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Abstract

Multi-Intent spoken language understanding (SLU) can han-
dle complicated utterances expressing multiple intents, which
has attracted increasing attention from researchers. Although
existing models have achieved promising performance, most
of them still suffer from two leading problems: (1) each intent
has its specific scope and the semantic information outside the
scope might potentially hinder accurate predictions, i.e. scope
barrier; (2) only the guidance from intent to slot is modeled
but the guidance from slot to intent is often neglected, i.e. uni-
directional guidance. In this paper, we propose a novel Multi-
Intent SLU framework termed HAOT, which utilizes hierar-
chical attention to divide the scopes of each intent and applies
optimal transport to achieve the mutual guidance between slot
and intent. Experiments demonstrate that our model achieves
state-of-the-art performance on two public Multi-Intent SLU
datasets, obtaining the 3.4 improvement on MixATIS dataset
compared to the previous best models in overall accuracy.

1 Introduction
As a core component of task-oriented dialogue systems, spo-
ken language understanding (SLU) aims at accurately com-
prehending the user’s intent by constructing semantic frames
(Tur and De Mori 2011; Cheng et al. 2023a; Zhuang, Cheng,
and Zou 2023). In general, SLU consists of two subtasks, in-
cluding slot filling and intent detection (Qin et al. 2019; Zhu
et al. 2023a,b; Cheng et al. 2023c). Slot filling could be re-
garded as a sequence labeling task to predict the slot for each
token and intent detection can be treated as a sentence-level
semantic classification task to predict the intent of the user.

In real-world scenarios, the given utterance universally in-
cludes multiple intents. As a result, researchers begin to ex-
plore Multi-Intent SLU (Xu and Sarikaya 2013; Kim, Ryu,
and Lee 2017). Gangadharaiah and Narayanaswamy (2019)
makes the first attempt to develop a multi-task framework to
jointly achieve multi-intent detection and slot filling, aiming
to improve the overall performance through more accurately
capturing the intents present in the utterances. Recently, Qin
et al. (2020) proposes the AGIF framework to introduce the
graph attention network (GAT) (Velickovic et al. 2018) and
take various intent knowledge to the decoding process of slot
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filling. Qin et al. (2021) further proposes GL-GIN to develop
both a local slot-aware graph and a global intent-slot graph.
Song et al. (2022) generates the additional features to lever-
age the correlation between the slot and intent, which is sum-
marized from the training data. Xing and Tsang (2022b) es-
tablishes the heterogeneous label graph and defines relations
between slot and intent to leverage the correlations between
the different labels, which also improves the performance.

Despite the promising progress that existing Multi-Intent
SLU models have made, we discover that most of these mod-
els still suffer from two main issues:

Scope Barrier. As shown in Figure 1, different from con-
ventional SLU, the utterance in Multi-Intent SLU has multi-
ple intents and the relationship between these intents is rel-
atively weak (Cheng, Yang, and Jia 2023). As a result, each
intent in the utterance has its specific scope and the seman-
tic information outside the scope may potentially impede the
accurate predictions. We refer this issue to scope barrier. To
prevent the negative impact from scope barrier, it is vital to
divide the scopes for different intent in the original utterance
as accurately as possible.

Unidirectional Guidance. Several previous studies (Li,
Li, and Qi 2018; Wang, Shen, and Jin 2018; Qin et al. 2019)
have verified that slot filling and intent detection are closely
tied and it is beneficial to jointly model them. However, most
of previous works (E et al. 2019; Qin et al. 2020, 2021) only
focus on the unidirectional guidance from intent to slot while
the guidance from slot to intent is neglected. In fact, the pre-
dicted slot could also help to generate more accurate predic-
tions of intent (Xing and Tsang 2022a). Via achieving bidi-
rectional guidance between slot and intent, the performance
of the SLU model can be further enhanced.

In this paper, to tackle the above two issues, we propose a
novel SLU framework termed HAOT. For scope barrier, hi-
erarchical attention (Wang, Chen, and Hu 2019; Geng et al.
2022) is designed to progressively discover the semantic hi-
erarchies layer-by-layer from the utterances in the unsuper-
vised manner. Specifically speaking, we calculate the neigh-
bouring affinity scores among the adjacent tokens, which in-
dicate the tendency to merge the tokens into groups. To keep
the consistency of merged groups across different layers, we
maintain affinity scores to increase as layer gets deeper. Dur-
ing the training process, the semantically and spatially simi-
lar tokens are recursively merged according to affinity scores
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Intent: GetWeather PlayMusic

Utterance: check the forecast for nebraska and also play a song

Slot: O O O O B-S O O O O B-M

Figure 1: An illustration of scope barrier from MixSNIPS
dataset, where “B-S” denotes “B-state” and “B-M” denotes
“B-music item”. For “play a song”, the corresponding intent
is “GetWeather” and it is weakly related with “PlayMusic”.

and semantic-concentrated clusters are gradually generated.
Intuitively, tokens in the same cluster usually have the same
intent, so we consider the clusters as the scopes of the differ-
ent intents. For unidirectional guidance, we introduce opti-
mal transport (Kantorovich 2006) to model the mutual guid-
ance between slots and intents. The alignment between slots
and intents is regarded as a transportation plan. The distance
between the slots and intents is measured by a transportation
cost. Through minimizing the transportation cost, the model
could achieve the mutual guidance between slots and intents.
Experimental results on two public Multi-Intent SLU bench-
mark datasets MixATIS and MixSNIPS (Hemphill, Godfrey,
and Doddington 1990; Coucke et al. 2018) show that HAOT
achieves the new state-of-the-art performance. Further anal-
yses also verify the advantages of our method.

In a nutshell, our main contributions are four-fold:
• We propose a novel framework HAOT, which applies the

hierarchical attention to tackle scope barrier and applies
optimal transport to tackle undirectional guidance.

• We utilize hierarchical attention mechanism to gradually
divide the scopes of each intent in the utterance.

• We utilize optimal transport to creatively treat the mutual
guidance between slot and intent as a transportation plan.
To our best knowledge, we make the first attempt to apply
optimal transport in Multi-Intent SLU.

• Experiment results on two public SLU datasets show that
the proposed model outperforms previous best model.

2 Related Work
2.1 Spoken Language Understanding
It is a mainstream to develop a joint SLU model for intent
detection and slot filling due to the high correlation between
these two subtasks. Liu and Lane (2016) explores how to uti-
lize the alignment information in an encoder-decoder frame-
work to further improve these alignment-based SLU models.
Qin et al. (2019) proposes a stack-propagation framework
for using the intent information to guide the slot filling. Re-
cently, with the increasing attention to the multi-intent prob-
lems, several Multi-Intent SLU models based on graph at-
tention mechanisms have been proposed. GL-GIN (Qin et al.
2021) introduces a non-autoregressive global-local graph in-
teraction framework for parallel decoding in slot filling. In-
spired by these success of recent pre-trained models (Li et al.
2021, 2022, 2023b; Zhang et al. 2023a,b; Mao et al. 2023),
Zhu et al. (2023c) proposes DGIF to construct a multi-grain

intent-slot interactive graph instead of statically incorporat-
ing multiple intent information as in previous studies. How-
ever, most of existing models still suffer from scope barrier
and unidirectional guidance, which limits the performance.
To solve the first problem, Cheng, Yang, and Jia (2023) de-
signs an additional scope recognizer to divide the scopes of
different intents. In our approach, we directly add an atten-
tion mask to the conventional attention mechanism as an in-
ductive bias, which could help to find the hierarchical struc-
tures and form more semantic-concentrated clusters. These
generated clusters are regarded as the scopes of the different
intents. For the second issue, Xing and Tsang (2022a) pro-
poses the novel Co-guiding Net to achieve the mutual guid-
ance between these two subtasks via a two-stage framework.
However, error propagation is an inevitable issue in the two
training stages. In our method, we apply optimal transport to
model mutual guidance in a single-stage framework, thereby
avoiding error propagation, which is more beneficial.

2.2 Hierarchical Attention
Our method is motivated by recent success in hierarchical at-
tention mechanism. Compared with the conventional atten-
tion mechanism (Bahdanau, Cho, and Bengio 2015; Vaswani
et al. 2017; Zhu, Xu, and Yang 2017), hierarchical attention
could leverage more than one level of attention and its supe-
riority has been demonstrated in a range of tasks (Wang et al.
2016). DB-AIAT (Yu et al. 2022) utilizes hierarchical atten-
tion to capture the long-term temporal-frequency dependen-
cies and aggregate the global hierarchical contextual infor-
mation. In this paper, we introduce hierarchical attention to
progressively divide the scopes of different intents.

2.3 Optimal Transport
Optimal transport (Kantorovich 2006) is a classic mathemat-
ical problem and is initially introduced to solve the problem
of minimizing the cost when moving multiple items simulta-
neously. Peyré, Cuturi et al. (2019) summarizes the theories
and the effectiveness of optimal transport. In order to reduce
the computational complexity, Kusner et al. (2015) proposes
the relaxed form of optimal transport. With the development
of machine learning, optimal transport is widely leveraged to
compare the different distributions, such as structural match-
ing (Chen et al. 2019), generative models (Arjovsky, Chin-
tala, and Bottou 2017; Balaji, Chellappa, and Feizi 2020),
image matching (Zhao et al. 2021), and cross-modal align-
ment (Chen et al. 2020, 2023; Zhou, Fang, and Feng 2023).
In this paper, we utilize the relaxed form of optimal transport
to achieve the mutual guidance between slot and intent.

3 Method
In this section, we will begin with the problem definition and
then introduce the model architecture, including the encoder,
the optimal transport module, the slot decoder, and the intent
decoder. Finally, we introduce the final training objective of
HAOT. The overview of our method is shown in Figure 2.

3.1 Problem Definition
Given the input utterance x = (x1, x2, . . . , xn), where n is
the length of x. Multi-Intent detection could be formulated
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Figure 2: Overview of our proposed framework HAOT, consisting of the Encoder (§3.2), the Optimal Transport Module (§3.3),
and the Decoder (§3.4). In the right part, tokens which are shaded indicate that they belong to the same scope.

as a multi-label classification task which predicts the intent
labels oI =

(
oI1, o

I
2, . . . , o

I
m

)
, where m denotes the number

of intents in x. Slot filling is a sequence labeling task which
predicts a slot label sequence oS =

(
oS1 , o

S
2 , . . . , o

S
n

)
.

3.2 Encoder
Our encoder is composed of Ne Transformer (Vaswani et al.
2017) encoder layers, which includes a self-attention layer,
a feed-forward layer, and normalization layers. Given an in-
put utterance x, the encoder outputs the corresponding hid-
den states h =

(
h1, h2, . . . , hn ∈ Rdmodel

)
, where dmodel

denotes the input and output dimension of Transformer. The
preliminary prediction of slots yS =

(
yS1 , y

S
2 , . . . , y

S
n

)
and

intents yI =
(
yI1 , y

I
2 , . . . , y

I
n

)
are calculated as follows:

ySj = WS (hj ||Pooling (h)) + bS

yIj = W I (hj ||Pooling (h)) + bI
(1)

where WS ∈ Rds×2dmodel and W I ∈ Rdi×2dmodel are fully
connected matrices, bS ∈ Rds and bI ∈ Rdi are bias vectors,
ds and di denote the categories of the slot labels and intent
labels, || denotes the concatenation operation, and Pooling
denotes the average polling operation.

To solve scope barrier, we replace the conventional atten-
tion in the encoder with hierarchical attention. We design an
attention mask and apply it to conventional attention, which
indicates the trend to merge the tokens that are spatially and
semantically similar. As shown in the right part of Figure 2,
some clusters are formed in an unsupervised manner as these
similar tokens are recursively merged. We regard these clus-
ters as the scopes of different intents. The proposed hierar-
chical attention is formulated as follows:

H =

(
C ⊙ softmax

(
QKT

√
dh

))
V (2)

where C denotes the attention mask, ⊙ denotes Hadamard
product, Q denotes query, K denotes key, V denotes value,
and dh denotes the feature dimension.

Inspired by Zhou et al. (2020); Geng et al. (2022); Tseng
et al. (2023), to obtain the attention mask C, we first calcu-
late the neighboring attention scores (Wang, Lee, and Chen
2019), which represent the merging trend of adjacent tokens.
For any adjacent tokens (xi, xi+1), the neighboring attention
score si,i+1 is calculated as follows:

si,i+1 =
(xiW

′
Q) · (xi+1W

′
K)

ds
(3)

where W ′
Q denotes the query matrix, W ′

K denotes the key
matrix, and ds denotes a hyper-parameter as a scaling factor.
Note that both W ′

Q and W ′
K are learnable.

We define the neighboring affinity score âi,i+1 as the av-
erage of the normalized results of si,i+1 and si+1,i:

âi,i+1 =
softmax (si,i+1) + softmax (si+1,i)

2
(4)

To ensure that the merged tokens will not be split again,
we add a constraint that the neighboring affinity score should
increase as the network goes deeper. The affinity score ali,i+1
in the l-th layer can be calculated as follows:

ali,i+1 =

{
al−1
i,i+1 +

(
1− al−1

i,i+1

)
âi,i+1, l ≥ 1

âi,i+1, l = 0
(5)

Given a token pair (xi, xj), the element Ci,j of the atten-
tion mask matrix C is calculated as follows:

Ci,j =


∏j−1

k=i ak,k+1, i < j

1, i = j

Cj,i, i > j

(6)

The attention mask C is shared by all the attention heads
and progressively updated. Many semantically and spatially
similar tokens are gradually merged to form several clusters,
which are regarded as the scopes of different intents.

3.3 Optimal Transport Module
The optimal transport module is designed to solve unidirec-
tional guidance and model the mutual guidance between slot

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17846



and intent. We present an innovative perspective to apply op-
timal transport (Kantorovich 2006) and regard the alignment
between slots and intents as the transportation plan. Optimal
transport is a classic problem, which is proposed to compare
different probability distributions (Santambrogio 2015).

Given a initial state α = {α1, . . . , αp} before transporta-
tion, a final state β = {β1, . . . , βq} after transportation, and
the unit cost function m(αi, βj) represents the unit transport
cost from the i-th position in α to the j-th position in β. The
objective of optimal transport is to develop a transport plan
T to minimize the total transport cost D(α, β), where each
element Ti,j denotes the mass transported from αi to βj .
The total cost D(α, β) is calculated as follows:

D(α, β) = min
T≥0

p∑
i=1

q∑
j=1

Ti,j ·m(αi, βj)

s.t.

q∑
j=1

Ti,j = αi, ∀i ∈ {1, . . . , p},

p∑
i=1

Tij = βj , ∀j ∈ {1, . . . , q}.

(7)

For the preliminary prediction of slots yS and intents yI

obtained by the encoder, we utilize optimal transport to mea-
sure the distance between them. The corresponding transport
cost D(yS ,yI) is calculated as follows:

D(yS ,yI) = min
T≥0

n∑
i=1

n∑
j=1

Ti,j ·m(yS
i ,y

I
j )

s.t.
n∑

j=1

Ti,j = yS
i , ∀i ∈ {1, . . . , n},

n∑
i=1

Ti,j = yI
j , ∀j ∈ {1, . . . , n}.

(8)

We leverage cosine similarity to define the unit cost func-
tion m(yS

i ,y
I
j ). As the cosine similarity between yS

i and yI
j

increases, the corresponding unit cost will be lower:
m(yS

i ,y
I
j ) = 1− cos(yS

i ,y
I
j ) (9)

For the optimal transport problem, some solutions includ-
ing Sinkhorn (Cuturi 2013) and IPOT (Xie et al. 2019) bring
great time complexity, we follow Kusner et al. (2015) to cal-
culate the relaxed transport distance which removes the sec-
ond constraint to obtain the lower bound of the accurate so-
lution. Then the optimal solution for each slot prediction yS

i

is to move all its mass to the closest intent prediction yI
j and

the transportation matrix becomes:

Ti,j =

{
1
n , if j = argmin

j′
m(yS

i ,y
I
j′)

0, otherwise
(10)

Then the transport cost D(yS ,yI) becomes:

D(yS ,yI) =
n∑

i=1

n∑
j=1

Ti,j ·m(yS
i ,y

I
j )

=
1

n

n∑
i=1

min
j

m(yS
i ,y

I
j )

(11)

Similarly, the transport cost D(yI ,yS) from yI to yS can
be derived like Eq. 11, which is formulated as follows:

D(yI ,yS) =
1

n

n∑
j=1

min
i

m(yS
i ,y

I
j ) (12)

The transport loss LOT is defined as follows:

LOT =
D(yS ,yI) +D(yI ,yS)

2
(13)

3.4 Decoder
The preliminary slot predictions yS =

(
yS1 , y

S
2 , . . . , y

S
n

)
are

fed into the slot decoder and the final slot predictions oS =(
oS1 , o

S
2 , . . . , o

S
n

)
are as follows:

yS,Fj = softmax(WS
F ySj + bSF ) (14)

oSj = argmax(yS,Fj ) (15)

where WS
F ∈ Rds×ds is a fully connected matrix and bSF ∈

Rds is a bias vector. Similarly, the preliminary intent predic-
tions yI =

(
yI1 , y

I
2 , . . . , y

I
n

)
are fed into the intent decoder

and token-level voting (Qin et al. 2021) is applied to obtain
the final intent predictions oI :

yI,Fj = softmax(W I
F y

I
j + bIF ) (16)

oI = {oIk|(
n∑

t=1

1[I(t,k) >
1

2
]) >

n

2
} (17)

where W I
F ∈ Rdi×di is a fully connected matrix, bIF ∈ Rdi

is a bias vector, and I(t,k) denotes the prediction probability
of token t for the intent oIk. The prediction of each token is
considered as a vote and the votes with a probability greater
than 0.5 are considered as the positive votes. Only the intents
gotten more than half positive votes in all n tokens are added
to the final predictions oI .

3.5 Training Objective
Following previous works (Qin et al. 2020; Song et al. 2022;
Cheng, Yang, and Jia 2023), the training objective LS of slot
filling and the training objective LI of intent detection are:

LS ≜ −
n∑

j=1

nS∑
i=1

ŷi,S
j log

(
oi,S
j

)
(18)

LI ≜ −
n∑

j=1

nI∑
i=1

CE(ŷi,I
j ,oi,I

j ) (19)

CE(ŷ,y) = ŷ log (y) + (1− ŷ) log (1− y) (20)

where ŷi,S
j is the gold slot label, ŷI

i is the gold intent label,
nS is the number of the slot labels, and nI is the number of
the intent labels. The final training objective L is as follows:

L = λLS + (1− λ)LI + γLOT (21)

where λ and γ are two hyper-parameters.
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4 Experiments
4.1 Datasets and Metrics
We conduct all the experiments on two public Multi-Intent
SLU datasets1, including MixATIS dataset and MixSNIPS
dataset (Qin et al. 2020). MixATIS dataset is collected from
ATIS (Hemphill, Godfrey, and Doddington 1990) and MixS-
NIPS dataset is collected from SNIPS (Coucke et al. 2018).
The detailed statistics of the MixATIS dataset and the MixS-
NIPS dataset are shown in Table 1.

Dataset MixATIS MixSNIPS

Vocabulary Size 722 11241
Intent Categories 17 6
Slot Categories 116 71
Training Set Size 13162 39776
Validation Set Size 756 2198
Test Set Size 828 2199

Table 1: Dataset statistics.

Following the previous works (Qin et al. 2021; Song et al.
2022; Cheng, Yang, and Jia 2023), we evaluate the perfor-
mance of slot filling with F1 score, intent detection with ac-
curacy, and the utterance-level semantic frame parsing with
the overall accuracy which represents that both slots and in-
tents are predicted correctly in the utterance.

4.2 Implementation Details
We leverage an Adam optimizer (Kingma and Ba 2015) with
β1 = 0.9, β2 = 0.98, and 4k warm-up updates to optimize
parameters in our framework, where we linearly increase the
learning rate from 5e-4 to 1e-3. The batch size is set to 32.
The number of encoder layers Ne is set to 4, the Transformer
input and output dimension dmodel is set to 128, the number
of the attention heads is set to 8, and the dropout ratio is set
to 0.1. For all hyper-parameters, we perform several exper-
iments and select the values with the best performance. For
all the experiments, we select the model that works the best
on dev set and evaluate it on test set. The training process
will early-stop if the total loss L on the dev set does not de-
crease for 3 epochs in order to avoid overfitting. For hyper-
parameter λ, we follow Xing and Tsang (2022a) and set it to
0.1 on MixATIS dataset and 0.2 on MixSNIPS dataset. For
the hyper-parameter γ, we set it to 0.5 on both datasets. All
the experiments are conducted at an Nvidia V100 GPU.

4.3 Main Results
Experimental results on MixATIS and MixSNIPS are shown
in Table 2, from which we have the following observations:

(1) HAOT obtains consistent improvements across all the
subtasks and datasets. Specifically, it surpasses the previous
state-of-the-art models by 3.4% (Overall), 2.7% (Slot), and
3.1% (Intent) on MixATIS and 2.2% (Overall), 0.6% (Slot),
and 0.5% (Intent) on MixSNIPS, respectively. This improve-
ment can be attributed to the proposed hierarchical attention

1https://github.com/LooperXX/AGIF

mechanism and the proposed optimal transport module. The
hierarchical attention mechanism progressively divides the
scopes of different intents, which solves scope barrier. The
optimal transport module achieves the mutual guidance be-
tween slot and intent, which solves unidirectional guidance.

(2) Compared to slot filling and intent detection, the im-
provements in overall accuracy are more significant. We be-
lieve the reason is that our model achieves the mutual guid-
ance between slot and intent, which allows them to leverage
their initial predictions to stimulate each other. As a result,
the correct predictions of these two subtasks could be better
aligned, leading to the boosted overall accuracy. Co-guiding
Net (Xing and Tsang 2022a) also dedicates to achieve the
mutual guidance between slot and intent. However, it adopts
a two-stage framework, which leads to error propagation de-
spite the introduction of margin penalty. Whereas our frame-
work only contains one stage, which could avoid error prop-
agation and achieve better performance.

(3) Though ChatGPT2(OpenAI 2023) has verified its su-
periority in few-shot learning and zero-shot learning tasks,
there is still a performance gap between our proposed HAOT
and ChatGPT. Specifically, HAOT outperforms ChatGPT by
42.9% (Overall), 48.7% (Slot), and 16.8% (Intent) on Mix-
ATIS. A similar situation could also be observed on MixS-
NIPS, which suggests that ChatGPT may face challenges in
understanding spoken utterances, especially for fine-grained
information like slots. As a result, developing the framework
for SLU remains a crucial task for the NLP community, de-
manding additional exploration and investigation.

4.4 Ablation Study
In order to verify the advantages from different perspectives,
we conduct the ablation studies on MixATIS and MixSNIPS,
whose results are shown in the lower part of Table 2.

Effect of Hierarchical Attention: One of the core contri-
butions of our framework is the proposed hierarchical atten-
tion, which can progressively divide the scopes of different
intents to solve scope barrier. To evaluate the effectiveness
of hierarchical attention, we conduct an ablation experiment
where we replace hierarchical attention in the encoder with
conventional attention and refer it to HAOT w/o Hierarchical
Attention in Table 2. We could observe the dramatic drops in
all metrics on both datasets, which confirms that hierarchi-
cal attention can make the positive contribution to SLU. We
believe it is because hierarchical attention is helpful to pre-
vent the negative impact of scope barrier and improve intent
detection, thereby enhancing the F1 score of slot filling and
overall accuracy through the mutual guidance.

Since hierarchical attention brings more parameters, such
as neighboring attention score sli,i+1, affinity score ali,i+1,
and attention mask C, a natural question is whether the ad-
ditional parameters involved in HAOT contribute to the final
performance. Following Qin et al. (2020, 2021), we replace
the hierarchical attention with the conventional attention and
expand the number of layers of the Transformer encoder to
six layers to validate that the proposed hierarchical attention

2https://chat.openai.com
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Model
MixATIS MixSNIPS

Overall Slot Intent Overall Slot Intent
(Acc)↑ (F1)↑ (Acc)↑ (Acc)↑ (F1)↑ (Acc)↑

Bi-Model (Wang, Shen, and Jin 2018) 34.4 83.9 70.3 63.4 90.7 95.6
SF-ID (E et al. 2019) 34.9 87.4 66.2 59.9 90.6 95.0
Stack-Propagation† (Qin et al. 2019) 40.1 87.8 72.1 72.9 94.2 96.0
Joint Multiple ID-SF† (Gangadharaiah and Narayanaswamy 2019) 36.1 84.6 73.4 62.9 90.6 95.1
AGIF♢ (Qin et al. 2020) 40.8 86.7 74.4 74.2 94.2 95.1
GL-GIN♢ (Qin et al. 2021) 43.5 88.3 76.3 75.4 94.9 95.6
LR-Transformer‡ (Cheng, Yang, and Jia 2021) 43.3 88.0 76.1 74.9 94.4 96.6
SDJN♢ (Chen, Zhou, and Zou 2022) 44.6 88.2 77.1 75.7 94.4 96.5
GISCo♢ (Song et al. 2022) 48.2 88.5 75.0 75.9 95.0 95.5
Co-guiding Net♢ (Xing and Tsang 2022a) 51.3 89.8 79.1⋆ 77.5⋆ 95.1 97.7
ReLa-Net♢ (Xing and Tsang 2022b) 52.2⋆ 90.1⋆ 78.5 76.1 94.7 97.6
DARER2♢ (Xing and Tsang 2023) 49.0 89.2 77.3 76.3 94.9 96.7
SSRAN♢ (Cheng, Yang, and Jia 2023) 48.9 89.4 77.9 77.5⋆ 95.8⋆ 98.4⋆

ChatGPT♠ (OpenAI 2023) 34.2 43.7 66.1 39.6 59.4 94.9
HAOT w/o Hierarchical Attention 51.8 (3.8↓) 89.2 (3.6↓) 78.1 (4.1↓) 76.9 (2.8↓) 95.2 (1.2↓) 97.5 (1.4↓)
HAOT w/o Hierarchical Attention + More Parameters 52.1 (3.5↓) 89.4 (3.4↓) 78.3 (3.9↓) 77.1 (2.6↓) 95.5 (0.9↓) 97.6 (1.3↓)
HAOT w/o Optimal Transport 51.4 (4.2↓) 88.9 (3.9↓) 77.6 (4.6↓) 76.6 (3.1↓) 94.6 (1.8↓) 97.2 (1.7↓)
HAOT (ours) 55.6♣ 92.8♣ 82.2♣ 79.7♣ 96.4♣ 98.9♣

Table 2: Results on MixATIS and MixSNIPS datasets. ‘♣’ denotes HAOT outperforms the baselines with p < 0.01 under t-test.
Results with ‘♢’ indicate that they are from the original papers, results with ‘†’ indicate that they are from Qin et al. (2020), and
results with ‘‡’ indicate that they are from Cheng, Yang, and Jia (2023). ‘⋆’ denotes the previous best results, and the results
with ‘♠’ are obtained based on our implementation. Best results are highlighted in bold.

rather than the extra parameters works. We refer it to HAOT
w/o Hierarchical Attention + More Parameters in Table 2.
We observe that there is still a significant performance gap
between HAOT and the SLU model with more parameters,
which verifies that this improvement indeed comes from the
hierarchical attention rather than the involved parameters.

Effect of Optimal Transport: Another core contribution
of our framework is the creative application of optimal trans-
port to achieve the mutual guidance between slot and intent.
To validate the effectiveness of optimal transport, we remove
LOT in Eq. 21 and refer it to HAOT w/o Optimal Transport
in Table 2. We can observe that the absence of optimal trans-
port leads to 4.2% and 3.1% overall accuracy drops on these
two datasets, respectively. This suggests that optimal trans-
port encourages slot and intent to stimulate each other using
their initial predictions, which can improve the performance.

4.5 Comparison of Different Optimal Transport
Algorithms

Due to the higher time complexity of Sinkhorn (Cuturi 2013)
algorithm and IPOT (Xie et al. 2019) algorithm, we utilize
the relaxed moving distance (Kusner et al. 2015) to calculate
the lower bound of the original problem. To verify the effec-
tiveness of the relaxed moving distance, we replace it with
Sinkhorn and IPOT, respectively. The corresponding results
are shown in Table 3. HAOT maintains the nearly compara-
ble performance to the exact solution IPOT and has a signifi-
cant speed advantage, which demonstrates the superiority of
the relaxed moving distance of HAOT.

Model
MixATIS MixSNIPS

Overall Slot Intent Speed Overall Slot Intent Speed
(Acc)↑ (F1)↑(Acc)↑(Time)↓ (Acc)↑ (F1)↑(Acc)↑(Time)↓

Sinkhorn 52.8 90.5 79.4 8.7 78.3 96.1 98.5 9.9
IPOT 55.8 92.9 82.3 7.3 79.8 96.6 99.0 8.6
HAOT 55.6 92.8 82.2 3.7 79.7 96.4 98.9 4.8

Table 3: Results on MixATIS and MixSNIPS datasets. Speed
denotes the average training time for each batch.

4.6 Case Study
As shown in Table 4, to further demonstrate the capability of
our framework in addressing Multi-Intent SLU, we provide
a case study on the MixATIS dataset. Both GL-GIN and Co-
guiding Net miss the intent atis flight and also fail to
predict the slot of j31 correctly, while HAOT predicts them
correctly. This is because the slot filling of j31 is negatively
affected by atis quantity in GL-GIN and Co-guiding
Net due to the lack of scope information, resulting in the in-
correct slot prediction. In addition, our HAOT uses optimal
transport to model the mutual guidance between slot and in-
tent, which leads to the correct intent prediction. Co-guiding
Net also fails to predict the slot of international accurately.
We believe this is because Co-guiding Net suffers from error
propagation, while HAOT avoids this problem.

4.7 Low-Resource Setting
Following previous work (Song et al. 2022), we compare our
method with one of previous best SLU baselines Co-guiding
Net in the low-resource scenarios, where the ratio of train-
ing set is varied from {20%, 40%, 60%, 80%, 100%}. The
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Text: how many canadian airlines international flights use j31

Ref. Intent:
Slot:

atis flight
O

atis quantity
O B-airline name I-airline name I-airline name O O B-aircraft code

GL-GIN Intent:
Slot:

atis quantity
O O B-airline name I-airline name I-airline name O O O

Co-guiding Net Intent:
Slot:

atis quantity
O O B-airline name I-airline name O O O O

HAOT Intent:
Slot:

atis flight
O

atis quantity
O B-airline name I-airline name I-airline name O O B-aircraft code

Table 4: Case study of GL-GIN, Co-guiding Net, and HAOT on MixATIS dataset. Text in italic indicates incorrect predictions.
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Figure 3: Overall accuracy in the low-resource setting of our
method and Co-guiding Net on MixATIS dataset.

comparison results on the MixATIS dataset are illustrated in
Figure 3. We could clearly observe that our approach outper-
forms the baseline in all five proportions of the training set,
which further verifies that our hierarchical attention and op-
timal transport can enhance the performance. Besides, when
the ratio of training set exceeds 80%, the superiority of our
method becomes more obvious. A possible reason is that as
the ratio of training set increases, the scope barrier becomes
more serious. Via solving scope barrier through hierarchical
attention, our approach can achieve more remarkable perfor-
mance improvements as the ratio increases.

4.8 Effect of Pre-trained Model
Pre-trained model has shown its potential in many tasks (Li
et al. 2023a,c; Cheng et al. 2023b). To explore the effect of
the pre-trained language models, we replace vanilla encoder
with RoBETRa (Liu et al. 2019), BERT (Devlin et al. 2019),
and XLNet (Yang et al. 2019), respectively. The correspond-
ing results are shown in Table 5, where we find: (1) all three
pre-trained language models can further improve the perfor-
mance of the Multi-Intent SLU models, including GL-GIN,
SSRAN, Co-guiding Net, ReLa-Net, and HAOT. We believe
the reason is that the pre-trained language models could pro-
vide the richer semantic features, which is very beneficial for
Multi-Intent SLU. (2) Our HAOT surpasses its counterparts
with these pre-trained language models and can achieve the
new state-of-the-art performance, which further confirms the
superiority of our proposed framework.

Model MixATIS MixSNIPS
RoBERTa 49.7 80.2
GL-GIN + RoBERTa 53.6 82.6
SSRAN + RoBERTa 54.4 83.1
Co-guiding Net + RoBERTa 57.5 85.3
ReLa-Net + RoBERTa 58.4 83.8
HAOT (ours) + RoBERTa 61.8 87.2
BERT 51.6 83.0
GL-GIN + BERT 52.4 83.7
SSRAN + BERT 54.8 84.5
Co-guiding Net + BERT 56.3 85.6
HAOT (ours) + BERT 62.2 87.4
XLNet 52.1 84.8
GL-GIN + XLNet 53.4 85.2
SSRAN + XLNet 55.3 85.6
Co-guiding Net + XLNet 57.6 87.1
HAOT (ours) + XLNet 63.4 89.3

Table 5: Overall performance with three pre-trained models
on MixATIS and MixSNIPS datasets.

5 Conclusion
In this paper, we propose the framework HAOT for Multi-
Intent SLU, which utilizes hierarchical attention to progres-
sively divide the scopes of different intents and leverages op-
timal transport to achieve the mutual guidance between slot
and intent. Experiments on two public datasets show that our
model surpasses previous best models and achieves the new
state-of-the-art performance. Model analysis further verifies
that our HAOT could also perform well in low-resource sce-
narios and is compatible with pre-trained models.
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