AdaCCD: Adaptive Semantic Contrasts Discovery Based Cross Lingual Adaptation for Code Clone Detection

Yangkai Du¹, Tengfei Ma², Lingfei Wu³, Xuhong Zhang¹, Shouling Ji¹*
¹Zhejiang University
²Stony Brook University
³Anytime.AI
{yangkaidu,xuhong,zhangxuhong,slj}@zju.edu.cn, tengfei.ma@stonybrook.edu, lwu@anytime-ai.com,

Abstract

Code Clone Detection, which aims to retrieve functionally similar programs from large code bases, has been attracting increasing attention. Modern software often involves a diverse range of programming languages. However, current code clone detection methods are generally limited to only a few popular programming languages due to insufficient annotated data as well as their own model design constraints. To address these issues, we present AdaCCD, a novel cross-lingual adaptation method that can detect cloned codes in a new language without annotations in that language. AdaCCD leverages language-agnostic code representations from pre-trained programming language models and propose an Adaptively Refined Contrastive Learning framework to transfer knowledge from resource-rich languages to resource-poor languages. We evaluate the cross-lingual adaptation results of AdaCCD by constructing a multilingual code clone detection benchmark consisting of 5 programming languages. AdaCCD achieves significant improvements over other baselines, and achieve comparable performance to supervised fine-tuning.

1 Introduction

Code Clone Detection is an essential task in software engineering, which aims to identify functionally similar source code from a large code base. Those identified code snippets benefit programmers in reviewing or refactoring code. In recent years, numerous novel neural models (Wei and Li 2017; Zhang et al. 2019; Yu et al. 2019; Wang et al. 2020) have been proposed for Code Clone Detection and achieved great success on popular code clone benchmarks. However, a major limitation of existing models for code clone detection is that they only support a single programming language. In the real world, large projects often consist of multiple programming languages, including scripting languages like Python and system languages like C/C++ and Rust. This urges us to develop a model that supports multiple languages at the same time. Additionally, these models often rely on a large amount of annotated data for training, which is not always available for less popular languages. This can limit their ability to detect code clones in projects containing low-resource languages.

One solution is representing code in different languages with a uniform compiler-generated intermediate representation (IR). The model could be trained on IR (Ben-Nun, Jakobovits, and Hoefler 2018; VenkataKeerthy et al. 2020) rather than on the source code, allowing it to learn common patterns across different languages. However, obtaining IR for different programming languages requires intensive domain expertise and engineering efforts to fix compilation errors, making it infeasible for language extension. Another solution is utilizing a pre-trained multilingual code encoder. By pre-training programming language models (PPLMs) on large code corpora containing multiple programming languages (Feng et al. 2020; Lachaux et al. 2021; Wang et al. 2021; Guo et al. 2021, 2022), PPLMs can learn language-agnostic code context and representations from self-supervised learning. However, the performance using such self-supervised code representations directly for code clone detection is generally much inferior to supervised fine-tuning. To address this limitation, we are exploring the cross-lingual adaptation method, i.e. we first train a PPLM-based model on only one language with annotation data and then adapt it to other languages without annotation data. This could be extremely useful for clone detection on low-resource programming languages.

In this work, we propose a new contrastive learning framework of cross-lingual adaptation for code clone detection named AdaCCD. Given the PPLM-based model pretrained on one language, AdaCCD discovers semantically similar and dissimilar contrasts through clustering and neighborhood search. Considering that the discovered contrastive pairs from clustering are not reliable (especially in the beginning phase), AdaCCD also incorporates semantic-preserving program transformations to derive guaranteed semantic similar contrasts. A novel adaptive mechanism is then used to adjust the preference of the two types of contrasts, reducing false positives in the discovery stage. Applying contrastive learning to those semantic contrasts encloses the representation of semantically similar programs and pushes away the representation of dissimilar programs in the target language. AdaCCD iteratively improves its accuracy by using the enhanced model to discover more accurate semantic contrasts from unlabeled target corpora and using these for bootstrapping.

In experiments we adapt GraphCodeBERT (Guo et al. 2021) and CodeBERT (Feng et al. 2020), trained on POJ-104/GCJ benchmarks (Mou et al. 2016; Ye et al. 2020), to
five low-resource languages: Rust, Ruby, JavaScript, Go, and C# with significant performance improvement. The proposed AdaCCD (with no annotation in target languages) is shown comparable to supervised fine-tuning methods.

Our contributions can be summarized as three folds:

- It is the first work focusing on the cross-lingual adaptation for code clone detection, where lack of annotated data for low-resource language is an essential bottleneck.
- We propose AdaCCD, a novel and effective method which leverages language-agnostic representations of PPLMs and contrastive learning for cross-lingual adaptation.
- We design a new Adaptively Refined Contrastive Learning framework based on semantic contrasts discovery and adaptive control for balancing different types of contrasts.

2 Related Work

2.1 Code Clone Detection

Code Clone detection aims to extract similar pairs of code snippets from large code bases. A pair of similar codes is called a clone. According to the definition of similar code, code clones can be categorized into four types (Roy and Cordy 2018). We focus on addressing the Type-4 clone, code pairs that are functionally similar, which are the most challenging and cannot be accurately detected by trivial text matching.

The community has proposed several novel neural models for detecting Type-4 clone (Wei and Li 2017; Zhang et al. 2019; Yu et al. 2019; Wang et al. 2020), which exploit abstract syntax tree or data flow information obtained from compilers to help understand code functionality. In the training stage, code snippets are encoded into low-dimension dense vectors, and the vector similarity in the latent space is increased for the clone pair, while vector similarity is decreased for the non-clone pair. However, the structure and node property of the abstract syntax tree of each programming language is distinct, so adapting these abstract syntax and data flow-based models to new programming languages is non-trivial.

Unlike these methods, AdaCCD only uses source code as input. The reason is that we hope our framework can be generalized and easily extended to all programming languages. Additionally, we are the first to focus on the cross-lingual adaptation of the code clone detection task, which can alleviate the lack of annotated data in low-resource languages.

2.2 Contrastive Learning

Contrastive learning has been proven to be a promising self-supervised pre-training task for vision (He et al. 2020; Chen et al. 2020; Zhbontar et al. 2021) and language similarity (Gao, Yao, and Chen 2021) tasks. The principle of contrastive learning is to learn invariant representations for different views of an instance generated by data transformation. These different views of the same instance are called positive contrasts, while other instances are called negative contrasts. By enclosing the representations of positive contrasts and pushing apart the representations of negative contrasts, the model can learn invariant representations for samples in different views with the same semantics. There have been a few attempts at using contrastive learning for code similarity learning. These attempts either use a source-to-source compiler to create different views of same program as positive contrasts and use other programs as negative contrasts (Jain et al. 2021) or use identifier renaming for positive contrast generation and real-world bug injection for negative contrast generation (Ding et al. 2022).

AdaCCD differs from those methods, which aim to learn uniform representations for different views of the same program while separating representations of different programs. Instead, AdaCCD focuses on enclosing the representation of semantically similar programs while separating representations of dissimilar programs in the target language by our Adaptively Refined Contrastive Learning framework.

2.3 Multilingual Software Engineering

Ahmed and Devanbu (2022) shed light on the data bottleneck present in low-resource programming languages. They emphasize the similarities found in human-written code across different programming languages and propose that multilingual training for software engineering tasks can greatly benefit these low-resource programming languages. Their findings inspire us to leverage the knowledge acquired from high-resource languages for unseen low-resource languages.

Li et al. (2022) present PLATO, a cross-lingual adaptation framework aimed at leveraging knowledge acquired from labeled datasets to perform type inference tasks in unlabeled target languages. Chai et al. (2022) propose a transfer learning framework, named CDCS, for code-search by adapting a few-shot meta-learning algorithm called MAML (Baik et al. 2021) to the code-search task. CLCDSA (Nafi et al. 2019) propose a cross-language clone detector using syntactical features and API Documentation, but it requires manual efforts for feature extraction and parallel data for finetuning. In contrast, our work, AdaCCD, is the first to focus on cross-lingual adaptation for code clone detection tasks. We propose a novel Adaptively Refined Contrastive Learning framework specifically tailored for transferring the similarity function learned in labeled source language to unlabeled target language.

3 Background

We will first introduce the problem definition of cross-lingual adaptation for the code clone detection task. Then we will present our motivating early findings when conducting zero-shot cross-lingual adaptation using two multilingual PPLMs.

3.1 Problem Definition

Given a code snippet \(p \in \mathcal{D} \), where \(\mathcal{D} \) is a code base containing multiple snippets, the code clone detection task aims to retrieve the set of functionally similar programs of \(p \) from \(\mathcal{D} \). Under the cross-lingual adaptation setting, an annotated code base \(\mathcal{D}_s \) in high-resource source language \(l_s \) is available, each snippet in \(\mathcal{D}_s \) is labeled with a set of clones in \(\mathcal{D}_s \). However, the code base \(\mathcal{D}_t \) in low-resource target language \(l_t \) is unlabeled. The goal of cross-lingual adaptation is achieving overwhelming code clone performance on \(l_t \) with \(\mathcal{D}_s \) and unlabeled \(\mathcal{D}_t \).
3.2 Code Representation

We add a two-layer MLP with relu activation after the last layer of the transformer and use the last layer’s hidden states of [CLS] token for generating program embedding. Code Clone detection is achieved by cosine similarity measurement between code embeddings.

3.3 Zero-Shot Cross-Lingual Transfer

We start our investigation by first investigating zero-shot cross-lingual transfer performance on CodeBERT and GraphCodeBERT trained on the POJ-104 (Mou et al. 2016), i.e., directly evaluating model performance on 5 programming languages other than C/C++. We use the InfoNCE loss (van den Oord, Li, and Vinyals 2019) as the objective for training on source language.

In Figure 1, we compare the zero-shot transfer results of the CodeBERT and GraphCodeBERT models with BM25 (Sparck Jones, Walker, and Robertson 2000), a strong baseline for text retrieval. The similarity metric is the pair-wise cosine distance in vector space. Rust and C# are not among the pretraining languages of PPLMs, so their adaptation performance is relatively lower than the other languages. Nevertheless, both CodeBERT and GraphCodeBERT outperform BM25 in retrieving semantically similar programs from all five programming languages, indicating their ability to generate language-agnostic code representation and promising generalization capabilities for unseen languages.

The empirical study of PPLM’s generalization capabilities to unseen languages motivates us to automatically retrieve semantic similar and dissimilar contrasts from unlabeled corpus on target language using PPLM trained on the source language. We can use those discovered contrasts as pseudo-labels for cross-lingual adaptation.

4 Methods

To improve the performance of PPLMs on retrieving semantic similar programs from unseen programming languages, we propose a novel cross-lingual adaptation method based on an Adaptively Refined Contrastive Learning framework for Code Clone Detection, i.e., AdaCCD.

4.1 Adaptively Refined Contrastive Learning

AdaCCD automatically discovers semantic similar/dissimilar contrasts from unlabeled target dataset D_t by probing the model trained on D_s. Furthermore, we introduce an adaptive refinement mechanism that exploits semantic-preserving program transformation and adaptive preference for discovered and transformed contrasts to reduce false positives in the discovered semantic contrasts. Models trained on those refined contrasts can iteratively discover more accurate contrasts, further boosting model performance in the target language. We provide an overview of AdaCCD in Figure 2.

4.2 Adaptive Refinement

Both the discovered and transformed semantic contrasts offer unique benefits and drawbacks. The transformed similar contrasts are derived from the anchor program through semantic-preserving transformations, guaranteeing semantic equivalence without introducing noise to the model. However, these transformed contrasts often exhibit shallow common features due to limitations imposed by transformation methods used, making them easily identifiable. Conversely, the discovered similar contrasts have the advantage of retrieving syntactically diverse programs from various sources, each with distinct code styles. By exposing the model to this complexity, it can learn to recognize more complex semantic features within different code styles, thereby enhancing its capabilities for detecting semantic code clones.

Those two parts can complement each other. We propose an adaptive refinement strategy to dynamically adjust the preference of discovered/transformed similar contrasts throughout the training process. For an anchor program p_i at training step t, the set of discovered similar contrasts P and a semantic-preserving transformation function, we first randomly sample a discovered similar contrast p_{i}^{disc} from P and apply the transformation for anchor program p_i to derive a guaranteed similar contrast p_{i}^{trans}. Finally we sample the final positive contrast of p_i, i.e., p_{i}^{+} from $\{p_{i}^{\text{trans}}, p_{i}^{\text{disc}}\}$ with $P(p_{i}^{+} = p_{i}^{\text{trans}}) = \alpha_t$. The higher the α_t, the higher the bias towards the transformed contrast.

We employ a linear decay approach to adjust the preference parameter α_t for discovered/transformed similar contrast throughout the training process. Intuitively, the model...
struggles to accurately identify semantically similar contrasts during the early stages of training, so the preference for transformed contrasts should be high to reduce noise. However, as the model progressively adapts to unseen language patterns, it becomes beneficial to increase the preference for discovered contrasts. This adjustment enables the introduction of greater complexity and diversity, enhancing the model’s capabilities in handling a wider range of semantic variations. Formally, the α_t is adjusted by Equation 1.

$$
\alpha_t = \begin{cases}
\alpha_0, & \frac{t}{T_{\text{total}}} \leq \sigma \\
\alpha_0 \cdot (1 - \frac{t}{T_{\text{total}}}), & \frac{t}{T_{\text{total}}} > \sigma
\end{cases}
$$

(1)

$\alpha_0 \in [0, 1]$ is the initial value for α_t at the start of the training, $\frac{t}{T_{\text{total}}}$ is the total training steps, and $\sigma \in [0, 1]$ is a hyperparameter for determining when preference for transformed contrasts begin to decay. We set σ to 0.1 and provide a detailed discussion for the impact of α_0 in our experiment.

4.3 Semantic Contrasts Discover

The zero-shot cross-lingual adaptation results of PPLMs inspire us to automatically discover semantic similar/dissimilar contrasts without supervised signal by probing the model trained on D_t using unlabeled target dataset D_t. Prior works have proposed methods for mining parallel texts using multilingual embedding (Artetxe and Schwenk 2019; Schwenk et al. 2021), but it is hard to determine a suitable score threshold. Instead, we employ Kmeans clustering for contrasts discover. Following the aforementioned code embedding process, we first obtain code embedding $x_p \in \mathbb{R}^d$ for each program p in D_t. Then we assign each program to one of C semantic classes by running Kmeans clustering on $\{x_p\}_{i=1}^N$. We use cosine similarity as the distance metric. C is a hyperparameter for the number of cluster centers. We provide a discussion of the choice of C in our experiment.

Positive Contrasts Discover: Because semantically similar programs are more likely to be assigned to the compact space than dissimilar programs, according to our zero-shot study. In order to identify semantically similar programs, the AdaCCD algorithm considers programs assigned to the same cluster as candidates for similar contrasts. The set of candidate programs is denoted as T in the following discussion.

$$
T = \{p_j|p_j \in D_t \land c_i = c_j\}
$$

(2)

However, some dissimilar programs would also be assigned unexpectedly. To reduce those false positive cases, we leave out borderline samples from the candidates by only keeping the top k nearest neighborhood of p_i. Finally, we formulate the set of discovered semantic similar contrasts P of p_i in equation 3.

$$
P = \{p_j|p_j \in T \land \text{rank}(s_{ij}) \leq k\}
$$

(3)

Where s_{ij} is the cosine similarity score of x_i and x_j, and rank is a function for retrieving the sorted index of $s_{ij} \in \{s_{ij}\}_{i=1}^T$ (in descending order). k is a hyperparameter.

Negative Contrasts Discover: One crucial factor for contrastive learning is having diverse negative contrasts, which can prevent the model from collapsing to a trivial solution (Gao, Yao, and Chen 2021). To meet this requirement, we use all programs not in the same cluster as p_i as the set of negative contrasts, ensuring the model is exposed to sufficient and diverse negative contrasts.

$$
N = \{p_j|p_j \in D_t \land c_i \neq c_j\}
$$

(4)

4.4 Semantic-Preserving Transformation

While AdaCCD can effectively discover semantic contrasts through clustering and neighborhood selection, it is still possible to include some false positive samples in the discovered set P and can be particularly problematic when the model’s performance in the target language is un compelling. To address this issue, AdaCCD employs semantic-preserving transformation of programs to derive additional positive contrasts, allowing the model to be trained on guaranteed semantic similar contrasts. We incorporate two semantic-preserving transformations, Back Translation and Identifier Renaming, which are practical and easily extensible to new programming languages.

Identifier Renaming: We use identifier renaming for creating different views of code snippets from all languages. Identifier renaming only alters the identifier names so that it will not change the functionality. For program p_i, we randomly apply one of those two renaming strategies:

- Identifier Normalization: normalize the variable names to "var_1", "var_2", ..., "var_n" and function names to "func_1", "func_2", ..., "func_n".
- Identifier Randomization: first collect variable and function names from all programs to a name pool, and randomly select names from the pool.

Back Translation: Back Translation is an effective data augmentation approach in NLP tasks (Edunov et al. 2018). Given the original text in English, it first translates the original text to another language, usually German, by a neural machine translation model, then the German text is translated back to English. The back-translated text is usually in distinct text forms but semantically equivalent when a strong translation model is used. Inspired by the success of back translation, we also exploit back translation for program transformation. We use CodeGeeX (Zheng et al. 2023), a multilingual code generation model trained on large-scale code data, to translate programs to Python and then to the original language.

Furthermore, our Adaptively Refined Contrastive Learning framework is not confined to the aforementioned transformations; it can accommodate the integration of additional semantic-preserving transformation functions. We provide an in-depth discussion of transformation functions in our experiment.

4.5 Iterative Training

Updating the discovered contrasts set on every model step is highly time-consuming and even infeasible when D_t is large since we have to encode all the programs and run Kmeans again to discover new contrasts.
To reduce the training time cost, we only update the discovered contrastive sets of each program at the start of epochs. Furthermore, we randomly split D_t into two parts, D^1_t and D^2_t, to reduce the pool size for clustering and neighborhood search, which need pair-wise distance measurement. We adopted the training strategy of alternating between D^1_t and D^2_t. At the start of the training, we first discover contrastive sets on D^1_t and train the model on D^1_t. Then we alternate D^1_t to D^2_t, use the enhanced model to discover more accurate contrastive sets on D^2_t, and repeat.

At the adaptive training stage, we randomly sample a batch of programs $\{p_1, p_2, \ldots, p_b\}$ from D^1_t or D^2_t, each program p_i is associated with a sampled positive contrast p_i^+, positive contrasts set P_t and negative contrasts set N_t. We concatenate $\{p_1^+, p_2^+, \ldots, p_b^+\}$ to $\{p_1, p_2, \ldots, p_b\}$, and feed those 2B programs to the model. Finally, We use the contrastive loss L_{adv} for adaptive training:

$$L_{adv} = -\sum_{p_i} \sum_{p_j \in P_t} \log \left(\frac{e^{s_{ij}/\tau}}{e^{s_{ij}/\tau} + \sum_{p_k \in N_t} e^{s_{ik}/\tau}} \right)$$

(5)

Note that to make equations neat, we make a few changes to P_t and N_t. The p_i^+ is added to P_t, and the p_j^+ is added to N_t if $p_j \in N_t$. τ is a temperature hyperparameter.

5 Experiment

To validate that our AdaCCD can generalize to different multilingual PPLMs and source datasets, We use CodeBERT and GraphCodeBERT models for all experiments. Besides, We train CodeBERT and GraphCodeBERT on two popular C/C++ datasets, POJ-104 and GCJ.

5.1 Evaluation Benchmark & Setting

To evaluate the cross-lingual adaptation performance of AdaCCD on unseen languages, we collect 5 datasets in Rust, Ruby, Java, and C# language from CodeNet (Puri et al. 2021). We randomly split each dataset to train/validation/test splits. Validation data is used for performance tuning of supervised finetuning methods and reporting the optimal performance of AdaCCD when labeled validation data is provided. If labeled data is not available in real-world use case, k is set to 16 uniformly across all languages, and α_0 is set to 0.8 except for Go (0.4 instead). We use the Mean Average Precision @ R (MAP@R) (Musgrave, Belongie, and Lim 2020) as the evaluation metric following Ye et al. (2020). Our code and data are available at: https://github.com/adaccd1215/code_clone.

5.2 Cross Lingual Adaptation Results

Comparison to Baselines

We first investigate whether AdaCCD can effectively improve
model performance on unseen programming languages with only unlabeled data on the target language. To answer this research question, we compare our AdaCCD with the following baseline settings. **Text-embedding-ada-002**: One of the most powerful text embedding API services provided by OpenAI (OpenAI 2022b). It can encode the text and code to a dense vector and tackle text and code similarity tasks without finetuning, including code-search-code task, which is similar to code clone detection. **ZeroTrans**: This setting is zero-shot cross-lingual transfer as introduced in the Background section. **Whiten**: BERT-Whitening (Su et al. 2021) is a simple but effective approach for improving unsupervised text semantic similarity matching on target dataset by transforming co-variance of sentence representation to an identity matrix. **FT**: Directly finetune the model using labeled data of the target language. We investigate two AdaCCD variations using Identifier Renaming and Back Translation, denoted as AdaCCD-IR and AdaCCD-BT. The results are listed in Table 1. The proposed AdaCCD can significantly improve the cross-lingual adaptation performance in those 5 languages without using labeled data compared to unsupervised baselines. The improvement can be generalized to models trained on different source data. In addition, when a small number of validation data is provided for performance tuning, AdaCCD is comparable to finetuning with labeled data. AdaCCD on GraphCodeBERT outperforms finetuning ContraCode and is comparable to finetuning CodeBERT.

Back Translation Vs. Identifier Renaming

Both Identifier Renaming and Back Translation variations are effective on CodeBERT and GraphCodeBERT Models. According to our observations, using Back Translation for program transformation is superior to Identifier Renaming. We attribute the superiority of Back Translation to producing more syntactically diverse positive samples, which encourage model to learn program similarity from semantic features rather than shallow syntactical features. Nevertheless, Identifier Renaming is still a simple and effective choice.

5.3 Ablation Study

In order to reduce the false discovered semantic contrasts, we propose to refine the discovered contrasts with transformed contrasts derived from semantic-preserving program transformation. We conduct an ablation study to validate whether those two proposed components positively contribute to adaptation results. We list results in Table 2. ✗ adapt. represent the setting that we remove the adaptive control of the preference for transformed and discovered contrasts and replace it with a constant preference \(\alpha_0 \) throughout the training process. ✗ trans. denote that we do not incorporate transformed contrasts and only use discovered semantic contrasts for training. We implement it by fixing \(\alpha_t \) to 0 throughout training. For all the settings, we report the test MAP@R using the hyperparameters as introduced in Section 5.1.

Under CB-IR, CB-BT, and GCB-BT settings, the adaptation performance drops when we cancel transformed contrasts or adaptive control of preference. However, reducing those two components can occasionally benefit the performance under the GCB-IR setting, where GraphCodeBERT is the backbone model and uses Identifier Renaming for transformation. We attribute the reason for this to the difference in pretraining tasks of GraphCodeBERT and CodeBERT. Compared with CodeBERT, GraphCodeBERT exploits the def-use graph of the variables in the pretraining stage. They incorporate variable sequences from the def-use graph and design two identifier-aware tasks, data-flow edge prediction and variable-code alignment. Therefore, the contrasts transformed by Identifier Renaming cannot provide new information for semantic similarity learning under the GraphCodeBERT setting.

5.4 Model Analysis

![Graphs](a) C# (b) Rust (c) JavaScript (d) Go

Figure 3: NMI evaluated at the end of epochs.

<table>
<thead>
<tr>
<th>Setting</th>
<th>C#</th>
<th>Rust</th>
<th>JS</th>
<th>Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB-IR</td>
<td>57.74</td>
<td>56.91</td>
<td>64.87</td>
<td>60.90</td>
</tr>
<tr>
<td>✗ adapt.</td>
<td>57.66</td>
<td>53.11</td>
<td>63.71</td>
<td>60.49</td>
</tr>
<tr>
<td>✗ trans.</td>
<td>56.89</td>
<td>54.77</td>
<td>62.72</td>
<td>59.35</td>
</tr>
<tr>
<td>CB-BT</td>
<td>64.37</td>
<td>72.86</td>
<td>65.74</td>
<td>62.55</td>
</tr>
<tr>
<td>✗ adapt.</td>
<td>62.38</td>
<td>74.78</td>
<td>64.06</td>
<td>57.87</td>
</tr>
<tr>
<td>✗ trans.</td>
<td>56.84</td>
<td>54.77</td>
<td>62.72</td>
<td>59.35</td>
</tr>
<tr>
<td>GCB-IR</td>
<td>64.40</td>
<td>73.50</td>
<td>68.84</td>
<td>70.13</td>
</tr>
<tr>
<td>✗ adapt.</td>
<td>63.42</td>
<td>70.37</td>
<td>67.75</td>
<td>68.43</td>
</tr>
<tr>
<td>✗ trans.</td>
<td>64.53</td>
<td>75.47</td>
<td>70.11</td>
<td>69.43</td>
</tr>
<tr>
<td>GCB-BT</td>
<td>67.28</td>
<td>82.35</td>
<td>70.56</td>
<td>69.74</td>
</tr>
<tr>
<td>✗ adapt.</td>
<td>64.71</td>
<td>81.09</td>
<td>67.28</td>
<td>63.77</td>
</tr>
<tr>
<td>✗ trans.</td>
<td>64.53</td>
<td>75.47</td>
<td>70.11</td>
<td>69.43</td>
</tr>
</tbody>
</table>

Table 2: Ablation Study. We conduct ablation study by adapting from POJ-104 dataset. CB/GCB denote using CodeBERT/GraphCodeBERT as backbone.
Discover Quality: Our method is an iterative framework. The model can only be bootstrapped when discovered contrasts’ accuracy improves. The discovered contrasts are determined by Kmeans clustering, so the accuracy of discovered contrasts can be measured by Kmeans clustering quality. We use Normalized Mutual Information (NMI) between clustering ids and ground-truth problems ids for clustering quality measurement following the practice in deep clustering methods (Caron et al. 2018). NMI is measured under the GCB-BT setting, using the POJ-104 as the source dataset.

On all 4 target languages, the NMI gradually increases throughout the training, indicating that the match between the clustering-assigned IDs and the ground-truth problem IDs becomes closer over time. Therefore, we can conclude that the accuracy of the discovered contrasts improves during the training process, allowing the model to be successfully bootstrapped under our iterative framework.

Choice of \(\alpha \): \(\alpha \) is an important hyper-parameter for the adaptive control of preference for transformed and discovered contrasts. The higher \(\alpha \), the transformed contrasts participate more throughout the training process. To test the model sensitivity of \(\alpha \), we plot the model performance against \(\alpha \) under the GCB-BT setting in Figure 4. Besides, we also plot \(\times \) adapt. setting introduced in the ablation study for comparison. We observe that AdaCCD is more robust to choices of \(\alpha \) compared with the ablation setting, where a constant value replaces adaptive control for \(\alpha \). The worst performance of our methods can at least beat the zero-shot adaptation, which cannot be guaranteed when removing adaptive control for \(\alpha \), e.g., \(\alpha = 0.8 \) or 1.0 on the Go benchmark. Moreover, AdaCCD is superior to the ablation setting under most cases.

Choice of \(C \): We set the cluster number \(C \) for Kmeans to the number of programming problems in \(D_t \). This setting is based on the assumption that the number of functionalities in \(D_t \) is known. It is not always realistic, especially when we conduct adaptation in the wild. Therefore, we investigate whether \(C \) should be strictly set to the number of functionalities in \(D_t \) to ensure the adaptation performance of AdaCCD. Specifically, we halve/double the original \(C \) and conduct adaptation under the GCB-BT setting. The results are reported in Table 3.

<table>
<thead>
<tr>
<th>Setting</th>
<th>C#</th>
<th>Rust</th>
<th>JS</th>
<th>Go</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCB-BT</td>
<td>67.28</td>
<td>82.35</td>
<td>70.56</td>
<td>69.74</td>
<td></td>
</tr>
<tr>
<td>Half</td>
<td>67.79</td>
<td>81.95</td>
<td>70.22</td>
<td>70.51</td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>68.13</td>
<td>82.82</td>
<td>70.38</td>
<td>71.80</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: \(\text{Half/Double} \) represents that \(C \) is set to half/double of problem numbers.

We observe that the performance of Half slightly degrade, and surprisingly, the performance of Double even outperforms original setting. These results reveal that AdaCCD is robust to choices of \(C \) when selected from an acceptable range and still has space for improvement when more resource is given for hyperparameter search. Overall, AdaCCD is still effective even if the problem number is unavailable, and the choice of \(C \) is not strictly constrained.

Choice of Program Transformations: In order to assess the influence of program transformations and showcase the versatility of our AdaCCD, beyond Back-Translation and Identifier Renaming, we conduct experiments involving an additional transformation technique, i.e., Code Rewriting. This involves rewriting the program utilizing the exceptional code generation capabilities of GPT-3.5-turbo (OpenAI 2022a). The results are presented in Table 4. Our observations indicate that AdaCCD is not limited by specific program transformations, as it can effectively accommodate any valid transformations.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Rust</th>
<th>JS</th>
<th>Go</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCB-IR</td>
<td>73.50</td>
<td>68.84</td>
<td>70.13</td>
<td>70.82</td>
</tr>
<tr>
<td>GCB-BT</td>
<td>82.35</td>
<td>70.56</td>
<td>69.74</td>
<td>74.22</td>
</tr>
<tr>
<td>GCB-CR</td>
<td>75.33</td>
<td>71.91</td>
<td>70.47</td>
<td>75.57</td>
</tr>
</tbody>
</table>

Table 4: CR denote using code rewriting as transformations. We conduct experiment by adapting from POJ-104.

6 Conclusion

In this paper, we present AdaCCD, a novel cross-lingual adaptation method for code clone detection based on adaptive semantic contrasts discovery. Our experiments show that AdaCCD can achieve significant performance improvements on unlabeled languages and achieve comparable performance with supervised finetuning methods. Our work enabling models to analyze code clone in diverse languages, where the lack of annotated data for lesser-used languages is a significant bottleneck.
Acknowledgements

This work was partly supported by NSFC under No. U1936215 and 62102360.

References

