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Abstract

In centralized multi-agent systems, often modeled as
multi-agent partially observable Markov decision pro-
cesses (MPOMDPs), the action and observation spaces grow
exponentially with the number of agents, making the value
and belief estimation of single-agent online planning ineffec-
tive. Prior work partially tackles value estimation by exploit-
ing the inherent structure of multi-agent settings via so-called
coordination graphs. Additionally, belief estimation methods
have been improved by incorporating the likelihood of obser-
vations into the approximation. However, the challenges of
value estimation and belief estimation have only been tackled
individually, which prevents existing methods from scaling to
settings with many agents. Therefore, we address these chal-
lenges simultaneously. First, we introduce weighted particle
filtering to a sample-based online planner for MPOMDPs.
Second, we present a scalable approximation of the belief.
Third, we bring an approach that exploits the typical local-
ity of agent interactions to novel online planning algorithms
for MPOMDPs operating on a so-called sparse particle fil-
ter tree. Our experimental evaluation against several state-of-
the-art baselines shows that our methods (1) are competitive
in settings with only a few agents and (2) improve over the
baselines in the presence of many agents.

1 Introduction
Planning problems with multiple agents, such as teams of
mobile robots (Ahmadi et al. 2019) or autonomous surveil-
lance systems (Witwicki et al. 2017), can be modeled
by multi-agent partially observable Markov decision pro-
cesses (MPOMDPs, Messias, Spaan, and Lima 2011). These
formal models exhibit sets of (local) observations and ac-
tions for each agent that can be shared with a central con-
troller. This controller then makes decisions among the joint
actions of all agents. Computationally, the main challenge is
that the spaces of joint action and observations grow expo-
nentially with the number of agents (Pynadath and Tambe
2002). Moreover, as the controller only partially observes
the system state, it must base its decisions on the history of
previous joint actions and observations.

Online algorithms, such as those based on Monte Carlo
tree search (MCTS, Browne et al. 2012), are a common
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way to tackle large planning problems. These algorithms
search for local solutions in the most promising regions of
the search space (Kocsis and Szepesvári 2006). In particular,
partially observable Monte Carlo planning (POMCP, Silver
and Veness 2010) derives Monte Carlo estimates in the form
of (1) an approximation of the value function and (2) distri-
butions (beliefs) over states by generating sample trajecto-
ries from the simulation of single state particles. However,
a naive application of (single-agent) online planning is ill-
equipped to handle the high-dimensional MPOMDP setting.
First, due to the many actions that must be explored during
simulations, the value estimation may suffer from high vari-
ance. Second, the chance of mismatch between simulated
and actual observations is high for large observation spaces,
lowering the quality of the approximation in the belief esti-
mates (Sunberg and Kochenderfer 2018).

To address the challenge of value estimation, one can ex-
ploit the typical locality of interactions between the agents,
captured by so-called coordination graphs (Guestrin,
Lagoudakis, and Parr 2002). In particular, Amato and
Oliehoek (2015) estimate the action value for subsets of
agents instead of all agents based on such graphs. The main
concepts are to (1) factorize the value estimates over the ac-
tion space of subsets of agents in the factored statistics vari-
ant and to (2) factorize both the action and the observation
space in the factored trees variant. These factorizations are
key to achieving good performance in settings with many
agents. The challenge of belief estimation is also a prevalent
issue in single-agent continuous settings. From the likeli-
hood of sampled observations, importance sampling weights
are added to the Monte Carlo estimates of the beliefs (Thrun
1999). Such weighted beliefs are also used in single-agent
online planners that simulate weighted belief estimates in-
stead of single states (Fischer and Tas 2020; Lim, Tomlin,
and Sunberg 2020). By simulating belief estimates, these al-
gorithms operate on the set of possible beliefs of the agents,
which makes the branching factor insensitive to the num-
ber of observations. A particularly effective algorithm is the
so-called sparse particle filter tree (Sparse-PFT, Lim et al.
2023), which only searches for local solutions in the set of
reachable belief estimates.

To the best of our knowledge, these solutions to value and
belief estimation have only been studied independently, and
weighted belief estimates have not yet been explored in the
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Belief Estimation Simulation POMDP Value Estimation MPOMDP Value Estimation
Single-Agent Factored Statistics Factored Trees

Unweighted Single States POMCP FS-POMCP FT-POMCP
(Silver and Veness 2010) (Amato and Oliehoek 2015)

Weighted
Single States W-POMCP / POMCPOW FS-W-POMCP FT-W-POMCP

(Sunberg and Kochenderfer 2018) Sect. 4 (new)

Belief Estimates Sparse-PFT FS-PFT FT-PFT
(Lim et al. 2023) Sect. 5 (new)

Table 1: Our algorithms and state-of-the-art MCTS methods in the (continuous) POMDP and MPOMDP literature.

online MPOMDP planning setting. Therefore, no method
can scale to problems with many agents, and we must tackle
both challenges simultaneously. We present multi-agent on-
line planning algorithms that exploit adequate approxima-
tions of both the value and the belief and thereby can scale
to many agents. In particular, we integrate factored value
estimation and weighted belief estimation. Table 1 posi-
tions the new algorithms with respect to the existing so-
lutions in the MCTS literature. First, we add weighted be-
lief estimation to POMCP variants, namely W-POMCP, and
combine this algorithm with factored statistics in FS-W-
POMCP (Sect. 4.1). Furthermore, we design a weighted be-
lief approximation that is compatible with factored trees in
FT-W-POMCP (Sect. 4.2). Then, we introduce two novel
variants of the Sparse-PFT algorithm that exploit coordina-
tion graphs similarly to Amato and Oliehoek (2015), namely
FS-PFT and FT-PFT (Sect. 5.2). The empirical evaluation
(1) shows the improvement of integrating weighted particle
filtering in POMCP, and (2) demonstrates the effect of value
factorization via coordination graphs in Sparse-PFT. It also
shows that exploiting local interactions between agents is
beneficial in environments where the way the agents inter-
act may change over time, i. e., there is no naturally sparse
graph. The extended version of this article (Galesloot et al.
2023) contains an Appendix with additional details.

Contributions. We present four novel algorithms for
many-agent online planning that can scale both value and
belief estimations to problems with many agents. Our empir-
ical evaluation, using the nine algorithms in Table 1, shows
that our variants improve over the state-of-the-art. For exam-
ple, in the environments FIREFIGHTINGGRAPH and Multi-
Agent ROCKSAMPLE, we scale up to instances with 64 and
6 agents instead of 10 and 2 agents, respectively.

2 Online Planning in MPOMDPs
The set of all distributions over the finite set X is ∆(X).

MPOMDPs. We study online planning in centralized
multi-agent systems that are modeled as MPOMDPs. In-
tuitively, agents encounter individual observations but can
share those via immediate and noiseless broadcast commu-
nication, which allows a centralized control paradigm.

Definition 1 (MPOMDP). An MPOMDP is a tupleM =
⟨I,S, b0,A, T ,R,Ω,O, γ⟩, with the finite set I of n agents,

the finite set S of states, an initial state distribution b0 ∈
∆(S), the set A =×i∈I Ai of joint actions, composed of
the finite sets Ai of actions for each agent i ∈ I , the tran-
sition function T : S × A → ∆(S) such that T (s′ | s, a⃗) =
Pr(s′ | s, a⃗) is the probability of a new state s′ given the
previous state s and joint action a⃗, the reward function
R : S × A → R such that R(s, a⃗) is the reward given state
s and joint action a⃗, the set Ω =×i∈I Ωi of joint observa-
tions composed by the finite sets Ωi of observations for each
agent i ∈ I , the observation function O : S × A → ∆(Ω)
such thatO(o⃗ | s′, a⃗) = Pr(o⃗ | s′, a⃗) specifies the probability
of observing joint observation o⃗ in the state s′ given joint
action a⃗, and the discount factor γ ∈ [0, 1).

MPOMDPs generalize POMDPs (Kaelbling, Littman, and
Cassandra 1998), which are MPOMDPs with a single agent.
An MPOMDP can be treated as a POMDP by ignoring the
agent-wise factorization in the action and observation space.

Objective. The return Rt =
∑∞

t′=t γ
t′−tR(st′ , at′) is the

infinite-horizon discounted sum of reward from time t ∈ N.
An observable history h⃗t = (o⃗1, a⃗1, o⃗2, . . . , a⃗t−1, o⃗t) is a se-
quence of joint observations and joint actions. Policies deter-
mine the action choices. Optimal policies π : ∆(S)→ A for
MPOMDPs map the belief bt ∈ ∆(S) to joint actions. The
belief bt is a sufficient statistic (Kaelbling, Littman, and Cas-
sandra 1998) for the history ht, and resembles the state dis-
tribution bt(s) = Pr(st | ht, b0) at time t, with b0 fromM.
Beliefs can be updated bt+1 = υ(bt, o⃗t+1, a⃗t) by υ from T
and O, using Bayes’ theorem (Spaan 2012). Our aim is to
maximize the joint Q-value of a belief b, which is the ex-
pected return under a policy π given action a⃗ and belief b at
time t, and at′ = π(bt) for subsequent t′ > t:

Qπ(b, a⃗) = Eπ [Rt | bt=b, a⃗t=a⃗, at′>t = π(bt′)] . (1)

Online planning. Online search-based planners interleave
planning and execution. They perform a forward search in
the set of beliefs reachable from the current belief, incre-
mentally building a look-ahead tree known as a search tree.
Monte Carlo planners typically do so with a generative in-
terface G : S×A → S×Ω×R of the modelM, i. e., a simu-
lator (Kearns, Mansour, and Ng 2002), with s, a⃗ 7→ s′, o⃗, r.
After searching from b, the planner executes a selected ac-
tion a⃗, receives an observation o⃗. Then, it updates its belief
b′ = υ(b, a⃗, o⃗), before it starts searching from b′.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17408



MCTS. Contemporary MCTS methods are based on the
upper confidence trees (UCT, Kocsis and Szepesvári 2006)
algorithm. In particular, partially observable UCT (PO-
UCT) is the search algorithm that underlies POMCP. It plans
with a look-ahead search tree comprised of paths of action
and observation nodes. It samples states from the current
belief b, and for each state, it expands a trajectory of ac-
tions and observations using G until it reaches a new node in
the tree. Then, a (random) rollout estimates the value (Koc-
sis and Szepesvári 2006). The trajectory is used to update
a set of statistics for history h⃗ that includes visit counts
N (⃗h) and n(⃗h, a⃗) in the observation and action nodes, re-
spectively. Additionally, the trajectory updates estimates of
the Q-values Q(⃗h, a⃗) of the action nodes by a running aver-
age of the return. The upper confidence bound (UCB1, Auer,
Cesa-Bianchi, and Fischer 2002) algorithm decides the most
promising actions during the search, balancing exploration
and exploitation. It is computed from (an estimate of) the
number N∗ of visits to the observation node, as well as the
number of visits n and the value Q∗ of the action node by:

UCB(Q∗, N∗, n∗) = Q∗ + c ·
√

log(N∗+1)
(n∗+1) , (2)

where c is an exploration constant. During search,
in some history h⃗, PO-UCT chooses actions via:
argmaxa⃗ UCB(Q(⃗h, a⃗), N (⃗h), n(⃗h, a⃗)).

A separation of beliefs. POMCP is the extension of PO-
UCT that gradually builds up beliefs B(⃗h) consisting of sim-
ulated states s ∈ S , i. e., particles, in the observation nodes
for history h⃗, representing a Monte Carlo estimate of the be-
lief b. However, the number of particles in each observation
node depends on how often a history has been recorded dur-
ing forward simulation and might diminish over time due to
a lack of diversity in the set of particles. POMCP requires
domain-specific particle reinvigorating techniques to miti-
gate this. Instead, we separate the concerns of an online be-
lief inside the search tree that is used to estimate Q, and the
offline belief b that represents the current belief over states.
Following related works, we write B(⃗h) for POMCP’s on-
line belief and b̃ for Sparse-PFT’s weighted online belief.

Problem statement: Given a an MPOMDP M, how
do we, at each time step t ∈ N, both (1) efficiently
search for a joint action a⃗t given the current belief esti-
mate bt, and (2) effectively find a good belief estimate
bt+1 from bt, a⃗t and the received observation o⃗t+1.

3 Using Structure in Multi-Agent POMDPs
In this section, we introduce coordination graphs to decom-
pose the objective into local sub-problems. In particular, we
recap prior work by Amato and Oliehoek (2015).

3.1 Coordination Graphs
A coordination graph (CG, Guestrin, Venkataraman, and
Koller 2002; Oliehoek and Amato 2016) is an undirected
graph (V, E) that represents the local interactions between

agents. Each vertex v ∈ V corresponds to an agent (V ≡ I),
and each edge (i, j) ∈ E indicates that agents i ∈ V and
j ∈ V interact locally. For an edge e ∈ E , we define the
local action a⃗e and local observations o⃗e, which range over
the product of the individual agent actionAe = Ai×Aj and
observation spaces Ωe = Ωi×Ωj , with e = (i, j). For three
agents V = {1, 2, 3} connected by a line E = {e1, e2}, with
e1 = (1, 2) and e2 = (2, 3), we have a⃗ = {a1, a2, a3}, thus
a⃗e1 = {a1, a2} and a⃗e2 = {a2, a3}, respectively. To find the
Q-value for some history h⃗ (or equivalent belief b) based on
the local actions, we define a local payoff function Qe(⃗h, a⃗e)
for each edge e ∈ E , where a⃗e ∈ Ae is the projection of a⃗
to the agents in the edge. Then, Q(⃗h, a⃗) ≈

∑
e Qe(⃗h, a⃗e).

Instead of finding Qe(⃗h, a⃗e), we maintain local predictions
Q̂e(⃗h, a⃗e) = E

[
Q(⃗h, a⃗) | a⃗e

]
of the joint Q-value. A mix-

ture of experts (MoE) combines these local estimates of Q:

Q(⃗h, a⃗) ≈ Q̂(⃗h, a⃗) =
∑

e ωeQ̂e(⃗h, a⃗e), (3)

where ωe ≥ 0 is the weight for edge e, s.t.
∑

e∈E ωe = 1. We
assume uniform mixture weights ωe = 1/|E| throughout the
remainder of the paper. We pick the estimated maximizing
joint action a⃗# ≈ a⃗∗ over the sum of local estimates of Q:

a⃗# = argmaxa⃗
∑

e ωeQ̂e(⃗h, a⃗e). (4)

We thus aim to find local actions (for the edges of the graph)
that maximize the estimated joint value function. Notice
that when finding a⃗#, any agent i might belong to multi-
ple edges, and therefore agent i must be assigned the same
action a#i ∈ Ai in all edges e ∈ E where i ∈ e. We can com-
pute the maximum with graphical inference algorithms, such
as Variable Elimination (VE) and Max-Plus (MP) (Vlassis,
Elhorst, and Kok 2004). Appendix D provides an overview.

3.2 Factored-Value POMCP
Factored-value POMCP (Amato and Oliehoek 2015) con-
sists of two techniques that exploit the structure of a CG
to scale POMCP to problems with large action and obser-
vation spaces. Next, we outline how these techniques fac-
tor the action space to introduce statistics for each edge
e ∈ E for computing the UCB1 value of the local joint ac-
tion space a⃗e. Both these algorithms require an inference al-
gorithm to compute Eq. (4) during and after the simulations.

Factored statistics (FS-POMCP). FS-POMCP uses the
structure of MPOMDPs and stores the statistics Q,N, n in
a factorized manner. This adaption is more space-efficient
and also allows for improved action selection in large ac-
tion spaces by maximizing over the factored Q-functions.
More precisely, the tree structure in FS-POMCP remains the
same as in POMCP, representing the history h⃗ with asso-
ciated visit counts N (⃗h) and particles B(⃗h) in the obser-
vation nodes. The action nodes maintain a set of statistics
Qe(⃗h, a⃗e), N (⃗h, a⃗e) for each edge e ∈ E , independently.
Thus, the MoE optimization from Eq. (3) is applied directly
in each action node of the search tree. This improves over
POMCP as the combination of local action spaces a⃗e of
each edge e ∈ E is smaller than the joint action space
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a⃗. During search, the action a⃗# is selected by maximizing
over the UCB1 values (Eq. (2)) of the local Q-functions:
argmaxa⃗#

∑
e∈E UCB(Qe(⃗h, a⃗e), N (⃗h), N (⃗h, a⃗e)).

Factored trees (FT-POMCP). FT-POMCP constructs a
tree for every edge e. This tree represents the factored his-
tories h⃗e, which consists of a sequence of factored ac-
tions and observations h⃗e,t = (⃗ae,0, o⃗e,1, . . . , a⃗e,t−1, o⃗e,t).
This further reduces the scope of Qe(⃗h, a⃗e) to Qe(⃗he, a⃗e)

by introducing an expert for every h⃗e, a⃗e pair. In each
tree, the action nodes maintain statistics Qe(⃗he, a⃗e), and
N (⃗he, a⃗e), and the observation nodes maintain N (⃗he)

and B(⃗he) according to the factored history h⃗e. Dur-
ing search, we again maximize with respect to the
UCB1 value (using Eq. (2)) of local Q-functions:
argmaxa⃗#

∑
e∈E UCB(Qe(⃗he, a⃗e), N (⃗he), N (⃗he, a⃗e)).

4 Scalable Particle Filtering
In MPOMDPs with large state spaces, repeated execution of
the Bayesian belief update is intractable as each update re-
quires O(|S|2) computations. We represent this belief with
weighted particle filters to ensure scalability. The following
subsection introduces how we incorporate these filters in W-
POMCP and FS-W-POMCP. The second subsection intro-
duces our method that uses the structure of a coordination
graph to condition the belief on a local part of the observa-
tion space, which we apply to FT-W-POMCP and FT-PFT.

Particle filtering. Particle filtering (Thrun, Burgard, and
Fox 2005) represents the belief by sequential Monte Carlo
approximations, alleviating the bottleneck of the belief up-
date. In an unweighted filter, the belief approximation is
a set b = {(s(k))}Kk=1, with s(k) ∈ S , and is updated
using rejection sampling on the real observation o⃗; b

′
=

{s′(k) : o⃗ = o⃗ (k)}, where s′
(k), o⃗ (k) are generated from

s(k), a⃗ by G (Kochenderfer et al. 2015). POMCP implicitly
uses an unweighted particle filter by using the online particle
belief B(⃗h) in the observation nodes to represent b.

4.1 Weighted Particle Filtering
Weighted particle filters approximate the belief by a
weighted set of K particles b = {(s(k), w(k))}Kk=1, where
s(k) ∈ S is a state in the filter and w(k) ∈ R+ the
associated weight. We update beliefs in weighted filters
with importance sampling as in the bootstrapped par-
ticle filter (Gordon, Salmond, and Smith 1993). In the
bootstrapped particle filter, the proposal distribution is the
transition function s′

(k) ∼ T (· | s(k), a⃗), and the impor-
tance weights are computed from the observation function
w′(k) ∝ w(k)O(o⃗ | s′(k), a⃗). Additionally, the posterior be-
lief is re-sampled at every time step to alleviate sample de-
generacy, after which the weights are set to 1/K, which is
known as sequential importance re-sampling (SIR). We de-
cide whether to re-sample in our SIR filter by comparing the
estimated effective sample size (ESS) of the particle filters
with respect to the number of particles (Septier and Peters

2016). The ESS(b) ≈ (
∑K

k=1(w
(k))2)−1 quantifies weight

disparity, which is an indicator for sample degeneracy. The
likelihood L of a belief update in a SIR filter represents the
probability of the new belief given the observation, action,
and previous belief. It is a statistic on the quality of the ap-
proximate belief update (Katt, Oliehoek, and Amato 2019).
It is computed from the sum of all updated weights mul-
tiplied by the previous likelihood L(b′) =

∑
k w

′(k)L(b)
where L(b) = 1 when b was initialized from b0.

W-POMCP and FS-W-POMCP. In both W-POMCP and
FS-W-POMCP, we represent the current root-node belief
estimate with an offline weighted filter b that we update
independently of the search tree instead of using the un-
weighted online particles B stored inside the tree. We pro-
vide the pseudo-code for the SIR filter that updates b in Ap-
pendix F.2. Additionally, FS-W-POMCP maintains statistics
in each action node for the actions of pairs of agents instead
of all joint actions, as explained previously for FS-POMCP.

Particle filtering in MPOMDPs. In MPOMDPs, the ob-
servation signal becomes increasingly sparse as the number
of agents increases, as it commonly depends on the prob-
ability of all individual observations. This can result in an
impoverishment of the particles. Comparably, the likelihood
of matching the received joint observation in the rejection
update is small for unweighted filters in larger observation
spaces. If the particle filter reaches a deprived state where no
particles remain, the planner defaults to a baseline policy.

4.2 Particle Filtering in a Coordination Graph
To increase the scalability and decrease the chance of de-
privation of the particle filter in large observation spaces,
we introduce a general filtering approach for b based on
the structure of a coordination graph (V, E), independent of
the online planning algorithm. This method applies to both
FT-POMCP (Sect. 3.2) as well as FT-PFT (introduced in
Sect. 5). We exploit the structure in the following way. For
every edge e ∈ E , we introduce a separate particle filter be
with Ke particles. We choose Ke such that K =

∑
e Ke.

This method makes the following assumption.
Assumption 1. Individual observations probabilities, as
given by the individual observation model Oi : S × A →
∆(Ωi), are conditionally independent given the successor
state and the previous action. Therefore, we write the obser-
vation model as the product of individual observation prob-
abilities: O(o⃗ | s′, a⃗) =

∏
i∈I Oi(oi | s′, a⃗), with oi ∈ Ωi.

Note that we condition the individual observations on the
joint state and action instead of the assumption of observa-
tional independence of ND-POMDPs (Nair et al. 2005) and,
distinctly from factored beliefs (Messias, Spaan, and Lima
2011) and factored particle filtering (Ng, Peshkin, and Pfef-
fer 2002), we do not assume any state space factorization.

Local updates. Using Assumption 1, we update the par-
ticle filters for the edges by the local part of the observa-
tion space o⃗e ∈ Ωe. For an edge e = (i, j), we retrieve
the local observation o⃗e by taking the individual observa-
tions oi, oj from the joint observation o⃗. Then, we change

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17410



the importance weights of the filtering procedure to be based
on the local observation probability Oe(o⃗e | s′, a⃗), instead
of the joint observation probability O(o⃗ | s′, a⃗). For each
edge e, the local observation probability Oe(o⃗e | s′, a⃗) =∏

i∈eOi(oi | s′, a⃗) is the probability of observing oi ∈ Ωi

for each agent i in e. Consider an offline weighted fil-
ter be = {(s(k), w(k)

e )}Ke

k=1 and joint observation o⃗. We
first propagate the particle s′

(k) ∼ T (· | s(k), a⃗) and then
compute the new importance sampling weight w′

e
(k) ∝

we
(k)Oe(o⃗e | s′, a⃗), where o⃗e is the local part of the observa-

tion o⃗. Every be approximates the belief for each s ∈ S as:
be(s) =

∑Ke

k=1
w(k)

e δ(s,s(k))/
∑Ke

l=1 w(l)
e , where δ is the Kro-

necker delta function. Now, be represents the particle-belief
representing the history h⃗e of joint actions a⃗ and local ob-
servations o⃗e for edge e, and L(be) =

∑Ke

k=1 w
(k)
e its likeli-

hood. We provide more details in Appendix F.2.

Ensembling. Since we run multiple particle filters in par-
allel, we must decide how to fuse these beliefs together for
sampling. We propose to treat this set of beliefs as an ensem-
ble. We determine a procedure for sampling the ensemble
for every simulation iteration. We use the likelihood of the
weighted particle filter update as a statistic for the quality of
the belief approximation (Katt, Oliehoek, and Amato 2019).
Intuitively, we sample more often from higher-quality filters.
More precisely, we give filters that contain particles with a
higher probability of generating the true observation a higher
chance of getting sampled. We sample from the set of filters
with probabilities proportional to the likelihoods of the parti-
cle filters L(be) of the edges: s ∼ be w.p. L(be)/

∑
e′∈E L(be′ ).

Altogether, this ensemble particle-filter results in the fol-
lowing approximation b of the belief b for each s ∈ S:
b(s) ≈ b(s) =

∑
e∈E

L(be)/
∑

e′ L(be′ )be(s). FT-W-POMCP
and FT-PFT maintain an offline belief estimate b consisting
of the offline local beliefs be for each e.

Limitation. Our proposal distribution remains T across
the ensemble, but our observation distributions are the local
function Oe for every filter be. Therefore, these local filters
will be biased towards the posterior p(s | h⃗e, b0) instead of
p(s | h⃗, b0), where, as before, h⃗e is the history of factored
observations o⃗e and joint actions a⃗. Since each filter consid-
ers only local observations, the local filters cannot recover a
joint belief that depends on all agents (Capitán et al. 2011).

5 Sparse-PFT with Value Factorization
In this section, we lift Sparse-PFT to MPOMDPs. We pro-
pose extensions that exploit the factorization of the action
space as in Sect. 3.2. Firstly, we introduce a particle be-
lief approximation and Sparse-PFT for MPOMDPs. Then,
we introduce variants with factored statistics (FS-PFT) and
factored trees (FT-PFT) to combat large action spaces.

Particle approximation. For POMDPs, it is natural to
consider a fully observable belief-MDP, whose state space
are the beliefs and the action space is unchanged (Cassan-
dra, Kaelbling, and Littman 1994). The same construction

for MPOMDP yields a belief-MMDP. Particle-belief-MDPs
approximate belief-MDPs (Lim, Tomlin, and Sunberg 2020;
Lim et al. 2023). Similarly, we introduce the particle-belief-
MMDP as an approximation of an MPOMDP:

Definition 2 (PB-MMDP). The Particle-Belief-MMDP for
an MPOMDP M = ⟨I,S,A, T , r,Ω,O, γ⟩ is a tu-
ple M′ = ⟨I,Σ,A, τ, ρ, γ⟩ with states Σ = (S ×
R+)C consisting of online weighted particle beliefs b̃ =
{(s(k), w(k))}Ck=1 encoded by C particles, the transition
density function τ : Σ×A → ∆(Σ) defined by τ(b̃′ | b̃, a⃗) =∑

o⃗∈Ω Pr(b̃′ | b̃, a⃗, o⃗) Pr(o⃗ | b̃, a⃗), and the reward function
ρ : Σ×A → R defined by ρ(b̃, a⃗) =

∑
k w(k)R(s(k) ,⃗a)/

∑
l w

(l).

Simulating the PB-MMDP requires us to update the asso-
ciated generative model. We simulate particle beliefs b̃ of
size C instead of individual states to estimate Q. Conse-
quentially, the generative model GPF : Σ × A → Σ × R
updates the state based on the action and returns the particle-
based reward ρ as specified above. This extension increases
the complexity of the generative model by a factor O(C).

5.1 Sparse Particle Filter Tree
Sparse-PFT is an application of UCT to the PB-MMDP.
While it was designed for continuous state spaces, the fact
that the tree branches on a fixed number of belief nodes in-
stead of the number of joint observations is beneficial in
our setting. Sparse-PFT constructs a sparse particle-belief
tree incrementally during a forward search by allowing
each action node to expand up to C particle-belief nodes.
The particle-belief nodes correspond to the states of the
particle-belief MMDP (Def. 2). The root particle-belief b̃←{
(s(k), 1/C)

}C

k=1
∼ b is sampled at every simulation iter-

ation from the current offline belief b. Following our sepa-
ration of online and offline beliefs, the number of particles
in the offline belief |b| ≫ C can be much greater than the
simulated belief inside the tree b̃. If the number of children
|Ch(b̃, a⃗)| of the action node is less than C, then we simulate
the particle-belief through GPF to obtain the next particle-
belief b̃′ and particle-based reward ρ. Otherwise, b̃′ and ρ
are sampled uniformly from Ch(b̃, a⃗). We continue the sim-
ulation and traverse the particle-belief tree until we reach a
leaf node or a predetermined maximum depth. If we reach a
leaf node, a rollout is performed. Scalability is partially ad-
dressed because the branching factor of the belief nodes is
independent of the observation size. However, a full enumer-
ation of the action space is still required for selecting actions
according to UCB1, which is impractical in MPOMDPs.

5.2 Sparse-PFT for MPOMDPs
We introduce two extensions to improve upon the weakness
of Sparse-PFT when operating with large action spaces.

Factored statistics (FS-PFT). We propose to keep fac-
tored action statistics in the nodes of the particle fil-
ter tree, similar to FS-POMCP. In addition to the node
visit count N(b̃), we maintain sets of statistics Qe(b̃, a⃗e),
N(b̃, a⃗e) in every particle filter belief node that predicts
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the Q-function for every edge e ∈ E , applying MoE
optimization from Eq. (3) directly in the nodes. The of-
fline belief b is represented by an external weighted par-
ticle filter, as in FS-W-POMCP. Finally, similarly to the
previous factored statistics algorithms, a graphical infer-
ence algorithm selects the maximal joint action a⃗# dur-
ing the search by maximizing over the UCB1 values:
argmaxa⃗#

∑
e∈E UCB(Qe(b̃, a⃗e), N(b̃), N(b̃, a⃗e)).

Factored trees (FT-PFT). Additionally, we introduce
the construction of multiple particle-belief trees in parallel,
one for each e ∈ E . These trees have a local action space
a⃗e and maintain statistics Qe(b̃, a⃗e), Ne(b̃), Ne(b̃, a⃗e) for
the agents associated with the edge. Since particle filter
trees do not explicitly branch on observations, only the
action space is factored inside the trees. We use a single
joint particle belief step in each layer to reduce overhead.
Thus, every tree is constructed from the same simulated
particle filter beliefs. Although the belief nodes might have
the same particles, we maintain independent visit count
statistics Ne for each belief node and associated local joint
actions a⃗e ∈ Ae, respectively. The inference equation for
picking the maximal UCB1 action (using Eq. (2)) is given
by: argmaxa⃗#

∑
e∈E UCB(Qe(b̃, a⃗e), Ne(b̃), Ne(b̃, a⃗e)).

The offline belief b is maintain identically to FT-W-POMCP
(Sect. 4.2), by the ensemble of offline beliefs be. In addition
to the above, we suspect the improvement of FT-PFT over
Sparse-PFT is an increase in node re-use and search depth
due to the smaller factored action space in the trees.

6 Experimental Evaluation
We evaluate the effectiveness of our methods on MPOMDPs
with many agents. Abbreviations follow those in Table 1.
The key question is Q1: Does the use of coordination graphs
(CGs) accelerate online planners for MPOMDPs in gen-
eral? We evaluate this question on three benchmarks, one
with a given coordination graph and two with an artificially
chosen graph. Regarding our novel algorithms introduced in
Sect. 4 and 5, we evaluate Q2: Do (FS/FT)-W-POMCP vari-
ants improve over (unweighted) (FS/FT)-POMCP variants,
and, Q3: Do FS/FT-PFT improve over Sparse-PFT?

Benchmarks. FIREFIGHTINGGRAPH (FFG, Oliehoek
et al. 2008) has been used to evaluate factored POMCP (Am-
ato and Oliehoek 2015). Agents stand in a line, and houses
are located to the left and right of each agent. Agents have
two actions: fight fires to their left or right. Multi-agent
ROCKSAMPLE (MARS, Cai et al. 2021) extends single-
agent RockSample (Smith and Simmons 2004). MARS en-
vironments are defined by their size m, the number of agents
n, and the number of rocks k, with k = m = 15. In CAP-
TURETARGET (CT), agents are tasked with capturing a mov-
ing target. We depict results for CT in Appendix A.2. De-
tailed benchmark descriptions are in Appendix G.

Experimental set-up. All algorithm variants are imple-
mented in the same Python prototype, published online1.

1https://zenodo.org/records/10409525.
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Figure 1: Performance comparison for POMCP variants
with (solid) and without (dotted) weighted particle filtering.

All code ran on a machine with an Intel(R) Core(TM) i9-
10980XE CPU @ 3.00GHz and 256 GB RAM (8 x 32GB
DDR4-3200). Our Python wrapper executed episodes in par-
allel on 34 threads such that each episode had access to
256/34 ≈ 7.5GB of RAM. All reported results are the
achieved returns averaged over 100 episodes with error bars
representing 95% confidence intervals. We did not run an
extensive hyperparameter optimization for any algorithm,
and we list the most important parameters in Tab. 2 of Ap-
pendix A.1. All algorithms ran with a maximum of 5s and
15s per step on FFG/CT and MARS, respectively. If the
particle filter belief is deprived at any point in time dur-
ing the episode, the policy defaults to a random policy.
We set the number K of particles in the joint filters such
that K =

∑
e Ke in the factored filters, e.g., if we have

three edges with Ke = 100, then the joint counterpart has
K = 300. For MARS and CT, we chose the CG as a line
(n− 1 factors) for odd numbers of agents and a team forma-
tion (n/2 factors) where pairs of agents cooperate for even
numbers. The single-agent algorithms could not run with
more than 20 and 5 agents on FFG and MARS, respectively.

Discussion. Below, we analyze the results as answers to
the three questions. Q1. We study Q1 across our different
set-ups. The single-agent algorithms (Sparse-PFT, POMCP,
and W-POMCP) are out-scaled by their competitors with
value factorization (Fig. 1 and 2) in FFG and MARS. How-
ever, planning on the joint value performs better in set-
tings with fewer agents. In MARS and CT, the agents move
and thus may coordinate dynamically. Therefore, the desired
agent coordination does not induce a sparse coordination
graph, meaning the CG acts as a heuristic. The results show
that assuming some arbitrary, sparse static graph is helpful,
even if this assumes no coordination between agents that, in
principle, should coordinate. We find that the static heuristic
performs well when many agents are involved. Thus, CGs
(as a heuristic) accelerate planning. Q2. FS-W-POMCP
outperforms FS-POMCP across all three benchmarks, show-
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Figure 2: Comparison between Sparse-PFT (dotted) and our
PFT variants with value factorization (solid).

ing that POMCP benefits from offline weighted particle
filtering. The difference between FT-POMCP and FT-W-
POMCP is smaller, as FT-POMCP also benefits from the
fact that the belief representation, which is offline, consists
of local beliefs b̃e for each e, albeit unweighted (see Ap-
pendix E). Q3. Sparse-PFT performs well in MPOMDPs
with fewer agents, but with more agents, it runs out of mem-
ory or fails to find a good estimate of Q due to its naive enu-
meration of the action space (Fig. 2). FS-PFT and FT-PFT
do scale to settings with many agents. Thus, CGs allevi-
ate Sparse-PFTs scaling issues in many-agent POMDPs.
However, they achieve comparable (FFG) or lower (MARS)
returns in the settings with few agents. Combining CGs
with weighted filtering performs well across. We cross-
evaluate our contributions in (Fig. 3, Appendix A.2). We find
that both factored W-POMCP and PFT algorithm variants
are suited for many-agent POMDPs and perform well across
FFG and MARS, but POMCP variants generally perform
better. The improvement of FS-W-POMCP over FS-POMCP
is consistent. FT-W-POMCP is slightly better on FFG and
significantly improves over FT-POMCP in CT, but performs
equal or worse on MARS. The action selection method has
a noticeable influence on performance. In MARS and CT,
VE is the best-performing algorithm. However, MP achieves
much higher returns in FFG (Fig. 4, Appendix A.2). The fac-
tored algorithms are sensitive to the method that maximizes
over the local predictions, as recently also demonstrated in
the fully observable setting (Choudhury et al. 2022).

7 Related Work
Multi-agent Markov models. MPOMDPs reside in a
realm of models for cooperative multi-agent systems with
partial observability. Distributed cooperative systems (Dec-
POMDPs, Oliehoek and Amato 2016) remove the com-
munication assumptions of MPOMDPs. However, they are
much more computationally complex (doubly exponential),
as agents need to reason over each other’s policies. Messias,
Spaan, and Lima (2011) considered factored MPOMDPs by

assuming shared communication in Dec-POMDPs, comput-
ing policies over factored beliefs. Additionally, they stud-
ied lifting the instantaneous communication assumptions by
asynchronous execution (Messias, Spaan, and Lima 2013).
Our algorithms build on prior work by Amato and Oliehoek
(2015). Therefore, their work is summarized in Sect. 3. Zhou
et al. (2019) introduce a further decentralized MCTS al-
gorithm for transition-independent MPOMDPs. Choudhury
et al. (2022) consider a fully observable MMDP setting and
study action selection under state-dependent coordination
graphs. Recently, MPOMDPs were also studied with barrier
functions over the joint belief (Ahmadi et al. 2019) and to
support multi-object tracking (Nguyen et al. 2020).

Single-agent online planning. POMCPOW (Sunberg and
Kochenderfer 2018) and Sparse-PFT (Lim et al. 2023), also
in Table 1, are algorithms that improved UCT-based plan-
ners for POMDPs with continuous spaces. They, i.a., re-
placed unweighted belief estimates with importance sam-
pling estimates using weighted particle filters (Sect. 4). We
summarize Sparse-PFT in Sect. 5. POMCPOW shares char-
acteristics with W-POMCP and Sparse-PFT, simulating sin-
gle states but maintaining weighted particles in the tree.
DESPOT (Ye et al. 2017) and AdaOPS (Wu et al. 2021)
are alternative, orthogonal online planners that are distin-
guishable from MCTS methods (e.g., POMCP). DESPOT
utilizes a set of deterministic scenarios and heuristic tree
searches to reduce variance in the value estimates instead of
the independent simulations via MCTS. Its extensions em-
ploy alpha-vectors to fuse similar paths in the tree (Garg,
Hsu, and Lee 2019) or (GPU) parallelization in factored
simulators (Cai et al. 2021). AdaOPS also employs offline
and weighted particle filtering. Distinctively, it uses adaptive
particle filtering (Fox 2001), which requires a partitioning of
the state space into grids. It relies on a full-width search in-
stead of simulations, during which it fuses similar observa-
tion branches. Both algorithms work well with small-sized
discrete action spaces. However, it is unclear how value fac-
torization from coordination graphs can be incorporated, as
both algorithms expand the full action space at each new
node instead of picking the most promising action to sim-
ulate via the UCB1 policy. In MPOMDPs, expanding the
combinatorial joint action space is impractical.

8 Conclusion
In this paper, we studied how to simultaneously tackle the
belief and value estimation challenges in online planning for
MPOMDPs. We presented extensions of factored POMCP
and novel variants of the Sparse-PFT algorithms tailored
specifically for many-agent online planning with partial ob-
servability. The empirical evaluation showed the effective-
ness of combining weighted particle filtering and value fac-
torization in settings with many agents. However, it is also
clear that planning on the joint value suffices when few
agents are involved. Future work consists of alleviating the
communication assumptions (Spaan, Oliehoek, and Vlassis
2008; Oliehoek and Spaan 2012; Messias, Spaan, and Lima
2013), exploring extensions for continuous MPOMDPs, or
learning the coordination graph (Kok et al. 2005).
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