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Abstract
This paper presents an approach to frame semantic role la-
beling (FSRL), a task in natural language processing that
identifies semantic roles within a text following the theory
of frame semantics. Unlike previous approaches which do
not adequately model correlations and interactions amongst
arguments, we propose arbitrary-order conditional random
fields (CRFs) that are capable of modeling full interaction
amongst an arbitrary number of arguments of a given pred-
icate. To achieve tractable representation and inference, we
apply canonical polyadic decomposition to the arbitrary-
order factor in our proposed CRF and utilize mean-field vari-
ational inference for approximate inference. We further un-
fold our iterative inference procedure into a recurrent neural
network that is connected to our neural encoder and scorer,
enabling end-to-end training and inference. Finally, we also
improve our model with several techniques such as span-
based scoring and decoding. Our experiments show that our
approach achieves state-of-the-art performance in FSRL.

Introduction
Frame semantic role labeling (FSRL) is a task grounded
in the theory of frame semantics (Litkowski 2004), aiming
to identify and assign semantic roles, known as frame ele-
ments (FEs), to the arguments of each predicate in a sen-
tence. In this context, each predicate triggers a specific se-
mantic frame defined with a unique set of frame elements.
The FrameNet lexical resource (Baker, Fillmore, and Lowe
1998) provides comprehensive descriptions for frames and
frame elements, which encapsulate a wide range of events,
relationships, objects, and situations. By extracting frame
semantic structures from text, FSRL serves as an invalu-
able tool for a multitude of downstream applications, in-
cluding but not limited to information extraction (Surdeanu
et al. 2003), summary generation (Trandabăt, 2011), machine
translation (Liu and Gildea 2010; Marcheggiani, Bastings,
and Titov 2018), question answering (Shen and Lapata 2007;
Eckert and Neves 2018; Khashabi et al. 2018), and reading
comprehension (Wang et al. 2015; Guo et al. 2020).

Over the past several years, a series of approaches have
been proposed for FSRL that reach increasingly high ac-
curacy (Kshirsagar et al. 2015; Swayamdipta et al. 2017;
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We watch the musician, raised in a small village by a farmer, 
playing the violin in the national theater.
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Figure 1: An example input sentence for FSRL. Italicized
texts are the correct arguments.

Bastianelli, Vanzo, and Lemon 2020; Zheng et al. 2022;
Zheng, Wang, and Chang 2023). However, most of these ap-
proaches still do not adequately model high-order correla-
tions and interactions amongst arguments which are preva-
lent in FSRL. Take the sentence in Figure 1 for example: “We
watch the musician, raised in a small village by a farmer,
playing the violin in the national theater.” The frame for
this sentence is denoted as Performance with the target
word being “playing”. In this example, each frame ele-
ment presents multiple plausible candidate arguments. De-
termining the correct arguments by observing them in iso-
lation, i.e., using first-order inference, proves challenging.
Even taking pairwise interactions between arguments into
consideration is still not enough: “a farmer” and “in a small
village” are quite compatible as frame elements of “play-
ing”. To ascertain the correct frame semantic structure, it is
helpful to evaluate the full combinations of all arguments
through high-order inference. In our example, the combina-
tion “the musician”, “the violin”, and “in the national the-
ater” as frame elements related to the target word “play-
ing” appears more probable than others such as “a farmer”,
“the violin”, and “in a small village”. Recent researches in
FSRL (Zheng et al. 2022; Zheng, Wang, and Chang 2023)
have typically used first-order inference or only modeled
pairwise argument interactions via GNN or cross-encoder.
Consequently, FSRL exploring high-order modeling and in-
ference amongst all arguments remains untapped.
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In this paper, we propose an FSRL approach with high-
order inference based on arbitrary-order conditional random
fields (CRFs). Specifically, we learn a different CRF for each
frame which contains one variable for each frame element
of the frame representing the corresponding argument and a
single factor connecting to all the variables, thus modeling
high-order interaction amongst all the arguments. Given that
the number of frame elements can vary, the factor defined in
the corresponding CRF may manifest as an arbitrary-order
tensor. Unfortunately, the computational complexity of rep-
resenting and performing inference on such a CRF grows
exponentially with the frame element number. Therefore, we
propose to decompose the factor using canonical polyadic
decomposition (CPD) (Rabanser, Shchur, and Günnemann
2017), reducing the space complexity of the CRF to be lin-
ear in the frame element number. To facilitate tractable in-
ference, we further employ mean-field variational inference
(MFVI) (Xing, Jordan, and Russell 2012) for approximate
inference on the CRF, which has a linear time complexity in
the frame element number.

Drawing inspiration from previous research (Zheng et al.
2015), we unfold MFVI into a recurrent neural network,
which interfaces seamlessly with our neural encoding and
scoring modules, enabling end-to-end training and infer-
ence. Note that our approach to high-order inference di-
verges significantly from previous work in other fields such
as dependency parsing (McDonald and Pereira 2006; Car-
reras 2007; Koo and Collins 2010; Wang, Huang, and Tu
2019; Wang and Tu 2020) which is limited to second-order
or third-order inference modeling local interactions to avoid
high computational complexity. In contrast, our approach
models global interactions amongst all arguments and uti-
lizes techniques such as CPD and MFVI to achieve tractabil-
ity.

In addition to high-order inference, we also make several
improvements to the encoding, scoring and decoding mod-
ules in comparison with previous state-of-the-art method
(Zheng, Wang, and Chang 2023). For example, we propose
a span-based method for scoring and decoding arguments,
instead of separate scoring and greedy decoding of start and
end positions of arguments, i.e., pointer network (Vinyals,
Fortunato, and Jaitly 2015). We show that these improve-
ments significantly increase the accuracy of our FSRL ap-
proach.

Our contributions can be summarized as follows:

• We address FSRL using arbitrary-order CRFs, which di-
rectly model full interactions amongst all arguments.

• We employ both CPD and MFVI to facilitate tractable
representation and inference for the arbitrary-order
CRFs.

• We also make several additional improvements to the en-
coding, scoring and decoding modules that are empiri-
cally beneficial.

• In our empirical evaluation, our approach delivers state-
of-the-art performance on FSRL. 1

1Code: https://github.com/aichy98/FrameSRL-AAAI24

Problem Definition
Frame semantic role labeling (FSRL) has a goal of identi-
fying arguments of frame-evoking targets in a sentence and
labeling them with frame elements. Consider a sentence de-
noted as S = w1, . . . , wn where a target word wtar elicits
a frame f . In the context of our study, both wtar and f are
provided. Denote the arguments for the target word wtar by
a1, . . . , ak. The FSRL task is to pinpoint the start and end
positions si and ei for each argument ai = wsi , . . . , wei .
Subsequently, each argument ai is assigned a semantic role
rolei which belongs to Rf , the set of frame elements of
frame f . Note that in the context of FSRL, roles and frame
elements are used interchangeably. Alternatively, for frame
f and all frame elements Rf = {role1, . . . , rolem}, the
FSRL task is to assign each frame element rolei with a par-
ticular argument ai within sentence S. It is important to note
that there may be no corresponding span in S for rolei,
in which case, rolei is assigned with a null span. We also
note that the second formulation of FSRL prohibits two or
more arguments to have the same role. Nevertheless, multi-
ple arguments sharing a role is infrequent (less than 0.5% in
FN1.5 and FN1.7) and hence we adopt the second formula-
tion in this paper.

Method
Our proposed model is depicted in Figure 2(a), incorporating
three main components: a cross-encoder, a unary scorer, and
an arbitrary-order scorer and decoder.

Feature Extraction via Cross-Encoder
Our encoder design follows that of the AGED model
(Zheng, Wang, and Chang 2023), where frame definitions
are treated as templates and their frame elements are con-
sidered as slots. First, we represent frame f with a textual
description, as follows:

Df = frame name|raw def|FE list (1)

where frame name represents the name of frame f , raw
def denotes the textual definition of the frame, and FE
list is a collection of all frame elements associated with
the frame excluding any frame elements that are already em-
bedded in raw def. This revision was made in response to
the observation that some frame elements, particularly non-
core ones, are not always explicitly referred to in the frame
definitions. Df is designed in a way to ensure an exhaus-
tive representation of frame, where each frame element is
coupled with a unique slot in the description. When a frame
element is mentioned multiple times in the description, we
consider the leftmost occurrence as its slot. Figure 3 shows
an example.

We then enter text S and description Df into a pretrained
language model (PLM) using the following structure:

[CLS] S [SEP] Df [SEP] (2)

The PLM serves as a cross-encoder, generating contex-
tualized representation for each token within the text and
description. Cross-encoding facilitates the learning of align-
ments between arguments present in the text and frame el-
ements in the description by leveraging the self-attention
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Figure 2: (a) Overall architecture of our model. (b) The factor graph of our arbitrary-order CRF.

mechanism inherent in PLMs. Consequently, it fosters the
modeling of semantics of frame element labels and bolsters
the interactions amongst arguments. Furthermore, it enables
efficient extraction of all arguments from the text from a
holistic perspective, guided by the description Df .

To guide the focus of the PLM towards targets and frame
element mentions, special tokens are added into the text-
description pair. <t> and </t> are employed to encircle the
target word wtar in S, <f> and </f> are used to enclose
frame name, and <r> and </r> encapsulate all frame
element mentions in Df even if occurring many times.

Unary Scoring

Consider all the m frame elements of frame f , represented
as role1, . . . , rolem. Each frame element rolei corresponds
to a frame element slot in Df denoted as wD

s′i
, . . . , wD

e′i
,

where s′i and e′i denote the start and end positions of the
slot within definition Df . To generate a query vector qi for
frame element rolei, we employ the maxpooling operation
and a single-layer feedforward neural network (FNN):

cDi = Maxpooling
(
hD
s′i
, . . . , hD

e′i

)
(3)

qi = FNNrole
(
cDi
)

(4)

where hD
k represents the contextualized representation of the

k-th token wD
k within description Df .

We also compute embeddings for all the l = n(n+1)
2 spans

within sentence S if the length of the sentence S equals n.
For the j-th span denoted as spanj = wsj , . . . , wej , where
sj and ej refer to the start and end positions of spanj in
sentence S respectively, the span embedding is defined as

follows:

zj = [zstartsj , zendej ] (5)

= [FNNstart(hS
sj ),FNNend(hS

ej )] (6)

where FNNstart and FNNend are two distinct single-layer
feedforward neural networks used to generate the start and
end embeddings, denoted by zstart and zend, respectively.
The term hS

k corresponds to the contextualized representa-
tion of the k-th token wk in sentence S and [·, ·] signifies the
concatenation operation.

We set the output dimension of the FNNs above such that
qi ∈ Rd and zj ∈ R2d where d is a hyper-parameter. A bi-
linear operation is used to obtain a unary score, representing
how likely spanj can take rolei as an argument,

scoreui,j = z⊤j · U · qi (7)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , l and U ∈ R2d×d.
Note that it is possible that rolei has no corresponding

argument, i.e., rolei corresponds to the null span span0. We
designate a special unary score scoreui,0 for this possibility
with a fixed value of 0:

scoreui,0 = 0 (8)

Define the unary score vector scoreui ∈ Rl+1 for rolei as
follows:

scoreui := [scoreui,0, score
u
i,1, . . . , score

u
i,l]

Then the probability distribution over possible spans of
rolei is computed as follows:

Pr(rolei|S, f, tar) = Softmax (scoreui ) (9)

where tar denotes the index of target word wtar within the
text S.
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𝐶𝐶

He also said that his visit will mainly focus on the humanitarian situation of Iraq , which has been under crippling U.N.
sanctions since its 1990 invasion of Kuwait, the primacord of the 1991 Gulf War.

𝐷𝐷𝑓𝑓

Revenge | This frame concerns the infliction of punishment in return for a wrong suffered. An Avenger performs a Punishment
on an Offender as a consequence of an earlier action by the Offender, the Injury . The Avenger inflicting the Punishment need not 
be the same as the Injured Party who suffered the Injury, but the Avenger does have to share the judgment that the Offender 's 
action was wrong. The judgment that the Offender had inflicted an Injury is made without regard to the law. | Degree Depictive
Instrument Manner Place Purpose Result Time Duration

Figure 3: An example of text S and description Df . The target word is “sanctions” which evokes the frame “Revenge”.
The arguments in S are color-coordinated with the corresponding frame elements in Df . For a frame element that appears for
multiple times in Df , only the leftmost appearance is employed as the slot.

After obtaining unary scores, we may proceed with first-
order inference as done in previous studies (Zheng, Wang,
and Chang 2023). The predicted argument of the i-th frame
element is simply the span with the highest probability:

ai = arg max
0≤j≤l

Pr(rolei = spanj |S, f, tar) (10)

Note that our first-order inference is span-based, with
scoring and decoding at the span granularity, which is dif-
ferent from previous work that separately and sequentially
scores and selects start and end positions of spans. We will
show the empirical advantage of our span-based inference in
the analysis section.

Arbitrary-Order Scoring & Inference
To model interactions amongst arguments of different frame
elements, we introduce arbitrary-order conditional random
fields (CRFs). For each frame, we design a CRF as depicted
as a factor graph in Figure 2(b). Each variable in the CRF
denotes the argument of one frame element, whose domain
is the set of all spans of the sentence plus a null span, thus
having a size of l+ 1. Each variable is connected to a unary
factor parameterized with unary scores defined earlier, rep-
resenting the likelihood of the variable taking different spans
as its value if evaluated in isolation. A full factor connects
to all the variables, modeling high-order interactions among
them. Since the number of frame elements varies across
frames, the CRF may have an arbitrary number of variables
and thus the full factor can have an arbitrary order, which
is why we call our model an arbitrary-order CRF. Note that
while we define CRFs of different frames separately, they
are interconnected by sharing the same encoder and scorer.

In the CRF, the potential function ϕu
i for the unary factor

of i-th frame element is defined as the exponential of cor-
responding unary scores scoreui , and the potential function
ϕf of the full factor similarly defined based on a full score
tensor scoref .

ϕu
i (spanj) = exp

(
scoreui,j

)
(11)

ϕf (role1 = spanj1 , · · · , rolem = spanjm)

= exp
(
scorefj1,··· ,jm

) (12)

The full score tensor scoref exhibits a size of (l + 1)m,
wherein m is the number of frame elements and l is the num-
ber of spans. To ensure tractable representation and infer-
ence, we assume that scoref is in the Kruskal form, which is
closely related to canonical polyadic decomposition (CPD)
of tensors.

scoref =
R∑

r=1

x1
r ◦ x2

r ◦ · · · ◦ xm
r (13)

where R signifies the rank of CPD, ◦ symbolizes outer prod-
uct, and xi

r ∈ R(l+1) is computed in a manner akin to unary
scores:

xi
r = Z⊤ ·W r · qi (14)

where W r ∈ R2d×d is initialized as 0, Z =
[zCLS , z1, z2, . . . , zl] ∈ R2d×(l+1) and zCLS is the embed-
ding of the null span, derived in the same fashion as Eq.(5)
and Eq.(6) based on hS

CLS , the contextualized representation
of [CLS].

Considering that {W r|r = 1, 2, · · · , R} are all initially
set at zero, the full score scoref is also zero. Consequently,
only the unary scores are present, indicating that the learning
process effectively begins from the first-order model.

Although it is now tractable to represent the full factor,
performing exact arbitrary-order inference over the CRF is
still NP-hard. Therefore, we leverage mean-field variational
inference (MFVI) (Xing, Jordan, and Russell 2012) for
tractable approximate inference. MFVI successively refines
an approximate posterior marginal distribution Q

(t)
i (rolei)

for each variable rolei by drawing upon messages from all
connecting factors at the t-th iteration. Below we abuse the
notation and denote the probability vector of Q

(t)
i (rolei)

with Q
(t)
i ∈ Rl+1.

Before the first iteration of MFVI, we initialize Q
(0)
i by

normalizing exponentiated unary scores:

Q
(0)
i = Softmax (scoreui ) (15)

At iteration t of MFVI, the aggregated message for every
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variable rolei from the full factor is computed as follows:

F
(t−1)
i

= scoref1,2,··· ,mQ
(t−1)
1 Q

(t−1)
2 · · ·Q(t−1)

i−1 Q
(t−1)
i+1 · · ·Q(t−1)

m

(16)

=
R∑

r=1

∏
j ̸=i

(
xj⊤

r Q
(t−1)
j

)xi
r

 (17)

Notably, Eq.(16) uses Einstein summation (einsum) no-
tations (Stover and Weisstein 2023) and

(
xj⊤

r Q
(t−1)
j

)
is a

scalar.
We then update Q

(t)
i as follows:

Q
(t)
i = Softmax

(
scoreui + F

(t−1)
i

)
(18)

After T iterations, we regard Q
(t)
i as our final prediction

distribution of the i-th frame element:

Pr(rolei|S, f, tar) = Q
(T )
i (rolei) (19)

then we can predict the argument of rolei by Eq.(10).
The computational complexity of each MFVI iteration is

O(m2Rl). We can implement cache optimization for Eq.17
to further reduce the computational complexity. Specifically,
at iteration t, we first calculate and cache

∏
j

(
xj⊤

r Q
(t−1)
j

)
,

and then when computing F
(t−1)
i for each i, we simply di-

vide xi⊤

r Q
(t−1)
i from the cached product instead of comput-

ing the product from scratch. In this way, the computational
complexity becomes O (mRl), which is linear with respect
to both m, the number of frame elements, and l, the number
of argument spans.

Furthermore, we find it beneficial to incorporate the
regularization method recommended by regularized Frank-
Wolfe (Lê-Huu and Alahari 2021). Specifically, we intro-
duce two hyper-parameters: τ > 0, a convex regularization
term which modulates the smoothness of the distribution,
and α ∈ [0, 1], which determines the step size in each update
cycle. The update procedure expressed in Equation (18) now
takes the following form:

Q
(t)
i = αSoftmax

(
scoreui + F

(t−1)
i

τ

)
+ (1− α)Q

(t−1)
i

(20)

Finally, we draw inspiration from (Zheng et al. 2015) and
unfold the MFVI iterations as a recurrent neural network and
connect it with our neural encoder and scorer, as shown in
Figure 2(a), facilitating end-to-end training and inference.

Training Objective
We deploy cross-entropy as the training loss function:

L = − 1

m

m∑
i=1

log Pr(rolei = âi|S, f, tar) (21)

where âi denotes the ground truth argument span of rolei.

frame FE train dev test exemplar

FN 1.5 1019 9634 17143 2333 4458 153952
FN 1.7 1221 11428 19875 2309 6722 192461

Table 1: Comparison of FrameNet 1.5 and FrameNet 1.7 ver-
sions.

Experiment
Datasets
We used the benchmark datasets FrameNet versions 1.5
and 1.72, hereafter referred to as FN1.5 and FN1.7, respec-
tively, to evaluate the effectiveness of our models. FN1.5
is widely used in previous research. FN1.7 is more com-
prehensive than FN1.5 and is known for its extended se-
mantic content. We adhered to the train/dev/test split used
in prior work (Peng et al. 2018). We utilized FrameNet’s
exemplar sentences, annotations linked to frames and their
lexical units as supplemental training data, a practice fre-
quently adopted in preceding researches (Chen, Zheng, and
Chang 2021; Bastianelli, Vanzo, and Lemon 2020; Zheng
et al. 2022; Zheng, Wang, and Chang 2023). The respective
statistics of the FN1.5 and FN1.7 datasets are highlighted in
Table 1.

Hyper-parameters
In our model, we employ bert-base-uncased3 as the
pretrained language model. We do grid search for hyper-
parameter tuning and details of our hyper-parameter settings
can be found in the supplementary material.

Setup
We divide the experiments into two categories: those per-
formed without the incorporation of exemplar instances
as supplementary training data (termed w/o exemplar) and
those that integrate these instances (denoted as w/ exemplar).
In the latter category, preliminary training was conducted on
exemplar sentences, followed by continuous training on the
standard training set. This strategy was adopted in light of
the domain gap between exemplar instances and actual train-
ing instances, as discussed by Kshirsagar et al. (2015).

For fair comparison, we only compare our method with
previous FSRL methods that use PLMs. For w/o exemplar,
we compare with semi-CRF (Swayamdipta et al. 2017),
Lin, Sun, and Zhang (2021), Kalyanpur et al. (2020), and
AGED (Zheng, Wang, and Chang 2023). For w/ exemplar,
we compare with Chen, Zheng, and Chang (2021), Bas-
tianelli, Vanzo, and Lemon (2020), KID (Zheng et al. 2022),
and AGED (Zheng, Wang, and Chang 2023). The AGED
model is the previous state-of-the-art. We attempted to repli-
cate the results of the AGED model using its official code
base but could not achieve the performance reported in its
paper. Therefore, we managed to enhance its performance
by integrating additional multi-layer perceptrons (MLPs),
applying gradient clipping, and tuning hyper-parameters.

2https://framenet.icsi.berkeley.edu/fndrupal/
3https://huggingface.co/bert-base-uncased

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17642



Model FN 1.5 FN 1.7
Precision Recall F1-score Precision Recall F1-score

w/o exemplar:
semi-CRF (2017) - - 73.56 - - 72.22
Lin, Sun, and Zhang (2021) - - 73.28 - - 72.06
Kalyanpur et al. (2020) - - - 71 73 72
AGED† (2023) w/o exemplar 71.93 76.78 74.28 74.02 75.46 74.73
AGED‡ (2023) w/o exemplar 71.81 76.65 74.15 74.99 75.21 75.09
ours (first-order) w/o exemplar 72.47 76.48 74.42⋆ 75.24 75.38 75.31⋆

ours (arbitrary-order) w/o exemplar 72.53 76.94 74.67§ 75.60 75.33 75.46§

w/ exemplar:
Chen, Zheng, and Chang (2021) 69.27 75.39 72.20 - - -
Bastianelli, Vanzo, and Lemon (2020) 74.23 76.94 75.56 - - -
KID (2022) 71.7 79.0 75.2 74.1 77.3 75.6
AGED† (2023) w/ exemplar 73.06 79.84 76.30 75.84 77.87 76.84
AGED‡ (2023) w/ exemplar 73.93 79.07 76.41 75.72 77.55 76.62
ours (first-order) w/ exemplar 74.49 79.01 76.68⋆ 76.29 77.53 76.90⋆

ours (arbitrary-order) w/ exemplar 74.61 79.19 76.83§ 76.40 77.72 77.06§

Table 2: Main results on the test sets of FN 1.5 and FN 1.7. †: reported results in their paper; ‡: our reproduced results. ⋆
indicates that our first-order model achieves significantly stronger F1-score than AGED with p < 0.05 on ASD; § indicates that
our arbitrary-order model achieves significantly stronger F1-score than our first-order model with p < 0.05 on ASD.

Evaluation
Evaluation of performance was carried out using the micro-
F1 score 4 as the standard metric. We used exact match of ar-
gument spans in micro-F1 computation, which requires the
start and end positions as well as the frame element of a pre-
dicted argument must be in full alignment with the ground
truth.

Main Results
Table 2 shows the results of our experiments. For our meth-
ods and reproduction of previous work, we report the av-
eraged results from four runs with different random seeds.
We also apply Almost Stochastic Dominance (ASD) (Dror,
Shlomov, and Reichart 2019) to do significance test on the
F1 scores. The results indicate that regardless of whether
exemplars are used as supplementary training data or not,
our first-order method significantly outperforms AGED and
the other previous methods. In the next section, we will
empirically analyze the source of the improvements of our
first-order method over AGED. Further, it can be seen that
our arbitrary-order model significantly outperforms our first-
order model, which shows the advantage of directly model-
ing full interaction among all arguments.

Analysis
Ablation Study of Our First-Order Model
Our first-order model is very similar to AGED, the previous
state-of-the-art FSRL method, and differs only in the follow-
ing aspects:

• “MLPs”, denotes using MLPs, i.e., FNNrole, FNNstart,
and FNNend.
4https://www.cs.cmu.edu/∼ark/SEMAFOR/eval/

Model F1

AGED 74.76
AGED w/ MLPs 74.84
AGED w/ GC 74.94
AGED w/ MLPs & GC 75.09
AGED w/ MLPs & GC & Zero 75.17
AGED w/ MLPs & GC & Span 75.28
First-order 75.31

Table 3: Ablation study on the differences of our first-order
model vs. AGED on FN1.7 without exemplar. All variants
maintain consistent hyper-parameters, yet differ in their net-
work architectures. “AGED” is the model via their office
code. “AGED w/ MLPs & GC” denotes our reproduced
baseline. The term “First-order” corresponds to AGED com-
bined with MLPs, gradient clipping, span-based method,
and the aforementioned Zero setting.

• “GC”, stands for gradient clipping.
• “Zero”, indicates that unary scores of the null spans are

set to 0, rather than deriving scores from zCLS .
• “Span”, corresponds to using span-based method instead

of pointer network.

We perform an ablation study over the above differences
on FN1.7 without exemplar. All the variants use the same
set of hyper-parameters. The results are presented in Table
3. It is evident that every difference leads to some improve-
ment in the F1-score, and span-based method contributes the
largest improvements, so does gradient clipping.

Case Study
Table 4 presents two examples from the test set of FrameNet
that illustrate the enhancements made by our arbitrary-order
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Sentence First-Order vs. Arbitrary-Order 
There are many stories of refugees who (Employee) arrived with nothing in 
their pockets , set up a small sidewalk stall , worked (target word) diligently 
(Manner) until they had their own store (Duration) , and then expanded it 
into a modest chain .  

Frame : Being_employed 
In the first-order model, the frame element Employee is attributed to “many 
stories of refugees who”, while the arbitrary-order model adjusts the frame 
element Employee to “refugees who”.  

There are (target word) still (Time) bars and clubs (Entity) here (Place) , but 
the area has become almost mainstream , and office towers are replacing 
many of the sinful old premises .  

Frame : Existence 
In the first-order model, the frame element Entity is corresponded to “still 
bars and clubs” and the frame element Time is assigned with the null span. 
In the arbitrary-order model, the frame element Entity and the frame element 
Time are corrected to the right arguments.  

 

Figure 4: Examples showing how our arbitrary-order model improves over the first-order model. In the left column, we color
and label the target word and all the arguments.

model over the first-order model. From the analysis, we can
see the arbitrary-order model possesses the capability to rec-
tify the inaccuracies in the arguments by deploying the full
factor, which is inherently linked to all frame elements.

Related Work
Frame Semantic Role Labeling (FSRL)
Prior studies on FSRL (Kshirsagar et al. 2015; Swayamdipta
et al. 2017; Bastianelli, Vanzo, and Lemon 2020) employed
a two-step methodology. They first identify potential argu-
ment spans and subsequently classify these spans into frame
elements. A common oversight of these methods is the ne-
glect of argument interactions and the disregard of label se-
mantics within a standard role classifier. The method pro-
posed by Zheng et al. (2022) models interaction between ar-
guments and labels via a GNN. Furthermore, AGED (Zheng,
Wang, and Chang 2023) explicitly models label semantics
by using a cross-encoder that encodes text and frame defini-
tion pairs, resulting in rapid and accurate FSRL predictions.

However, AGED utilizes a pointer network (Vinyals, For-
tunato, and Jaitly 2015) to individually and sequentially
forecast the start and end positions of arguments. Specifi-
cally, the pointer network first predicts the start position with
the maximum score, and then predicts the end position sim-
ilarly to the right of the predicted start position. However,
the highest scored start position may not align with the gold
start position, leading to potentially incorrect predictions. In
addition to this issue, the interaction amongst arguments in
AGED is at best implicitly and indirectly enabled via the
cross-encoder.

To overcome the above-mentioned challenges, our ap-
proach adopts a span-based method that jointly decodes
the start and end positions of arguments, and employs an
arbitrary-order CRF to explicitly model the interplay of all
arguments. Specifically, we note that our span-based unary
score can be seen as the sum of start and end position scores
in AGED (with the implicit constraint that the start position
is to the left of the end position):

scoreui,j = z⊤j · U · qi (22)

=
[
zstart⊤sj , zend⊤ej

]
· U · qi (23)

= zstart⊤sj · U · qi + zend⊤ej · U · qi (24)

= scorestarti,j + scoreendi,j (25)

where scorestarti,j and scoreendi,j represent the start and end
scores of the i-th frame element for the j-th span, respec-
tively, as determined by the pointer network in AGED. By
maximizing the summation instead of separately and se-
quentially maximizing the two scores in a greedy manner,
our approach is able to avoid potential decoding errors and
obtains empirical improvement shown in our ablation study.

High-Order Methods

High-order methods have been studies for a long time in
the domain of dependency parsing (McDonald and Pereira
2006; Carreras 2007; Koo and Collins 2010; Wang, Huang,
and Tu 2019; Wang and Tu 2020). High-order methods have
also been extended to tasks such as semantic role labeling
(SRL) (Jia et al. 2022; Liu, Yang, and Tu 2023) and in-
formation extraction (Jia et al. 2023). Additionally, jointly
modeling the arguments in SRL can be effectively facili-
tated by employing Tree Kernel methods(Moschitti, Pighin,
and Basili 2006, 2008). However, note that SRL differs from
FSRL in that labels like Arg0, Arg1, ArgM-LOC do not
inherently convey label semantic meaning, while frame ele-
ments in FSRL bear intrinsic lexical significance. Moreover,
our FSRL method involves learning a distinct CRF for each
frame, incorporating a shared backbone and parameteriza-
tion, while SRL does not define frames, precluding direct
application of our method to SRL. In addition, most of the
above-mentioned prior high-order methods limit themselves
to second-order or third-order modeling and inference due
to high computational complexity. In contrast, our approach
innovatively introduces a factor that interlinks all frame el-
ements and utilizes tensor decomposition and approximate
inference for tractability, facilitating arbitrary-order model-
ing and inference.

Conclusion

In this paper, we propose a novel arbitrary-order approach to
frame semantic role labeling (FSRL). Our approach models
full interactions amongst all arguments and applies canon-
ical polyadic decomposition (CPD) and mean-field varia-
tional inference (MFVI) to ensure computational tractabil-
ity. Empirical evaluations demonstrate that our approach
achieves state-of-the-art performance in the task of FSRL.
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