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Abstract

Despite significant advancements in multi-label text classifi-
cation, the ability of existing models to generalize to novel
and seldom-encountered complex concepts, which are com-
positions of elementary ones, remains underexplored. This
research addresses this gap. By creating unique data splits
across three benchmarks, we assess the compositional gen-
eralization ability of existing multi-label text classification
models. Our results show that these models often fail to gen-
eralize to compositional concepts encountered infrequently
during training, leading to inferior performance on tests with
these new combinations. To address this, we introduce a data
augmentation method that leverages two innovative text gen-
eration models designed to enhance the classification models’
capacity for compositional generalization. Our experiments
show that this data augmentation approach significantly im-
proves the compositional generalization capabilities of clas-
sification models on our benchmarks, with both generation
models surpassing other text generation baselines. Our codes
available at https://github.com/yychai74/LD-VAE.

Introduction
Multi-label text classification (MLTC) involves identify-
ing the labels associated with the input text. This task has
broad applications in natural language processing (NLP),
including sentiment analysis in tweets (Mohammad et al.
2018), subject identification in interdisciplinary academic
articles (Yang et al. 2018), and movie genre classifica-
tion based on movie reviews (Maiya 2019). Although there
has been significant progress in improving classifier perfor-
mance across various MLTC benchmarks, whether existing
MLTC models can generalize compositionally has received
limited attention in prior MLTC studies.

Compositional generalization (CG) is a fundamental abil-
ity inherent to human intelligence, enabling the recognition
of novel and infrequently occurring high-level concepts that
are compositions of more atomic elements (Chomsky 2014).
For example, once a person learns to understand the emo-
tions of joy and sadness in simple phrases like ‘I am sad’
and ‘I rejoice’, respectively, he can effortlessly recognize a
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Figure 1: Illustration of the CG challenge in MLTC and an
overview of our proposed data augmentation solution.

complex emotion in a tweet such as ‘sometimes I am sad,
then remember Margaret is dead, and then I rejoice’. This
tweet conveys a nuanced composite of two emotions occur-
ring simultaneously. In contrast to humans, our initial re-
search indicates that current MLTC models struggle to iden-
tify these nuanced compositions if they infrequently occur
in the training set. The T5-based (Raffel et al. 2020) MLTC
model (Chai et al. 2022), for example, only achieved less
than 2% accuracy on the SemEval test set (Mohammad et al.
2018) for previously unseen emotional compositions, de-
spite ample training data for each elementary emotion. Con-
versely, when the training data contains abundant emotional
compositions as those found in the test set, its accuracy ex-
ceeded 28%. This discrepancy underscores the urgent need
for MLTC models capable of generalizing to novel compo-
sitions, making them more effective in a world that continu-
ously presents new composite knowledge.

This study offers the first in-depth exploration of the
CG challenges that impact MLTC. We utilize three MLTC
benchmarks that tackle three tasks: emotion classification,
subject identification of abstracts, and genre classification
of movie reviews. Traditional MLTC benchmarks typically
employ random splits, where all the compositions of indi-
vidual labels are prevalent across both training and test sets.
This methodology hinders a rigorous evaluation of the mod-
els’ capacity to generalize compositionally. Inspired by the
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inherent human ability to recognize unfamiliar composite
concepts with minimal exposure, as well as informed by pre-
vious research on CG (Keysers et al. 2019; Finegan-Dollak
et al. 2018), we propose a distinct data split to evaluate the
CG capabilities of MLTC models. All elementary labels are
abundant in the training set in this split, but instances with
novel label compositions in the test set are seldom found in
the training data. To enhance this evaluation, we introduce
two novel metrics that evaluate model performance in terms
of compositional rather than individual label predictions.

Compositional data augmentation is a widely-adopted
strategy for enhancing the CG ability of machine learning
models in fields such as semantic parsing (Qiu et al. 2022a;
Yang, Zhang, and Yang 2022; Andreas 2020) and few-shot
single-label classification (Li et al. 2022). This strategy aug-
ments training sets with instances of seldom-occurring com-
positions. Inspired by the methodology, we introduce an in-
novative data augmentation technique specifically designed
for MLTC. Our approach consists of three key components:
i) a model that learns the distribution of target label com-
positions using limited examples, ii) a conditional genera-
tion model that synthesizes new text instances conditioned
on novel label compositions drawn from the learned distri-
bution, and iii) a filter to discard invalid examples.

A fundamental challenge is devising a generation model
that can identify and systematically combine phrases tied
to individual labels, thereby forming coherent text that re-
flects the given label composition. A significant hurdle is
the entangled representations of individual semantic factors
in neural sequence models, hindering the alignment learning
of labels with corresponding text fragments. Therefore, We
propose two innovative representation disentanglement so-
lutions for conditional generation models. The first, Label-
specific Prefix-Tuning (LS-PT), uses label-specific prefix
vectors (Li and Liang 2021) as disentangled label represen-
tations. The second, Label Disentangled Variational Autoen-
coder (LD-VAE), employs disentanglement learning and
variational autoencoders (Kingma and Welling 2013) to ex-
tract disentangled label representations. Conditioned on the
disentangled label representations, the conditional genera-
tion models can yield high-quality instances.

Overall, our contributions are three-fold:

• We are the first to explore the critical issue of CG on
three MLTC benchmarks. By introducing a unique eval-
uation data split and two novel evaluation metrics, we can
measure the CG abilities of existing models. Our analysis
reveals existing MLTC models lack CG capability.

• We propose a novel data augmentation strategy to aug-
ment instances with rare label compositions. Our empir-
ical studies demonstrate that this approach with various
generation models dramatically boosts the CG capability
of MLTC models across all evaluated metrics.

• We design two generation models central to our data aug-
mentation approach. These models focus on disentan-
gling and composing individual label representations to
generate instances associated with novel label composi-
tions. Experiments show that both models surpass other
generation baselines regarding CG evaluation metrics.

Compositional Multi-label Text Classification
Problem Setting In MLTC, the aim is to determine a func-
tion πθ : X → Y , that maps a text sequence x ∈ X to
its corresponding label set y ∈ Y . Here, x = {x0, ..., xn}
represents a sequence of n tokens, while y = {y0, ..., ym}
denotes a composition of m unordered labels in a label set.

We assume that training set samples ⟨x,y⟩ ∈ Dtrain

are drawn from a source distribution Ps(x,y), while test
set samples Dtest are sourced from a target distribution
Pt(x,y). In the conventional training and evaluation set-
ting, where the dataset is split randomly, both distributions
align, i.e., Ps(x,y) = Pt(x,y). However, in our com-
positional data split, which is in line with the CG studies
for other tasks (Qiu et al. 2022a; Yang, Zhang, and Yang
2022; Andreas 2020), these distributions diverge. We as-
sume the conditional distribution remains the same, i.e.,
Ps(x|y) = Pt(x|y), while the label composition distribu-
tion varies: Ps(y) ̸= Pt(y). In addition, in the CG setup,
the atomic individual labels y ∈ Y are shared and abun-
dant across both training and test datasets. Additionally, an
optional support set Ds complements the training set, com-
prised of limited examples drawn from Pt(x,y). This aids
in the few-shot learning of novel compositions, as seen in
the setups of the CG works (Lee et al. 2019; Li et al. 2021b).

Concretely, the training, support, and test sets are con-
structed as follows. Let the complete MLTC dataset be de-
noted as Dori = Dtrain∪D′

test. We partition Dori into train-
ing and preliminary test sets based on label compositions.
Specifically, Dtrain = Xtrain×Ytrain and D′

test = X ′
test×

Y ′
test. We ensure that the training and preliminary test sets

do not share any label compositions: Ytrain∩Y ′
test = ∅. The

preliminary test set contains M unique label compositions,
where |Y ′

test| = M . We then randomly sample a subset of
D′

test containing Ns examples to form the support set, de-
noted as Ds. The remaining examples in D′

test constitute the
actual test set, Dtest = D′

test \ Ds. Given that we employ
a data augmentation module, the models within this mod-
ule are trained on the union of the training and support sets,
Dcg = Ds ∪ Dtrain. This data augmentation process aug-
ments Ds to yield a synthetic data set, denoted as Daug . Our
multi-label classifier is trained on the combined training,
support, and augmented sets, Dmltc = Ds ∪Dtrain ∪Daug ,
and it is evaluated on Dtest.

Evaluation Metrics To assess MLTC performance, one
of the prevailing metrics is the Jaccard score, as high-
lighted in Yang et al. (2018); Chai et al. (2022). The Jac-
card score computes the ratio of correctly identified labels
to the union of the two label sets for each instance. How-
ever, this metric might inadequately capture the CG capa-
bility since it measures performance based on individual la-
bels. Hence, even if a predicted label composition is erro-
neous, a high Jaccard score can still be attained. To capture
composition-level performance, we use Accuracy metric as
in Yarullin and Serdyukov (2021). This metric verifies if
the predicted label set exactly matches the ground-truth set.
While the Accuracy provides valuable insights at the compo-
sition level, we anticipate a more nuanced analysis. There-
fore, we introduce two supplementary metrics, Correctness
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and Completeness, which evaluate performance at the com-
positional level but with a degree of flexibility. The Correct-
ness metric evaluates if every predicted label exists in the
ground truth, whereas Completeness checks if every ground-
truth label has been forecasted by the model:

Corr(yp,yg) = 1((yp ∩ yg) = yp) (1)
Comp(yp,yg) = 1((yp ∩ yg) = yg) (2)

where yp is the predicted and yg is the ground-truth label
sets of a given instance, respectively. Overall, the aggregated
performance scores for the entire test set are computed as
the average of the Jaccard, Accuracy, Correctness, and Com-
pleteness scores across all test instances.

Discussion Table 1 reveals significant declines in the accu-
racy of existing MLTC models when transitioning from the
iid to the compositional data split for training and evalua-
tion. This performance drop highlights the limited CG capa-
bility of MLTC models. Our observations suggest that these
models often face issues such as learning spurious correla-
tions or being vulnerable to input perturbations. As seen in
emotion classification, the models often predict emotions of
the same polarity but struggle to accurately identify com-
positions that combine emotions of differing sentiment po-
larities, primarily because such combinations are rare in the
training set. We conjecture they have learned a spurious cor-
relation between the frequent co-occurrence of like-polarity
emotions. Another challenge for the MLTC models is their
inability to accurately predict the same labels correspond-
ing to input texts with notable linguistic variations across
the training and test sets. To address these challenges, data
augmentation has been shown to mitigate the impact of spu-
rious correlations (Wang and Culotta 2021) and enhance the
robustness of machine learning models (Goodfellow, Shlens,
and Szegedy 2014; Huang et al. 2021b).

Compositional Data Augmentation
Compositional data augmentation focuses on sampling ex-
amples from the target distribution Pt(x,y). This distribu-
tion can be factorized as Pt(x,y) = Pt(y)Pt(x|y). The
challenge of this approach then becomes to craft two distinct
models: one that models the distribution of label composi-
tions Pt(y), and another that models the conditional distri-
bution Pt(x|y). We also introduce a quality control mech-
anism to filter out low-quality synthetic examples. We hy-
pothesize that exposing MLTC models to diverse syntactic
structures and phrases, associated with novel label composi-
tions, can enhance their ability to learn true causal correla-
tions between text and labels. Furthermore, introducing di-
verse linguistic variations related to each label can improve
the model’s robustness to input perturbations.

Label Generative Model To model the label distribution
Pt(y), we approach it as a sequence modelling task. The
learning objective is to optimize the parameters θ to max-
imize the likelihood of the sequence of tokens in concate-
nated label phrases within the support set:

argmax
θ

∏
y′∈Ys

|y′|∏
t=0

Pθ(y
′
t|y′

<t) (3)

SemEval AAPD IMDB

Model iid CG iid CG iid CG
BERT 27.31 2.85 37.79 22.02 26.17 4.35
BERT+P 26.88 2.71 34.22 19.08 18.93 1.95
BERT+MAGNET 24.95 2.23 37.70 14.48 21.73 3.68
BERT+SGM 19.87 2.15 37.71 15.23 18.65 3.22
BERT+DBloss 26.76 3.72 36.50 14.57 40.81 2.54
T5+CLP 28.34 1.26 42.20 9.17 39.78 1.35

Table 1: The classification accuracies of existing MLTC
models on both iid and CG splits across three benchmarks.

where Ys is the set of all label compositions within the sup-
port set Ds, y′ denotes the sequence of tokens in the con-
catenated label phrases originating from a label set y for
each instance, and y′t is a token at position t in y′. To ac-
complish this, we fine-tune a pre-trained language model
GPT2 (Radford et al. 2019) to estimate the token probabil-
ity Pθ(y

′
t|y′

<t), benefiting from its pre-existing knowledge
about distributions of label phrase tokens. In the practical
implementation, we prepend a prefix prompt, like ‘A tweet
can express the following emotions:’, to the label phrases
during training and inference. In the zero-shot setting, where
a support set is absent, we instruct GPT2 using the prompt
and constrain it only to generate label-related phrases.

Conditional Text Generative Models
As we assume that in the CG split, the source and target
conditional distributions align, i.e., Ps(x|y) = Pt(x|y), the
conditional generation model, therefore, can be trained on
the combination of the training and support sets Dcg . The
learning objective for conditional text generation becomes:

argmax
θ

∏
x,y∈Dcg

|x|∏
t=0

Pθ(xt|x<t,y) (4)

A common method, as in Li et al. (2022), to implement
this generation model is to fine-tune a pre-trained language
model, such as GPT2 or T5. Pre-trained models appear to
excel in compositional sequence generalization (Qiu et al.
2022b). During inference, the model converts the concate-
nated label phrases in the label set y into contextualized
representations, prompting the generation model to produce
text x conditioned on the representations. However, after
fine-tuned on the compositionally-biased dataset Dcg , the
representations of different labels, as encoded by the Trans-
former (Vaswani et al. 2017), can be severely entangled.
Each label’s representation influences others, making it non-
invariant to changes in its co-occurring labels. Such entan-
glement can hinder the generation model from identifying
the true associations between each label representation and
its corresponding phrases or syntactic structures in the text
x, compromising its ability to composite phrases or struc-
tures into high-quality texts for data augmentation. Follow-
ing this, we present two models focusing on disentangling
the label representations for effective text generation.

Label Specific Prefix-Tuning (LS-PT) We suspect that
the entanglement observed in label presentations arises from
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the innate cross-attention mechanism of Transformers. Each
label presentation serves as an attended representation of
all labels. To address this challenge, we introduce a novel
method that encodes each label in the label composition
set yi ∈ y with its distinct representation, zyi ∈ RL×H .
This representation is designed to be minimally influenced
by neighboring labels. The concatenated representations of
individual labels are processed using a multilayer perceptron
(MLP) to produce a composite label representation:

M = MLP


zy0

...
zym


 . (5)

Building upon the prefix-tuning technique (Li and
Liang 2021), we estimate the conditional proba-
bility Pθ(xt|x<t,y), which is further elaborated as
Pθ(xt|x<t, zy0

, . . . , zym
) = softmax (hiW) . The hidden

state hi is defined as:

hi =

{
M[i, :], if i ∈ Midx,

LM(Mθ,h<i), otherwise.
(6)

where the composite label representation M ∈ R|Midx|×H′

is considered the prefix matrix, hi ∈ R1×H′
is the hidden

state of a language model, Midx denotes the column indices
of the prefix matrix with |Midx| = |y| ·L, and LM refers to
a pre-trained auto-regressive language model. Here we adopt
GPT2 with frozen parameters as LM to maximize benefits
from its pre-trained compositional knowledge.

Inference. At the inference stage, we draw concatenated
label phrases from P (y′) and convert each set of phrases y′

into a set of label ids, y. Texts with new label compositions
are then generated conditioned on y and label phrases y′.

Label Disentangled Variational Autoencoder (LD-VAE)
The model VAE-DPrior (Li et al. 2022) aims to disentan-
gle representations associated with labels and content, and
subsequently composite these into new examples. To real-
ize this, the model adjusts its estimation from Pθ(x|y) to
Pθ(x|y, c), where c denotes a variable capturing the prior
knowledge of content related to the text x. The learning ob-
jective of VAE-DPrior is to maximize the Evidence Lower
Bound (ELBO) of Pθ(x|y, c). Specifically, after introducing
a latent variable zc associated with the content c and a latent
variable zy associated the label y, and providing a strong
conditional independence assumption, P (zc, zy|z, c,y) =
P (zc|x, c)P (zy|x,y), ELBO objective for VAE-DPrior is:

EQϕ(zc,zy|x,c,y)[logPθ(x|zc, zy)] }Lr

− DKL(Qϕ(zc|x, c)∥Pθ(zc|c)) }Lc

− DKL(Qϕ(zy|x,y)∥Pθ(zy|y)) }Ll

(7)

where Lr represents the text reconstruction loss for the
VAE decoder, while Lc and Ll are the regularization loss
terms for content and label encoders, respectively. With suf-
ficiently divergent prior conditional distributions Pθ(zc|c)
and Pθ(zy|y) during regularization, VAE-DPrior disen-
tangles label and content representations. However, the
model overlooks disentanglement within label representa-
tions. To address this, we consider a set of representa-
tions zy = {zy0

, ..., zym
}, where each label y from the

label set y is only associated with a specific latent vari-
able zy . Adopting a conditional independence assumption,
given by P (zy|x,y) =

∏m
i=0 P (zyi |x, yi) and P (zy|y) =∏m

i=0 P (zyi
|yi), we update Ll using the chain rule of the

Kullback–Leibler (KL) divergence:

Ll = −
m∑
i=0

DKL(Qϕ(zyi |x, yi)∥Pθ(zyi |yi)) (8)

We aim to disentangle the label representations by employ-
ing distinct conditional priors for different label encoders.
Since our focus is not on the deep theoretical foundations of
disentanglement learning, those interested in the theory can
refer to the original VAE-DPrior work. The proof of how we
leverage the KL chain rule for Ll can be found in Appendix.
Next, we delve into the implementation of LD-VAE.

Regularization for Content Encoders. In line with VAE-
DPrior, the content knowledge c ∈ C derived from an input
text x is represented by one of the |C| centroids. These cen-
troids are formed using k-means clustering, with BERT (De-
vlin et al. 2019) encoding each text x ∈ Xcg in Dcg . For-
mally, the content prior Pθ(zc|c) assumes the form of a con-
ditional Gaussian, N (zc;µ

p
c , λcI). Here, the mean µp

c =
kcWc is a linear projection of the relevant cluster centroid
vector kc ∈ R1×H . The text x belongs to the cluster with
centroid c. I is an identity matrix determining variance.

The posterior distribution Qϕ(zc|x, c) is modeled by the
content encoder, using the VAE reparameterization trick:

vc = Mean(GRUc(Vx)) (9)
logσq

c ,µ
q
c = MLPσ

q
c
(vc),MLPµ

q
c
(vc) (10)

zc = µq
c + exp(

1

2
logσq

c )⊙ ϵc (11)

where ⊙ is the element-wise product, ϵc is Gaussian noise
from the distribution N (0, λcI). Vx is the contextualized
representation of x encoded by BERT with parameters
frozen, the GRU is Gated Recurrent Units (Cho et al. 2014),
and zc ∈ R1×H is a one-dimensional vector. Ideally, each
variable c would require separate parameters, leading to |C|
content encoders and prior conditional Gaussians with dis-
tinct sets of parameters. Given the large size of C, we utilize
shared parameters from GRUs, and MLPs across all c ∈ C
for parameter efficiency. Hence, the content encoder’s regu-
larization loss −DKL(Qϕ(zc|x, c)∥Pθ(zc|c)) is formulated
as maximizing:

Lc = − 1

2λc

(
∥µq

c − µp
c∥2 + (σq

c − λc log(σ
q
c )) · 1

)
(12)

where 1 ∈ RH×1 is used to sum over elements of the vector.
Regularization for Label Encoders. For each label yi ∈ y,

the conditional prior Pθ(zyi |yi) takes the form of a con-
ditional Gaussian form, represented as N (zyi ;µ

p
yi
, λyiI).

The mean of this Gaussian corresponds to a linear pro-
jection of the embedding of the label phrase, denoted as
µp

yi
= lyi

Wyi
, with lyi

being encoded using frozen BERT.
The posterior distribution Qϕ(zyi |x, yi) is modeled by

label encoder, which mirrors the structure of the content en-
coder. Unlike the content encoder, the GRU parameters are
not shared. Therefore, we apply m label encoders with dis-
tinct sets of parameters, with each set modeling the posterior
distribution for one latent variable zyi

.
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SemEval AAPD IMDB

Model Jacc Acc Corr Comp Jacc Acc Corr Comp Jacc Acc Corr Comp
No Aug. 44.90 2.92 49.23 15.31 52.24 21.96 42.38 42.54 42.94 4.48 61.09 8.77
Concat 45.84 3.25 48.37 15.14 - - - - 46.13 8.71 61.02 14.25
Flan-T5 47.84 8.01 52.53 17.32 55.98 26.46 44.42 45.68 47.39 11.69 60.70 16.98
VAE-DPrior 47.50 6.07 49.62 17.17 55.52 24.76 42.28 46.30 46.49 9.68 59.29 15.54
GPT3.5 46.56 4.74 47.58 16.69 56.52 26.63 44.77 46.42 46.69 10.04 62.85 15.13
GPT2-PT 47.44 6.81 50.53 17.22 56.38 28.03 45.95 46.22 47.12 11.38 61.48 16.35
LS-PT 48.02 8.29 52.94 16.93 57.95 30.21 47.74 47.23 48.36 12.56 62.37 17.57
LD-VAE 47.94 8.44 53.10 16.96 58.50 31.11 48.67 48.09 48.07 11.75 63.23 16.92

Table 2: Classification results using BERT with augmentation instances from various generators on the CG data split.

The regularization loss for the label encoders becomes:

Ll =

m∑
i=1

− 1

2λyi

(
∥µq

yi − µp
yi∥

2 + (σq
yi − λyi log(σ

q
yi)) · 1

)
(13)

Text Reconstruction. The reconstruction loss is the maxi-
mum likelihood loss used to optimize the parameters of the
decoder. The decoder shares the same structure as LS-PT
and employs prefix-tuning, allowing a GPT2 to generate text
conditioned on zc and {zy0

, ..., zym
}. There is a slight dif-

ference from Eq. 5 as shown below:

M = MLP


z′

y0 ; z
′
c

...
z′
ym ; z′

c


 (14)

where z′
yi

∈ RL×H , z′
c ∈ RL×H is obtained by repeating

zyi
and zc L times, respectively, because we expect a longer

prefix length can enhance the performance of prefix-tuning.
The z′

yi
and z′

c are vertically concatenated together.
Inference. During inference, the encoders are discarded.

The content variable c is randomly sampled from C, based
on the assumption that P (c) follows a uniform distribution.
The label set y = {y0, ..., ym} is drawn from the label gen-
erative model P (y′). With the sampled c and y, we sam-
ple latent representations zc and zyi

from the conditional
Gaussian priors Pθ(zc|c) and Pθ(zyi |yi), respectively. The
decoder then generate synthetic text x′ conditioned on the
latent label representations y and label phrases y′.

Quality Control (QC) QC is implemented using a BERT-
based MLTC classifier trained on Dcg . We first overgenerate
synthetic examples, each text x paired with a label set ys.
Next, we use the classifier to predict the labels yp for each
text x. We then rank the examples by their Jaccard scores,
Jacc(yp,ys), and retain those with the top K highest scores.

Experiments
Datasets We conduct experiments on the compositional
splits of three datasets: SemEval (Mohammad et al. 2018),
AAPD (Yang et al. 2018), and IMDB (Maiya 2019). During
the data splitting process, we allocate 20 label compositions
to the test set. After splitting, SemEval, a multi-label emo-
tion classification dataset, comprises 9,530 training, 50 sup-
port, and 1,403 test examples. AAPD features academic pa-
per abstracts annotated with subject categories from Arxiv

and contains 50,481 training, 50 support, and 5,309 test-
ing examples. IMDB provides movie reviews annotated with
movie genres and includes a total of 107,944 training, 50
support, and 9,200 test samples. We first overgenerate 2,000,
10,000, and 24,000 examples, and then apply quality control
to filter the synthetic data down to sizes of 1,000, 5,000, and
12,000 for SemEval, AAPD, and IMDB, respectively.

MLTC Models We evaluate the performance of MLTC
models on our CG tasks: i) BERT (Devlin et al. 2019)
employs BERT combined with MLPs on BERT’s top lay-
ers for multi-label classification and is optimized using
cross-entropy loss. ii) BERT+P has the same structure as
BERT but is optimized using p-tuning (Liu et al. 2022).
iii) BERT+DBloss (Huang et al. 2021d) uses BERT and
is optimized with a loss function tailored specifically to
address label distribution imbalances in MLTC datasets.
iv) BERT+MAGNET (Pal, Selvakumar, and Sankara-
subbu 2020) integrates BERT with a graph attention net-
work designed to learn correlations between labels. v)
BERT+SGM (Yang et al. 2018) treats MLTC as a sequence
generation task. The word embeddings of the text, encoded
by BERT, are then fed into an LSTM that learns label corre-
lations and generates label predictions. vi) T5+CLP (Chai
et al. 2022) is a model based on T5 (Raffel et al. 2020) de-
signed to capture label correlations using the decoder com-
bined with a contrastive learning loss.

Generator Baselines We compare five conditional text
generators trained on Dcg . Each generator generates text
conditioned on the same set of novel label compositions,
which are sampled from the label generative model. Further-
more, all employ the same filter model for quality control. i)
Concat. This method simply concatenates single-labeled in-
stances to create synthetic examples with specific label com-
positions. This concept aligns with the approach taken by Jia
and Liang (2016) for the semantic parsing task. Note: AAPD
is not suited for this baseline because it lacks single-labeled
instances. ii) Flan-T5 (Chung et al. 2022) is a sequence-to-
sequence language model (Sutskever, Vinyals, and Le 2014)
pre-trained on thousands of NLP tasks. It crafts text based
on composites of label phrases processed by its encoder. iii)
VAE-DPrior (Li et al. 2022) employs the VAE and disen-
tanglement learning to disentangle label and content repre-
sentations, and then generates new texts conditioned on a
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Model BERT BERT+P BERT+DBloss BERT+MAGNET BERT+SGM T5+CLP

- + - + - + - + - + - +
Jacc 52.24 58.50 49.16 53.65 50.92 58.52 42.26 51.27 43.95 53.37 43.03 43.72
Acc 21.96 31.11 19.06 28.98 17.00 27.02 15.07 30.02 15.77 28.64 9.32 15.89
Corr 42.38 48.67 40.86 49.58 30.18 35.35 43.22 52.57 41.65 51.98 14.23 20.96
Comp 42.54 48.09 34.02 42.05 45.28 59.00 25.01 36.72 28.96 37.23 34.99 33.52

Table 3: The results of different multi-label text classifiers on the AAPD dataset. The symbols “+” and “-” denote whether the
augmentation data generated by LD-VAE is utilized during classifier training or not, respectively.

combination of these representations. iv) GPT3.51: We di-
rect GPT3.5 to produce texts based on concatenated label
phrases. Moreover, we deploy few-shot in-context learning,
enabling GPT3.5 to observe all existing examples labeled
with the respective compositions from the label generative
model. v) GPT2-PT (Li and Liang 2021): This approach
fine-tunes GPT2 using prefix-tuning, generating text that be-
gins with the concatenated label phrases.

Main Results and Discussions
Analysis of Generators Table 2 shows that utilizing syn-
thetic data, generated by all types of generators, enhances
the performance of the BERT classifier on the CG splits of
three benchmarks across various evaluation metrics. This ev-
idence underscores the effectiveness of our data augmenta-
tion approach in addressing the CG challenge within MLTC.
Both LS-PT and LD-VAE outperform the other baselines,
highlighting the essential role of disentangled label repre-
sentations for generating high-quality instances with novel
label compositions. In contrast, the Concat baseline un-
derperforms, likely because the concatenated text is nei-
ther semantically nor syntactically coherent. Flan-T5 and
GPT2-PT produce text based on label representations en-
coded via Transformer layers. However, we believe their
encoding methods may result in entangled label representa-
tions, which may explain their inferior performance in data
augmentation compared to our method. While VAE-DPrior
adopts disentanglement learning and latent label represen-
tations, its lack of a label-specific representation for each
label makes it less directly comparable to our approach.
Even though GPT3.5 is recognized as a powerful language
model, it does not excel in augmenting the CG abilities of
MLTC models, potentially because it is exposed to only a
few-shot examples. It’s worth noting that AAPD excludes
single-labeled instances, making learning disentangled la-
bel representations challenging. Yet, LD-VAE still excels on
AAPD, whereas Flan-T5, despite its strong performance on
the other two datasets, falls short.

Analysis of Classifiers Table 3 shows that all MLTC mod-
els evaluated struggle with CG, each for unique reasons. Qiu
et al. (2022b) found that models using parameter-efficient
fine-tuning (PEFT) generally outperform merely fine-tuned
ones in out-of-distribution CG scenarios in semantic pars-
ing, a natural language understanding (NLU) task. How-
ever, BERT+P, despite employing PEFT, does not outper-

1https://chat.openai.com/

form fine-tuned baseline in MLTC — a task also under
NLU. MLTC models designed to learn label correlations,
like BERT+MAGNET, BERT+SGM, and T5+CLP, score
better in correctness but have lower completeness scores
than other baselines, suggesting they tend to predict only
a subset of the ground truth. Interestingly, despite T5+CLP
achieving several state-of-the-art results on current MLTC
benchmarks with the standard data split, it performs the
worst among all baselines. We conjecture that this line of
work, despite its popularity, might produce models prone
to learning spurious correlations among labels. In contrast,
BERT+DBloss, designed to tackle label imbalance, leans
towards over-predicting labels with its high completeness
score. We also investigate the impact of synthetic data, gen-
erated by LD-VAE, on the performance of these models.
Incorporating this synthetic data into training significantly
boosts all models regarding the evaluation metrics, demon-
strating the effectiveness of our data augmentation strategy
in helping various MLTC models address CG challenges.

Ablation Study
Support Size We investigate the influence of the sizes of
support set on three aspects when: i) fine-tuning the label
generator, ii) learning the conditional text generator, and iii)
training the classifier. In each experiment in Table 4, we fix
the support set data size for the other two aspects at 50 and
only vary the data size for one aspect at a time. All experi-
ments share the same quality control filter and test set for fair
comparisons. Key takeaways include: i) With just 50 sam-
pled examples, the label generator can estimate a label com-
position distribution reasonably close to what is achieved
with 250 examples. However, a zero-shot approach that re-
lies solely on the pre-trained knowledge of label token dis-
tribution remains challenging, resulting in the classifier ac-
curacy being about 10% lower than using 50 examples. ii)
Enhancing the conditional generator with additional support
data has minimal impact on MLTC performance, given that
even 250 examples occupy just a small fraction of the overall
training data. This further solidifies our hypothesis that the
conditional distribution does not shift across CG splits. iii)
Support data size crucially affects classifier training. More
human-crafted data improves classifier performance in CG.

Quality Control We investigate the effectiveness of QC
by comparing it with random selection. The sizes of selected
synthetic data are equal for both settings. As shown in Ta-
ble 5, our BERT-based filter improves the quality of the gen-
erated examples, as evidenced by the higher accuracy of the
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Size of
Support

Label
Generator

Conditional
Text Generator Classifier

0 23.56 31.41 32.37
50 32.09 32.09 32.09
100 30.02 31.70 33.31
250 31.61 31.92 35.23

Table 4: Accuracies of the BERT classifier on AAPD,
across three modules, with varying support data sizes,
using LD-VAE as the conditional text generator.

SemEval AAPD

filter random filter random
Flan-T5 8.01 6.18 26.46 24.01
GPT2-PT 6.81 6.63 28.03 27.16

LS-PT 8.29 6.93 30.21 29.32
LD-VAE 8.44 6.43 31.11 28.82

Table 5: BERT classifier accuracies with and without
filtering synthetic data generated by various generators.

classifier trained on filtered data. We note that the filter tends
to discard low-quality synthetic examples that are either ir-
relevant to the target label composition or texts with no prac-
tical meaning, such as Twitter tags and blank text.

Disentanglement Figure 2 shows entangled representa-
tions of label phrases from GPT2-PT. In contrast, the label
phrase representations encoded by Flan-T5 remain invari-
ant regardless of label composition changes, with represen-
tations of the same labels clustering closely. This may be due
to Flan-T5’s unique pre-training method across thousands
of NLP tasks, allowing it to encounter diverse text compo-
sitions. This unique training method may explain why Flan-
T5 outperforms most of the baselines. On the other hand, our
methods disentangle latent representations more effectively
than both GPT2-PT and Flan-T5. Notably, LD-VAE samples
representations from a more continuous space rather than
focusing on a singular point for each label, resulting in a
more cohesive and fluent generated text than LS-PT, given
our manual inspection. A further experiment reveals that re-
placing the label-conditioned priors in our LD-VAE with a
normal distribution, as seen in vanilla VAEs, leads to a 5%
drop in BERT classifier accuracy on AAPD. This empha-
sizes the significance of disentanglement learning.

Related Work
Multi-Label Text Classification In the field of MLTC,
studies address the critical challenge of label correla-
tion through methods such as incorporating label co-
occurrence (Pal, Selvakumar, and Sankarasubbu 2020; Liu,
Yuan, and Wang 2020) and employing correlation loss func-
tions (Chai et al. 2022; Alhuzali and Ananiadou 2021).
Some studies also adopt sequence-to-sequence approaches
for MLTC, wherein the decoder takes label correlations into
account (Yang et al. 2018; Huang et al. 2021a). Beyond la-
bel correlation, several works employ attention mechanisms
to incorporate contextual label information during the pre-

Figure 2: T-SNE visualization of Transformer-encoded label
phrase representations from GPT2-PT and Flan-T5 versus
latent label representations in the prefixes of LS-PT and LD-
VAE. Each label, within varying label compositions from the
training set Dcg of AAPD, is represented by a distinct colour.

diction (Xiao et al. 2019; Huang et al. 2021c). Additionally,
various works address the challenge of label distribution im-
balance in MLTC (Huang et al. 2021d; Yang et al. 2020;
Cao et al. 2019). However, these studies mainly deal with
the scarcity of individual labels. In contrast, our focus is on
the datasets where individual labels are well-represented, but
certain label combinations remain sparse.

Compositional Generalization CG has been explored in
various NLP domains, including semantic parsing (Qiu et al.
2022a; Andreas 2020; Yang, Zhang, and Yang 2022; Qiu
et al. 2022b; Haroutunian et al. 2023), controllable text gen-
eration (Li et al. 2022; Zeng et al. 2023), single-label clas-
sification (Li et al. 2022), and machine translation (Li et al.
2021a; Russin et al. 2019; Zheng and Lapata 2022). Typi-
cally, these studies enhance the CG capabilities of models
in their respective tasks using methods such as data aug-
mentation (Jia and Liang 2016; Andreas 2020; Qiu et al.
2022a), leveraging pre-trained knowledge from language
models (Qiu et al. 2022b; Furrer et al. 2020), employing
disentanglement learning (Zheng and Lapata 2022; Montero
et al. 2020) for improved latent representations, or a hybrid
approach (Li et al. 2022), similar to ours.

Conclusion
In summary, we examined the CG challenges in current
MLTC models using our unique evaluation metrics and data
splits. Our findings reveal a significant deficit in their CG ca-
pabilities, limiting their generalization to rare compositional
concepts. To address this, we introduced a data augmenta-
tion method paired with two conditional text generators that
learn disentangled label representations, enabling higher-
quality text generation. Empirical results demonstrate that
our method significantly mitigates the CG issue for MLTC
models, with our generators surpassing other baseline coun-
terparts in enhancing CG capabilities of these models.
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