ΩI , a be-
lief’s probability distribution p(ΩI), a consequence function
g : A × ΩI → C. Then, the player attempts to find the op-
timal strategy π∗(a|I) by maximizing the expected desire
with the consideration of ΩI as:

π∗(a|I) = argmax
a∈A

Eω∼p(ΩI)[D(a, ω)], (1)

1We assume that uncertainty arises only from the opponent’s
action. All games in this research satisfy this assumption.
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where D(·) is a simplification of Dc ◦ g(·).
In fact, Eq. 1 explicitly expresses three characteristics of a

rational player: having a clear desire corresponds to building
the desire function D(·); refining belief about uncertainty
corresponds to sampling in the belief’s probability distri-
bution ω ∼ p(ΩI); taking optimal actions corresponds to
choosing the action that maximizes desire argmax

a∈A
D(a).

LLMs in Game Theory
In this section, we endeavor to conduct a systematic analy-
sis of LLMs in the context of game theory. Specifically, we
evaluate to what extent LLMs can achieve three character-
istics of a rational player through three classic games (dic-
tator game, Rock-Paper-Scissors, and ring-network game).
The LLMs we analyze are openAI’s text-davinci-003
(GPT-3), gpt-3.5-turbo (GPT-3.5), gpt-4 (GPT-4),
the current state-of-the-art LLMs. All prompts used in the
three games, as well as some examples of LLMs perfor-
mance, can be found in Appendix.

Can LLMs Build A Clear Desire?
The premise of game theory is that each player has an ab-
stract preference P for the consequence set C. A rational
player should build a concrete desire function D(·) based
on preference P to measure the desire for each consequence
c ∈ C. In sociological research (Burns et al. 2021), game
experiments are frequently designed to explore the phe-
nomenon where players with different preferences (cooper-
ative or competitive) may have entirely different desires for
the same consequence (win-win).

For humans, preference and desire seem to be coexistent,
while for LLMs, preference is assigned through a textual
prompt. Therefore, we need to analyze whether LLMs can
build reasonable desires from textual prompts.

Game: Dictator Game The dictator game (Charness and
Rabin 2002) is a classic game experiment in sociology
(Guala and Mittone 2010), which is used to analyze players’
personal preferences P . In this game, there are two players:
the dictator and the recipient. Given two allocation options,
the dictator needs to take action, choosing one of two alloca-
tion options, while the recipient must accept the allocation
option chosen by the dictator. Here, the dictator’s choice is
considered to reflect the personal preference (Camerer and
Thaler 1995; Leder and Schütz 2018). For example, given
two allocation options as:

• Option X: The dictator gets $300, the recipient gets $300.
• Option Y: The dictator gets $500, the recipient gets $100.

A dictator who prefers equality is more likely to choose Op-
tion X, while a dictator who prefers self-interest is more
likely to choose Option Y.

We choose the dictator game to analyze LLMs’ desire for
two reasons. First, the desires of this game are diverse. Un-
like most games with a fixed preference (e.g., to maximize
one’s own interest), this game allows players to have di-
verse preferences, which results in diverse desire functions
and different choices. Second, since the recipient’s action is

LLM Pref. Option
EQ CI SI AL

GPT-3

EQ - 1.0 1.0 1.0
CI 0.4 - 0.3 0.5
SI 1.0 1.0 - 1.0
AL 0.0 0.0 0.1 -

GPT-3.5

EQ - 1.0 1.0 1.0
CI 1.0 - 0.9 1.0
SI 1.0 1.0 - 1.0
AL 1.0 0.6 0.8 -

GPT-4

EQ - 1.0 1.0 1.0
CI 1.0 - 1.0 0.9
SI 1.0 1.0 - 1.0
AL 1.0 1.0 1.0 -

Table 1: Accuracy of LLMs in the dictator game, where Pref.
is an abbreviation for Preference.

known (to accept), there is no uncertainty in this game, i.e.,
the belief ΩI is fixed to ωI . This makes LLMs immune to
potential interference from the biased belief. Therefore, the
optimal strategy of the dictator game is expressed as:

π∗(a|I) = argmax
a∈{X,Y }

{D(X,ωI), D(Y, ωI)}, (2)

where X and Y refer to the dictator choosing option X and
option Y, respectively. Thus, by providing multiple alloca-
tion options, we can analyze whether the desires built by
LLMs match the corresponding preferences.

Setup Following (Grech and Nax 2018), we set four pref-
erences for LLMs, to analyze different desires as:
• Equality (EQ): You have a stronger preference for fair-

ness between players and hate inequality.
• Common-Interest (CI): You have a stronger preference

for common interest and maximize the joint income.
• Self-Interest (SI): You have a stronger preference for

your own interest and maximize your own income.
• Altruism (AL): You have a stronger preference for an-

other player’s interest and maximize another player’s in-
come.

Compared to the original setting (Charness and Rabin 2002),
we adjust the allocation options corresponding to each pref-
erence to be closer and introduce an additional preference
AL, thereby increasing the challenge of the game. Specifi-
cally, we set up allocation options for EQ, CI, SI, and AL
as follows: ($300, $300), ($400, $300), ($100, $500), and
($500, $100), respectively. In each option, the first number
represents the dictator’s income, and the second number rep-
resents the recipient’s income. It is worth noting that in game
theory, SI and EQ are the most common preferences, fol-
lowed by CI, while AL hardly ever occurs.

In our experiments, we assign LLMs a specific preference
(e.g., EQ) through a textual prompt, and then verify whether
LLMs can make preference-consistent choices under differ-
ent combinations of allocation options (i.e., EQ-CI, EQ-SI,
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Confusion of 
numbers

($300 < $500)

Confusion of
preferences
(AL or CI)

GPT-4: … option X gives the other player 500
dollars, option Y gives him 300 dollars … to
maximize the other player’s income …

GPT-3.5: … option Y leads to a higher total income
of 700 dollars. … in order to maximize another
player’s income, my final option would be Y.

GPT-3: By choosing option Y, you will be giving
another player an income of 300 dollars which is
higher than the 500 dollars if you chose option X.

Option X (AL)
($100, $500)

Option Y (CI)
($400, $300)vs

AL

AL

AL

Figure 2: A case of the dictator game. All LLMs are assigned
the preference AL, and the allocation options are AL-CI.

and EQ-AL). Therefore, for each preference, each LLM is
required to play three different dictator games. Each exper-
iment is repeated 10 times and we report the accuracy. The
temperature of LLMs is set to 0.7.

Analysis The experimental results are displayed in Table
1. When assigned common preferences (EQ and SI), all
three LLMs made preference-consistent choices in all ex-
periments, demonstrating the basic ability of LLMs to build
clear desires from textual prompts. However, LLMs per-
formed poorly when given uncommon preferences (CI and
AL). Specifically, for the preference of CI, both GPT-3.5 and
GPT-4 had sporadic errors, and the accuracy of GPT-3 was
less than half; for the preference of AL, GPT-3.5 also made
a large number of errors, while GPT-3 almost completely
misunderstood AL (making the reference-consistent choice
only once). The experimental results reveal significant dif-
ferences in the ability of LLMs to build desires when as-
signed common / uncommon preferences.

To further analyze the ability of LLMs to build a desire,
we conducted a case study on the preference AL as illus-
trated in Fig. 2. GPT-3’s error stemmed from a lack of math-
ematical ability (confusion of numbers), which never oc-
curred when GPT-3 is assigned a common preference. This
seems to imply that the mathematical ability of LLMs as-
signed different preferences would be significantly different.
GPT-3.5 incorrectly assumed that a higher joint income im-
plied the maximization of the recipient’s income (confusion
of preferences), which can be attributed to the deviation of
the built desire of GPT-3.5. GPT-4 performed well in this
case, both analysis and choice were consistent with humans.

Insight: LLMs have the basic ability to build clear de-
sires based on textual prompts, but struggle to build de-
sires from uncommon preferences.
We consider that providing more explicit and specific ex-
planations of preferences may be helpful to LLMs when
game experiments involve uncommon preferences.

Can LLMs Refine Belief?
In game theory, a rational player needs to refine belief ΩI
about uncertainty (e.g., opponent’s action) from the game
information I. Essentially, refining belief is a process of

Strategy Name Description
ato = C constant remain constant

ato = f(a<t
o )

loop-2 loop between two actions
loop-3 loop among three actions

ato = f(a<t
m )

copy copy opponent’s previous action
counter counter opponent’s previous action

ato ∼ p(P) sample sample in preference probability

Table 2: Summary of the opponent’s strategy in R-S-P.

synthesizing surface-level information into deeper insights.
Because of the emphasis on decision-making in high uncer-
tainty (Wellman 2017), game experiments in politics often
examine players’ ability to refine belief.

Unfortunately, even for humans, refining belief can be a
challenge. Therefore, it is meaningful to determine which
types of beliefs LLMs can or cannot refine.

Game: Rock-Paper-Scissors Rock-Paper-Scissors (R-P-
S) is a simultaneous, zero-sum game for two players. The
rules of R-P-S are simple: rock beats scissors, scissors beat
paper, paper beats rock; and if both players take the same
action, the game is a tie.

R-P-S is an ideal game to analyze LLMs’ ability to refine
belief. On the one hand, analyzing statistical patterns of non-
random opponents’ historical records can bring significant
advantages in R-P-S (Fisher 2008). On the other hand, for
LLMs, R-P-S’s preference (to win) is clear and the rules are
simple: given the opponent’s action, LLMs can always take
the correct action based on the rules. Therefore, we consider
that LLMs’ performance in R-P-S can reflect LLMs’ ability
to refine belief in game theory.

Specifically, in round i, the player’s (my) action is noted
as aim and the opponent’s action is noted as aio. After play-
ing t − 1 consecutive rounds with the same opponent, the
historical records {a<t

o , a<t
m } can be considered as the game

information I for refining belief ΩI in round t. So, the opti-
mal strategy in round t can be expressed as:

π∗(atm|I) = π∗(at|a<t
o , a<t

m )

= argmax
at
m∈A

Eat
o∼p(Ω{s<t

o ,a<t
m })

[D(ato, a
t
m)]. (3)

Since LLMs can grasp the preferences and rules of R-P-
S, the difficulty of Eq. 3 lies in refining belief, i.e., ato ∼
p(Ω{s<t

o ,a<t
m }).

Setup In international R-P-S programming competitions
(Billings 2000), a non-random opponent’s action (in round
t) is determined by the historical records {a<t

o , a<t
m } and the

opponent’s preference P as:

ato ∼ p(A|a<t
o , a<t

m ,P). (4)

Essentially, refining belief refers to making p(Ω) approach
p(A|a<t

o , a<t
m ,P). For a fine-grained analysis of the ability

of LLMs to refine belief, we set up 4 simple opponent’s pat-
terns based on Eq. 4, as shown in Table 2. ato = C is the
basic pattern, evaluating the most basic refinement ability of
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Figure 3: Average payoff of LLMs for each round in R-S-P.

… can give me the
most points regardless
of the other player’s
choice ... I will choose
R as a counter …

… the other player has
chosen P, R, S, P, R, S ...
It doesn’t seem to follow
a specific pattern … I
should choose P…

… It appears that their
choices seem to be
random ... rather than
trying to guess the
other … I choose R.

round

(a) Analysis of GPT-3.5

… the other player
may follow a rotating
patter … this is purely
speculative … then I
should choose S …

… rotating their choices
in the pattern P, R, S, ...
no guarantee that the
other player follow … S
is a reasonable choice.

… consistently rotated
in the pattern as P, R,
S … Based on the
observed pattern, the
next action is S.

round

(b) Analysis of GPT-4

Figure 4: Analysis of LLMs on loop-3. The symbols under
the round axis indicate the opponent’s action for each round.

LLMs. In this pattern, we conduct three experiments with
the opponent’s actions remaining constant as R, S, and P, re-
spectively. ato = f(a<t

o ) is determined by a<t
o . Under the

Markov assumption (Puterman 1994), this pattern behaves
as a loop. We conduct three loop-2 experiments (R-P, P-
S, S-R) and one loop-3 experiment (R-P-S) in this pattern.
ato = f(a<t

m ) is determined by a<t
m . Under the Markov as-

sumption, we conduct two experiments in this pattern: copy
/ counter the player’s previous action at−1

m . ato ∼ p(P) is de-
termined by the preference P . To implement this pattern, we
set a preference probability distribution of (0.70, 0.15, 0.15)
and conduct three experiments where the opponent has a
preference for R, S, and P respectively, to take action by
sampling in the distribution probability.

To quantify the results of R-P-S, we set the payoff for a
win as 2, for a tie as 1, and for a loss as 0. In each exper-
iment, LLMs need to play 10 consecutive rounds of R-P-S
against an opponent with a specific pattern, and the histori-
cal records are updated in time. Each experiment is repeated
10 times, and the temperature of LLMs is set to 0.7.

Analysis The average payoffs of each LLM are shown in
Fig. 3. Specifically, in the basic pattern (constant), GPT-3
performed close to random guessing, suggesting that GPT-3
lacked the basic ability to refine belief. In contrast, GPT-
3.5’s average payoff was significantly higher than random

guessing and continued to rise; GPT-4 consistently took cor-
rect actions after approximately 3 rounds. In ato = f(a<t

o )
pattern (loop-2, loop-3), GPT-3 and GPT-3.5 appeared to be
capable of capturing some cyclical features, but they were
unable to take correct actions. However, the performance of
GPT-4 was exciting, with the update of historical records,
the payoff was clearly rising. This led us to believe that GPT-
4 can refine belief from this pattern. In ato = f(a<t

m ) pattern
(copy, counter), the situation was not ideal, GPT-4 seemed
to have a slight advantage, but the overall performance of
LLMs was not good enough. In ato ∼ p(P) pattern (sam-
ple), the performance of all LLMs was similar to random
guessing. Overall, LLMs are unable to refine belief well in
most patterns, whereas for humans, the patterns involved in
our experiments are quite easy to refine.

For a more detailed analysis, we compared the analysis
of GPT-3.5 and GPT-4 on loop-3, as shown in Fig. 4. The
analysis of GPT-3.5 demonstrated a lack of ability to refine
belief. Even though GPT-3.5 expressed that the opponent’s
actions were P-R-S loops, it still believed that the opponent
did not follow a specific pattern. The analysis of GPT-4, in
contrast, was amazing, not only can GPT-4 summarize the
opponent’s pattern, but the tone gradually changed from un-
certain to confident as the historical records were updated.

Insight: Currently, the ability of LLMs to refine belief is
still immature and cannot refine belief from many specific
patterns (even if simple).
Therefore, we strongly recommend the cautious introduc-
tion of LLMs in game experiments that require refining
complex belief. Nevertheless, the performance of GPT-4
in ato = f(a<t

o ) pattern makes us look forward to more
powerful LLMs in the future.

Can LLMs Take Optimal Actions?

Taking optimal actions is the ultimate goal of a rational
player in game theory, which requires the player to rea-
son with known information (desire D(·) and belief ΩI).
Economics’ obsession with optimal actions naturally makes
game experiments in economics focus on analyzing players’
actions (Kirzner 1962; O’sullivan, Sheffrin, and Swan 2007).

However, for LLMs, there are various forms of combining
desire and belief to take optimal actions, and it is unclear
which form LLMs are more suitable in the game process.
Here, we mainly explore the effect of the form of belief on
LLMs taking optimal actions.
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#

Implicit Belief → Take Action Explicit Belief → Take Action Given Belief → Take Action
GPT-3 GPT-3.5 GPT-4 GPT-3 GPT-3.5 GPT-4 GPT-3 GPT-3.5 GPT-4

am am am ao am ao am ao am am am am

(a) 0.20 0.50 0.10 0.65 0.15 0.95 0.60 1.00 0.75 0.75 0.85 1.00
(b) 0.40 0.40 0.00 0.60 0.30 1.00 0.65 1.00 0.60 0.40 0.95 1.00
(c) 0.10 0.10 0.00 0.75 0.00 0.95 0.25 0.95 0.65 0.15 0.90 1.00
(d) 0.05 0.10 0.00 0.30 0.00 0.95 0.35 1.00 0.75 0.10 0.80 1.00

Table 3: Performance of LLMs in different settings in the ring-network game. ao represents the accuracy of refining belief (the
opponent’s action), and am represents the accuracy of taking the optimal action.
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Figure 5: Overview of ring-network game, where red num-
bers / blue numbers represent the player’s and opponent’s
payoffs, and Dm(·) and Do(·) represent the player’s and op-
ponent’s desire functions.

Game: Ring-Network Game The ring-network game is
a game experiment that evaluates the rationality of taking
actions in economics (Kneeland 2015). In this research, we
simplify it to a kind of 2 × 2 game (two players with two dis-
crete actions). This game involves two players, the opponent
and the player, whose preferences are to maximize their own
payoff. In the game process, the opponent and the player
need to take an action ao ∈ {X,Y } and am ∈ {U, V },
respectively. The payoff bimatrix M consists of the oppo-
nent’s matrix Mo and the player’s matrix Mm, as shown in
Fig. 5(a), which specifies the payoffs of both sides for each
combination of actions.

The characteristic of the ring-network game is that play-
ers’ optimal action is determined sequentially by the other
players’ optimal actions (Kneeland 2015). The ideal game
process is shown in Fig. 5(b), for the opponent, the payoff
of Y is always higher than X regardless of the player’s ac-
tions. Therefore, the opponent’s optimal action is always Y .
For the player, the opponent’s optimal action can be ana-
lyzed according to the opponent’s payoff matrix Mo, so the
player should be able to refine belief Ω: ao = Y . Then, the
player can take the optimal action (am = V ) based on belief
and the player’s payoff matrix Mm. According to the above
analysis, the game information I is the payoff bimatrix M ,
and the player’s optimal strategy can be expressed as:

π∗(am|I) = argmax
am∈{U,V }

[p(ao|M) ·Dm(am|ao,M)], (5)

where refining belief corresponds to p(ao|M) and taking the
optimal action corresponds to Dm(am|ao,M). What we fo-
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Figure 6: Setup of the player’s payoff matrix.

cus on is what form of bridging these two parts is more suit-
able for LLMs to take optimal action.

Setup Specifically, we set up three forms of combining be-
lief based on Eq. 5 to analyze the performance of LLMs tak-
ing optimal actions in the ring-network game as:

• Implicit Belief → Take Action: We prompt LLMs in the
dialogue to take the optimal action based on the payoff
bimatrix directly, i.e., LLM(am|M). In this form, LLMs
need to autonomously transform this process into Eq. 5.

• Explicit Belief → Take Action: First, we prompt LLMs
in the dialogue to refine belief (analyze the opponent’s
action) based on the payoff bimatrix, i.e., LLM(ao|M).
Then, we continue the dialogue by prompting LLMs to
take the optimal action based on the payoff bimatrix and
the refined belief, i.e., LLM(am|ao,M). In this form, Eq.
5 is explicitly decoupled into two parts.

• Given Belief → Take Action: The opponent’s optimal ac-
tion is explicitly provided to LLMs in the dialogue, and
we prompt LLMs to take the optimal action based on
the opponent’s optimal action and payoff bimatrix, i.e.,
LLM(am|ao,M). In this form, LLMs only need to im-
plement the second part of Eq. 5.

By analyzing the performance of LLMs in these three forms,
we expect to obtain some caveats to help LLMs take optimal
actions in game theory.

In our experiments, in order to control the difficulty of re-
fining belief, we keep the opponent’s payoff matrix constant,
which means the player’s belief Ω: ao = Y should remain
constant. We set up different player’s payoff matrices, as
shown in Fig. 6, to adjust the difficulty of taking the optimal
action: (a) is the original setup; (b) reduces the difference in
payoffs while keeping the expected payoffs to am ∈ {U, V }
constant; (c) increases the expected payoff for the incorrect
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GPT-3.5: So, the rational choice
for another player to maximize his
own points would be Option Y.

Belief

𝑝(𝑎!|𝑀)

GPT-3.5: Option U gives me the
chance to win 40 points … the
rational choice is Option U.

Action

𝑝(𝑎"|𝑎!, 𝑀)

(a) Belief is overlooked: p(am|ao,M) → p(am|M).

GPT-4: In summary, considering
only their own point gain, the other
player would choose Option Y.

Belief

𝑝(𝑎!|𝑀)

GPT-4: … the other player might
switch to Option X, the best choice
is Option U …

Action

𝑝(𝑎"|𝑎!, 𝑀)

(b) Belief is modified: p(am|ao,M) → p(am|âo,M).

Figure 7: Two cases of LLMs’ inability to take optimal ac-
tions based on refined belief.

action am = U ; and (d) decreases the expected payoff for
the correct action am = V .

In practice, we find that LLMs are biased towards action
names, e.g. GPT-3 prefers U to V . In order to eliminate the
influence of the bias of LLMs to take the optimal action, we
swap the payoffs of U and V in the player’s payoff matrix
in Fig. 6, to form a swapped payoff matrix, and we repeat
the game 10 times each under the original and swapped pay-
off matrices and report the accuracy of the LLMs taking the
optimal action. The temperature of LLMs is set to 0.7.

Analysis The performance of LLMs is shown in Table 3.
Since GPT-3 performs poorly in all three forms, we mainly
analyze the performance of GPT-3.5 and GPT-4.

It is well known that human players’ belief in game the-
ory is implicit, so the form closest to humans taking optimal
actions would be Implicit Belief → Take Action. However,
all LLMs performed poorly in this form, and GPT-4 was al-
most completely unable to even take the optimal action. This
reflected the capability gap between LLMs and humans, that
was, LLMs cannot autonomously follow human behavior in
the game process. In contrast, in the form of Explicit Belief
→ Take Action, by decomposing human behavior explic-
itly, the accuracy of LLMs to take the optimal action was
significantly improved. This showed that LLMs were more
suitable to take optimal actions in the explicit game pro-
cess. This phenomenon was not unique to game theory, and
many researches pointed out that explicitly decoupling hu-
man thoughts (think step-by-step) can significantly improve
the performance of LLMs (Wei et al. 2022).

However, we were surprised that in the form of Explicit
Belief → Take Action, LLMs were able to accurately refine
belief (the accuracy for ao is above 0.95), but were unable
to make the optimal action based on the refined belief well
in subsequent dialogues, with the accuracy of GPT-4 being
about 0.70 for am, and the accuracy of GPT-3.5 being even
lower. As a comparison, we observed that when in the form
of Given Belief → Take Action, GPT-4 was able to consis-
tently take the optimal action, and GPT-3.5’s accuracy also
exceeded 0.80. Intuitively, LLMs are more suitable for tak-
ing optimal actions combining given belief rather than re-
fined belief, even though the content of the two beliefs is

the same. In order to explore the reasons, we conducted a
detailed study on the error cases of GPT-3.5 and GPT-4 in
the form of Explicit Belief → Take Action, and we summa-
rized the two situations for LLMs’ inability to take optimal
actions based on refined belief as:

• Belief is overlooked: LLMs are confused by the game in-
formation and thus overlook the refined belief to take the
optimal action in the subsequent dialogue.

• Belief is modified: LLMs lack confidence in the refined
belief and thus modify the refined belief to take the opti-
mal action in the subsequent dialogue.

The error cases are shown in Fig. 7. In the first situation, as
shown in Fig. 7(a), LLMs were confused by the expected
payoff (Dm(U) > Dm(V )), and thus incorrectly equated
p(am|ao,M) with p(am|M). This occurred mainly on GPT-
3.5. Observing the performance of GPT-3.5 in the form of
Explicit Belief → Take Action, the accuracy of taking the
optimal action was around 0.60 when the expected payoffs
were the same (a and b), while the accuracy dropped to
around 0.30 when the expected payoffs were different (c and
d). In the second case, as shown in Fig. 7(b), LLMs modified
the refined correct belief when taking the action due to lack
of confidence, i.e., changing p(am|ao,M) to p(am|âo,M).
We found that modification of refined belief occurred more
frequently on GPT-4.

Insight: We consider that LLMs do not have the ability to
autonomously follow human behavior in the game process
(in Fig. 1). As a result, it is necessary to explicitly decou-
ple human behavior for LLMs in game theory.
However, even in the explicit game process, LLMs still ap-
pear to overlook / modify the refined belief. One possible
solution is to transform the refined belief into the given
belief in the dialogue.

Conclusion
The rapid development of LLMs leads us to believe that
LLMs will eventually be integrated in all aspects of the
human world, and therefore it is urgent to systematically
analyze the capability boundaries of LLMs in various do-
mains. In this research, we endeavor to systematically ana-
lyze LLMs in an important field of social science — game
theory. Our experiments evaluate to what extent LLMs can
serve as rational players from three aspects and find some
weaknesses of LLMs in game theory.

As an early attempt to analyze LLMs in the context of
game theory, our research has some limitations. For exam-
ple, the difficulty of the game we selected is relatively low,
not close enough to the real game scenarios; our perspective
of analyzing the ability of LLMs is not rich enough, only
considering the principle of rationality; our process of an-
alyzing the game experiments is relatively rough and lacks
more comparative and ablative experiments; and so on. In
conclusion, the research on LLMs in the context of game
theory is still in a very preliminary stage, and a lot of ex-
ploratory researches are required.
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