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Abstract

Probabilistic circuits (PCs) have gained prominence in recent
years as a versatile framework for discussing probabilistic
models that support tractable queries and are yet expressive
enough to model complex probability distributions. Never-
theless, tractability comes at a cost: PCs are less expressive
than neural networks. In this paper we introduce probabilistic
neural circuits (PNCs), which strike a balance between PCs
and neural nets in terms of tractability and expressive power.
Theoretically, we show that PNCs can be interpreted as deep
mixtures of Bayesian networks. Experimentally, we demon-
strate that PNCs constitute powerful function approximators.

1 Introduction
In recent years probabilistic circuits (PCs) (also called sum-
product networks) (Darwiche 2003; Poon and Domingos
2011) have emerged as an assembly language to talk about
tractable probabilistic models and inference therein (Vergari
et al. 2021). The core idea is quite simple: we start with a
set of independent random variables and construct complex
probability distribution by recursively adding and multiplying
them together. There are two common ways of interpreting
PCs. Firstly, we can consider them to be hierarchical mixture
models. Secondly, we look at them as neural nets consisting
of sums, products, and atomic probability distributions.

Most of the recent advances in the field adhere to the
second perspective: use an overparametrized probabilistic
model and fit it to data using gradient based methods by
leveraging discrete GPUs (Peharz et al. 2019; Dang et al.
2021). The computation units of such circuits are organized
in a layered fashion. We give an example in Figure 1.

A major advantage of PCs is their ability to answer certain
queries in polynomial time – given that adequate restrictions
are imposed on a circuit’s structure (Vergari et al. 2021). An
example of such a tractable query would be the computa-
tion of conditional probabilities for so-called smooth and
decomposable PCs (Darwiche 2001, 2003).

This tractability, however, comes at a hefty price: the prop-
erties imposed on PCs in order to ensure polynomial time
queries limit their expressive power (Martens and Meda-
balimi 2014; Sharir and Shashua 2018; Zhang, Juba, and
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Figure 1: Layered probabilistic circuit following the construc-
tion of (Shih, Sadigh, and Ermon 2021). Data (modeled as
random variables) is first fed into the leaf layer at the bottom.
The output of the leaf layer is a mixture of distributions pro-
duced by the sum units. In the sum-product layer (Layer 2)
mixtures of random variables are combined by taking pair-
wise products, these are then again mixed using sum units.
Finally, the root layer (at the top) gives us the joint probability
distribution. The red edges indicate functional dependencies
not present in traditional probabilistic circuits but present in
probabilistic neural circuits.

Van den Broeck 2021). This is in contrast to general neu-
ral networks and even sum-product networks with fewer
structural constraints (Delalleau and Bengio 2011; Kileel,
Trager, and Bruna 2019). Martens and Medabalimi (2014)
have shown that decomposability is in fact a necessary condi-
tion for tractable marginal inference.

Nevertheless, using the concepts of conditional smooth-
ness and conditional decomposability (Sharir and Shashua
2018), we study in this paper the space of models that lie
in between probabilistic circuits and neural networks. Con-
cretely, we make the following contributions:
1. We introduce conditional probabilistic circuits, from

which we construct probabilistic neural circuits (PNCs),
which we interpret as deep mixtures of Bayesian nets.

2. We provide a prescription to construct layered PNCs.
3. We provide an implementation of layered PNCs and ex-

perimentally study their expressive power.
Our work is influenced by that of Sharir and Shashua

(2018). We discuss the relationship to their approach (dubbed
sum-product-quotient networks) in Section 5.
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2 Preliminaries
In the remainder of the paper we will denote random variables
by uppercase X’s, the corresponding values are lowercase
x’s. Sets of random variables and their corresponding values
are typed in boldface: X and x, respectively. The definitions
and notions we introduce in this section are loosely based on
the work of Vergari et al. (2021).

Definition 2.1 (Probabilistic Circuit). A probabilistic circuit
over random variables X is a parametrized computational
graph encoding a probability density function p(X=x). The
circuit consists of three kinds of computational units: leaf,
product, and sum. Each product or sum unit receives inputs
from a set of input units denoted by in(n). Each unit k en-
codes a function pk(·) as follows:

pk(xn) =


fk(xn) if k leaf unit
pkl

(xnl
)pkr

(xnr
) if k product unit∑

j∈in(k) wkjpj(xn) if k sum unit

where fk(xn) denotes a parametrized probability distribu-
tion having as support the sample space of the random vari-
ables in Xn.

Definition 2.2 (Scope). The scope of a unit k, denoted by
ϕ(k), is the set of random variables Xn for which the function
pk(·) encodes a probability distribution.

Two important properties that are usually imposed on prob-
abilistic circuits are smoothness and decomposability as they
allow for tractable queries, e.g. computing marginals (Dar-
wiche 2001, 2003).

Definition 2.3 (Smoothness). A circuit is smooth if for every
sum unit k its inputs encode distributions over the same
random variables: ∀j1, j2∈in(k) it holds that ϕ(j1)=ϕ(j2).

Definition 2.4 (Decomposability). A circuit is decomposable
if the inputs of every product unit k encode distributions over
disjoint sets of random variables: ϕ(kl) ∩ ϕ(kr) = ∅ with
{kl, kr} = in(k).

Definition 2.5 (Valid Probabilsitic Circuit). We call a proba-
bilistic circuit valid if for every unit k we have that pk(xn)≥0
and

∫
pk(xn)dxn=1.1

As discussed by Peharz et al. (2015), probabilistic cir-
cuits are valid if they are smooth, decomposable, and that
for the weights in the sum units we have wkj ∈ R+ and∑

j∈in(k) wkj = 1 for every k. Note that the notation in Defi-
nition 2.1 already suggests that the circuit is smooth as the
inputs to the sum units are functions over the same set of
variables Xn.

Furthermore, we can assume, without loss of generality,
that sum and product units occur in an alternating fashion
in the circuit (Peharz et al. 2020). This observation naturally
leads to a layer-wise construction of probabilistic circuits
where consecutive layers alternate between sum and product
layers. Such layered probabilistic circuits (Peharz et al. 2019)
have the advantage that the computations within a layer can

1Note that our notion of validity is slightly stricter than in its
original definition, cf. (Poon and Domingos 2011)

be trivially parallelized. We can further abstract the layers
in a circuit by fusing together alternating sums and products
into a single sum-product layer (Peharz et al. 2020).

In Figure 1 we give a graphical representation of a layered
circuit. Layers consist of blocks of computational units that
are processed sequentially in a bottom-up fashion. Layers
are themselves constituted of so-called partitions. The circuit
in Figure 1 has four partitions in the leaf layer, two in the
sum-product layer, and a single partition in the root layer. By
construction, partitions in the same layer have disjoint scopes.
Moreover, partitions are further subdivided into input compo-
nents and output components, which constitute the elemental
computing units. The circuit in Figure 1 has, except at the
very bottom and top, three such input and output components
in each partition.

We can uniquely identify each computational unit (or com-
ponent) in the circuit by specifying the layer, the partition,
whether it is an input or an output, and its position within a
partition. Counting layers from bottom to top, and partitions
and units from left to right. Each component can be identified
using 4 indices: κl,p,i,c. The first index l identifies the layer,
the second p the partition, the third i ∈ {1, 2} whether it is an
input or output, and the fourth c the horizontal position within
a partition. For instance, the symbol κ2223 corresponds to the
upper-right unit in the sum-product layer.

3 Conditional Probabilistic Circuits
We will first introduce the notion of posets (partially ordered
sets) of random variables (Section 3.1). This will allow us to
generalize probabilistic circuits to conditional probabilistic
circuits, which we interpret as deep mixtures of Bayesian net-
works (Section 3.2). We then introduce probabilistic neural
circuits and their tractable queries (Section 3.3).

3.1 Partially Ordered Random Variables
Consider a set of random variables X={X1, . . . , XN} on
which we impose the parents relationship pa(·). The par-
ents relationship induces a directed acyclic graph on the
random variables X, where the nodes are the random vari-
ables themselves and an edge is present between Xi and Xj

if Xi∈pa(Xj). This gives us a partial ordering of the vari-
ables X. We also define the ancestor relationship an(·) to
be the transitive closure of pa(·). That is, the ancestors of a
random variable are its direct parents and recursively their
parents. Furthermore, we denote the poset for the random
variables X by O(X). We say that the relationship Xi⊏Xj

between two sets holds if ∀Xr∈Xi, Xq∈Xj : Xq /∈an(Xr).
We also define the relation Xi ⊏ Xj on random variables as
{Xi}⊏{Xj}.
Example 3.1 (Bayesian Network). Partially ordered random
variables induce a factorization of a joint probability dis-
tribution. A prominent example of such a factorization are
Bayesian networks (cf. Figure 2) where we have:
p(X=x) =

∏
n:Xn∈X pn(Xn=xn | Xpa(n)=xpa(n)). (1)

In the example above we denote pa(Xn) by Xpa(n). This
will allow us to omit the random variable Xn when writing
down a probability distribution and only use the instantiation
xn instead.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17281



X1 ⊏ X2 X1 ⊏ X4

X1 ⊏ X3 X3 ⊏ X1

X3 ⊏ X2 X3 ⊏ X4

X2 ⊏ X3 X2 ⊏ X4

X3

X2

X4

X1

Figure 2: Right: Bayesian network. Left: partial order rela-
tions that hold.

3.2 Deep Mixtures of Bayesian Networks
Definition 3.2 (Conditinal Probabilsitic Circuit (CPC)). A
CPC pk over a poset O(X) is a parametrized computational
graph encoding a probability density function p(X=x). The
CPC consists of leaf, product, and sum units. Each unit k
encodes a function pk as follows:

pk(xn | xpa(n)) (2)

=


fk(xn | xpa(n)) if leaf
pkl

(xnl
| xpa(nl))pkr

(xnr
| xpa(nr)) if product∑

j∈in(k) wkjpj(xn | xpa(n)) if sum

where fk(xn) denotes a parametrized probability distribu-
tion having as support the sample space of the random vari-
ables in Xn.

Definition 3.3 (Scope (CPC)). The scope ϕ(k) of a unit k
encoding the probability distribution pk(xn | xpa(n)) is the
set of random variables Xn.

Corollary 3.4. A conditional probabilistic circuit over an
unordered set of random variables is a (non-conditional)
probability circuit.

Proof. Having no order means that pa(X) = ∅ for every
X ∈ X. This then means that the conditioning sets in Defini-
tion 3.2 are all empty and that we recover a (non-conditional)
probabilistic circuit.

We can now also introduce the notions of conditional
smoothness and conditional decomposability:

Definition 3.5 (Conditional Smoothness). A CPC is con-
ditionally smooth if for every sum unit k it holds that
∀j1, j2∈in(k) : ϕ(j1)=ϕ(j2)

Definition 3.6 (Conditional Decomposability). A CPC is
conditionally decomposable if for every product unit k it
holds that ϕ(kl) ∩ ϕ(kr) = ∅ with {kl, kr} = in(k).

Corollary 3.7. A conditionally smooth and conditionally de-
composable CPC is smooth and decomposable if its random
variables X are unordered.

Definition 3.8 (Valid CPC). We call a CPC valid if
for every unit k we have that pk(xn|xpa(n))≥0 and∫
pk(xn|xpa(n))dxn=1.

Theorem 3.9 (Validity for CPCs). A CPC is valid if it is con-
ditionally smooth, conditionally decomposable, and for every
sum unit n it holds that wnm≥0 and

∑
m∈in(n) wnm=1.

Proof. We start by rewriting the alternating sums and prod-
ucts of a CPC in its flat representation using the fact that
products distribute over summations:

pk(xn) =
∑
τ∈T

wτ

∏
ρ∈τ

ρ(xρ) (3)

Here, T denotes the set of all products of leaf distributions in
the CPC and ρ ∈ τ denotes a factor in one of these products
(we refer to (Zhao, Poupart, and Gordon 2016) for a more
detailed account).

Invoking decomposability of the product units we have
that each random variable Xn only picks up a single factor
ρ(xρ), which means that we can identify each ρ(xρ) with a
specific fk(xn | xpa(n)). This lets us rewrite Equation 3 as:

pk(xn) =
∑
τ∈T

wτ

∏
k:fk∈τ

fk(xn | xpa(n)) (4)

Given that the fk are by definition (conditional) probability
distributions their product forms a joint probability distri-
bution as well. Next, we exploit smoothness, which states
that the inputs to sum units have identical scope. This means
that all the terms in the flat representation of p(Xn) mention
the identical set of random variables and each term in the
flat representation forms indeed a joint probability over the
random variables Xn.

Lastly, Peharz et al. (2015) have shown that having normal-
ized weights in the sum units of a circuit results in normalized
weights wτ in the flat representation. This lets us conclude
that the circuit pk(xn) is a probability distribution. Note that
we did not make any reference in our reasoning to any spe-
cific unit in the circuit. This means that our argument holds
for all units in a conditionally smooth and conditionally de-
composable circuit with normalized weights, which means
in turn that such a circuit is valid.

In light of Equation 4 and comparing it to Equation 1,
we can interpret CPCs as deep (or hierarchical) mixtures of
Bayesian networks. This is analogous to interpreting proba-
bilistic circuits as deep mixtures of fully factorized distribu-
tions (Poon and Domingos 2011).

3.3 PNCs and Their Tractable Queries
The computational efficiency of probabilistic circuits stems
from the fact the circuits evaluations are broken down into
sub-evaluations, which are then cached and reused. Inspect-
ing, however, the functional form of the sum units in a CPC
(cf. Equation 2), this is not the case: each term in the sum
over j requires a separate conditional probability for each in-
stantiation of the variables Xpa(n). This means that we would
need (assuming binary random variables) 2|Xpa(n)| functions
to encode the conditional probabilities. We alleviate this issue
as follows. First, we rewrite the functional form of the sum
units using Bayes’ rule:∑

j∈in(k)

wkj

pj(xpa(n) | xn)

pj(xpa(n))
pj(xn) (5)

Second, we make the following approximation:

wkj

pj(xpa(n) | xn)

pj(xpa(n))
≈ ωkj(xan(n)), (6)
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where ωkj(·) is a neural network depending on the set of
ancestors an(xn). This now allows us to formally introduce
probabilistic neural circuits.
Definition 3.10 (Probabilistic Neural Circuit (PNC)). A PNC
is a conditionally smooth and conditionally decomposable
CPC where sum units take the following functional form:

pk(xn | xpa(n)) =
∑

j∈in(k)

ωkj(xan(n))pj(xn), (7)

with ωkj : Ω(an(xn)) → [0, 1] being a neural network
mapping from the sample space of the random variables
an(xn) to a real between zero and one, and where it holds
that

∑
j∈in(k) ωkj = 1.

It can easily be seen that PNCs, already encode valid cir-
cuits (cf.. Definition 3.8) by construction. Intuitively, we
interpret PNCs as neural approximations of CPCs. Note that
it is this approximation that makes PNCs tractable: PNCs
only need a single circuits for each j while CPCs need a
circuit for every j and every instantiation of xpa(n).
Proposition 3.11. Probabilistic circuits are PNCs.
Proof. If the values ω(xan(n)) do not depend on xan(n) we
have |in(k)| constants that sum up to 1. This means that the
weights in the sum units do not depend on the conditioning
sets from the antecedent product layer, and we can omit any
conditioning sets. The definition of a PNC in this case is then
equivalent to the definition of a probabilistic circuit.

Given the definition of PNCs we can now determine
tractable queries that we can perform.
Proposition 3.12 (Density Evaluation). Given a probabilistic
circuit pk over the random variables X. We can evaluate the
circuit at the instantiation x in linear time with respect to the
size of the circuit.
Proof. This follows simply from the fact that a circuit is a
(non-recurrent) computation graph and that we can simply
evaluate it by computing input units before output units.

Proposition 3.13 (Ordered Marginals). Consider a PNC
pk(xm,xe) we can then compute the marginal pk(xe) in
polynomial time if Xe⊏Xm.
Proof. We start by writing out explicitly the single elements
in the set xm:

pk(xm,xe) = pk(xµ, . . . , x1,xe) (8)

where the order of {xµ, . . . , x1} = xm is arbitrary but re-
spects the partial order O(Xm ∪Xe). Given that the circuit
is conditionally smooth and conditionally decomposable, we
know that it encodes a proper probability distribution over
its variables. We can hence obtain the marginal p(xe) by
integrating over the possible values xm:

pk(xe) =

∫
· · ·

∫
pk(xµ, . . . , x1,xe)dxµ · · · dx1 (9)

As xµ does not appear in any of the conditioning sets and
as any product unit q is decomposable we can simply push
the summation to the input unit r of q for which we have
Xµ ∈ ϕ(r). For summation units we exploit the linearity of

the integral and distribute the integral over the terms in the
sum. Performing this recursively brings the integral to the
leaves where we have

∫
fi(xµ | xpa(µ))dxµ = 1.

Up to this point the marginalization in CPC is identical to
marginalization in probabilistic circuits. Contrary, to proba-
bilistic circuits, however, we now need to propagate back up
the result of the marginalization. Assuming, without loss of
generality that leaf units feed into sum units, we then have∑
g∈in(h)

ωhg(xan(µ))

∫
pg(xµ)dxµ=

∑
g∈in(h)

ωhg(xan(µ))=1

The next product node that we encounter on our way up
through the circuit is of the form:

pl(xµ−1 | xpa(µ−1))

∫
pr(xµ | xpa(µ))dxµ

= pl(xµ−1 | xpa(µ−1))

At this point we have integrated out the variable xµ from the
circuit by traversing a number of units linear in the size of
the circuit (assuming proper caching (Vergari et al. 2021)).
Repeating this procedure for the remaining set of ordered
random variables {Xµ−1, . . . , X1} gives us the distribution
pk(xe) in polynomial time.

The proof follows a similar reasoning to the case of prob-
abilistic circuits. The delicate point was to show that in the
product unit one of the factors drops out. This is important as
Xpa(µ) might include Xµ−1. Retaining such a dependency
would prevent us from performing tractable ordered marginal-
ization.
Corollary 3.14 (Ordered Conditionals). Assuming a PNC
pk(xm,xo,xe) where Xe ⊏ Xo ⊏ Xm holds lets us com-
pute the conditional p(xo | xe) in polynomial time.
Proof. We first apply the definition of the conditional prob-
ability: p(xo | xe) = p(xo,xe)/p(xe). Using the law of total
probability we rewrite the ratio as

p(xo | xe) =

∫
p(xm,xo,xe)dxm∫

p(xm,xo,xe)dxmdxo

and Proposition 3.13 tells us that we can perform both
marginalizations in polytime.

4 Layered Probabilistic Neural Circuits
While Equation 7 provides a generic functional expression
to compute the sum units in PNCs, it is not clear how to
construct a PNC in the first place. That is, how do we link
up the individual computation units such that they form a
(valid) CPC. For (non-conditional) probabilistic circuits po-
tent structure learning algorithms have been developed in
recent years (e.g. hidden Chow-Liu trees (Liu and Van den
Broeck 2021) or random probabilistic circuits (Di Mauro et al.
2021)). It is not entirely clear how to adapt these to the setting
of conditional probabilistic circuits. For this reason we study
problems where, informed by the structure of the data itself,
a structure for a PNC can be constructed. Concretely, we will
study PNC structures tailored towards image data: features,
i.e. pixels, that are close to each other should also be close to
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Figure 3: A balanced partition tree of a probabilistic neural
circuit with eight variables. The partition tree (in black) de-
scribes how the variables decompose (in terms of the scope
function). The edges in red indicate functional (neural) de-
pendencies between partitions.

each other in the circuit – a fact already exploited by Poon
and Domingos (2011).

The structure we propose in this paper is rather simple and
inspired by simple feed-forward neural networks and also
layered (non-conditional) probabilistic circuits (Peharz et al.
2020). More concretely, the computation units in the current
layer only depend on computation units in the previous layer.
Furthermore, we wish the units within each layer to be com-
putable in parallel (given the previous layer). To construct
such a probabilistic neural circuit we take the circuit structure
introduced by Shih, Sadigh, and Ermon (2021) as a backbone
and add additional edges to the computation graph in order
to obtain a PNC from a probabilistic circuit. For ease of ex-
position we detail our approach using one-dimensional data
instead of two-dimensional data.

4.1 Structure for One-Dimensional Data
In order to study PNC structures, we introduce the concept
of a partition graph, which is a hypergraph of a probabilistic
circuit with the partitions of a circuit being the nodes and
edges encoding the sub-partitions2. We give an example of a
partition tree in Figure 3.

Ignoring for now neural dependencies in PNCs (i.e. the red
edges in the partition tree in Figure 3) we describe the layer-
wise operations. Let us assume, for the sake of simplicity, that
the number of variables N is a power of 2. For instance, the
circuits in Figure 1 has N = 4 and the partition diagram in
Figure 3 has N = 8. Given that we merge partitions pairwise
at each layer via multiplication, we obtain for the number of
layers in a circuit NL = log2 N + 1. Formally, we express
the layer-wise product units as follows:

κl,p,1,c = κl−1,2p,2,c × κl−1,2p+1,2,c, (ProductLayer)

2In the circuit structure introduced by Shih, Sadigh, and Ermon
(2021), all the product nodes decompose in the same fashion, i.e.
for product nodes with the same scope it is the sames variables that
come from the left and right inputs, respectively. This is also called
structured decomposabiltiy (Darwiche 2011). Partition trees are
related to the concept of variable trees in (probabilistic) sentential
decision diagrams (Darwiche 2011; Kisa et al. 2014). However,
nodes in a variable tree do not constitute abstractions of a specific
group of sum and product units and are a more general concept.

× × × × × × × × ×

ω1

ω2

ω3

Figure 4: Detailed graphical representation of neural de-
pendencies in a PNC. The sum unit at the top outputs the
weighted sum of the three product units at the bottom right.
The weights for the sum are the outputs of a neural network
for which it holds that

∑3
i=1 = 1. They are computed using

a neural network that takes as input the values of the six
product units at the bottom left.

which describes how to compute the value of a component
given the components of the previous layer. The meaning of
the indices is described in Section 2. Using this notation we
can also express the sum units at the leaves and at the root:

κ1,p,2,c =

ND∑
c′=1

w1,p,c,c′ × κ1,p,1,c′ (SumLeaf)

κNL,1,2,1 =

NC∑
c′=1

wNL,1,1,c′ × κNL,1,1,c′ (SumRoot)

In the equations above, ND denotes the number of initial
components in the leaves and NC is the number of compo-
nents throughout the circuits. For the circuit in Figure 1 we
have ND=2 and NC=3. The weights wl,p,c.c′ are real valued
constants and normalized over the c′ dimension. Note that,
in contrast to the formulation in Section 3, weights (and also
computation units in general) are not identified by a single
index (e.g. k in pk(·)) but by four indices. To make this dis-
tinction explicit we denote the computation units by κl,p,i,c

instead of pk(·). Observe also that the root layer has only a
single component. Hence, the 1 as the last index instead of c.

Next, we describe the neural sum units in layered PNCs. To
gain some intuition, consider the partial computation graph
in Figure 4, where we show in more detail, compared to
Figures 1 and 3, the neural dependencies present at the sum
units. Formally, we express the values of neural sum units as
follows:

κl,p,2,c (NeuralSumLayer)

=

NC∑
c′=1

ωl,p,c,c′(κl,p−νl,p:p−1,1,1:NC
)× κl,p,1,c′

Here, ωl,p,c,c′(·) denotes a neural network and NC denotes
again the number of components. The input to the neural net
are the values of the set of units κl,p−νl,p:p−1,1,1:NC

. The
notation 1:NC denotes the range of components [1, . . . , NC ]
(including the first and last element). Similarly, p−νp:p−1
denotes the range of partitions [p−νl,p, . . . , p−1]. The param-
eter νl,p is a hyperparameter and describes how many parti-
tions ‘to the left’ are taken into consideration when computing
the neural weights. For instance, in the partial computation
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Algorithm 1: Layer-wise circuit evaluation
Input: xo. Xm

Output: p(xo)
Require: Xo∪Xm=X, Xo⊏Xm

1: κp,c ← init(p, c,xo)

2: κp,c ←
∑ND

c′=1 w1,p,c,c′ × κp,c′ ▷ LeafLayer
3: l← 2
4: while l < NL do
5: κp,c ← κ2p,c × κ2p+1,c ▷ ProductLayer
6: κp,c ←

∑NC

c′=1 ωl,p,c,c′ × κp,c′ ▷ NeuralSumLayer
7: l← l + 1
8: end while
9: κp,c ← κ2p,c × κ2p+1,c ▷ ProductLayer

10: κ1,1 ←
∑NC

c′=1 wNL,1,c,c′ × κ1,c′ ▷ RootSum
11: return κ1,1

graph in Figure 4, we have νl,p=2. When setting νl,p=0 we
recover the special case of layered (non-conditional) proba-
bilistic circuits.

Observe that it is those intra-layer neural dependencies
that induce an order on the random variables: we can only
perform the computations of the units in the right branch of a
partition tree if the values in the left branch are known. This
holds recursively.
Definition 4.1. Given a poset of random variablesO(X), we
call a neural sum layer valid if the (partial) variable order it
induces respects O(X).

Using the equations above to compute the leaf, product,
sum, and root layers, we can also write down the pseudocode
for marginal inference in layered PNCs, which we give in
Algorithm 1. For ease of exposition we assume again that the
number of variables X is a power of two, and we refer to our
implementation for the general case3.

The algorithm takes as input a set of random variable in-
stantiation xo and a set of random variables Xm. The latter
ought to be marginalized out, and the circuit evaluation com-
putes the probability p(xo).

The first step is to initialize the κp,c, which we do with the
following function:

init(p, c,xo) =

{
fp.c(x) if x ∈ xo

1 otherwise
(10)

Each combination of p and c corresponds to an index k in
Equation 2. Note that we forego in Algorithm 1 the possi-
bility of introducing conditional dependencies in the leaves.
The 1’s in the second case result from marginalizing out the
probability distributions in the leaves for the variables in Xm.

The algorithm then proceeds by first performing the com-
putations in the leaf, before looping through the internal sum
and product layers, and finishes with computing the root layer.
In contrast to the 4-index notation introduced in Section 2 we
only use two indices here. This is because the identification
of the layers happens implicitly using the l counter of the
while loop.

3https://github.com/pedrozudo/ProbabilisticNeuralCircuits.git

Figure 5: Graphical representation of half kernels used for
neural sum layers in layered PNCs. On the left we see a
kernel used for one-dimensional data while on the right we
have a 3×3 kernel for two-dimensional data. The gray blocks
indicate the learnable parameters of the half kernels, while a
white square indicates a parameter fixed to zero. Effectively,
the convolutional layer is blind with regard to the inputs for
these zero elements of the kernel.

4.2 Implementation Using Convolutions
An efficient way of implementing neural sum layers is by
means of convolutional neural networks. We can readily see
this if we interpret the components within a layer as the chan-
nels of the convolutional neural network and the partitions as
the input dimension over which we perform the convolution.

Assuming that our one-dimensional data is ordered left to
right, we can make sure that this order is respected throughout
the neural sum layers by using convolutional networks with a
half kernel as depicted in the left of Figure 5. The convoluted
channels can then be passed on to further layers. As a final
activation function we use a softmax layer that normalizes
the outputs such that they sum up to 1, per partition that is.
Importantly, the number of output channels has to match the
number of components in the summation.

5 Related Work
A first attempt at relaxing decomposability in probabilis-
tic circuits was made by Sharir and Shashua (2018) with
the introduction of sum-product-quotient networks (SPQNs).
SPQNs introduce the quotient unit (in addition to sum and
products), which encode conditional probabilities within a
circuit. We show that introducing extra units is unnecessary
as the same effect can be obtained by generalizing sum and
product units while retaining two types of computation units.

On a theoretical level this allows us to forego the intro-
duction of expendable concepts such as conditional sound-
ness (Sharir and Shashua 2018, Definition 5) or conditional
and effective scopes of a unit (Sharir and Shashua 2018,
Section 3).

On the practical side we will show in Section 6 that neu-
ral sum layers outperform the conditional mixing operator
(CMO) proposed as a building block for SPQNs (Sharir and
Shashua 2018, Definition 6). As a matter of fact, PNCs strictly
generalize SPQNs constructed with CMOs.
Corollary 5.1. CMO-SPQNs are PNCs.
Proof. This can trivially be shown by picking ω(·) such that

κl,p,2,c (QuotientSumLayer)

=

∑NC

c′=1 wl,p,c,c′ × (
∏

κ′∈κl,p−νl,p:p−1,1,c′
κ′)× κl,p,1,c′∑NC

c′=1 wl,p,c,c′ × (
∏

κ′∈κl,p−νl,p:p−1,1,c′
κ′)

where we use our notation from Section 3.3 to write down
the CMO of Sharir and Shashua (2018).
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Guided by Corollary 5.1 we implemented CMO-SPQNs
using a convolutional layer by simply fixing the non-zero
elements of the kernel (cf. Figure 5) to one. Performing the
convolution on probabilities in log-space then simply corre-
sponds to multiplying them in linear space. In this fashion
we easily obtain the product present in the quotient sum layer.
An important difference between CMO-SPQNs and PNCs is
that for the former components (or channels) must not mix
with each other, which hinders their performance in terms of
function approximation.

The limited expressive power of sum units was also noted
by Shao et al. (2022), which led them to introduce conditional
sum-product networks. The idea is to condition the weights
of the sum units in a probabilistic circuit on the value of a
random value (using neural networks). The main difference
to our work is that these random variables live out-side of the
circuits itself. Speaking in terms of Bayesian networks the
approach of Shao et al. (2022) is only capable of encoding
a single Bayesian network while CPC encode hierarchical
mixtures of Bayesian networks.

6 Experimental Evaluation
For our experimental evaluation we used the MNIST fam-
ily of dataset. That is, the original MNIST (Deng 2012),
FashionMNIST (Xiao, Rasul, and Vollgraf 2017), and also
EMNIST (Cohen et al. 2017). We implemented PNCs (and
also SPQNs) in PyTorch and Lightning4, and ran all our
experiments on a DGX-2 machine with V100 Nvidia cards.

6.1 How Do PNCs Fair Against PQCs and PCs?
Setup To answer the first question we trained a PNC, an
SPQNs and a PC on the MNIST family of datasets and mini-
mize the negative log-likelihood. In order to render the three
models commensurable, all three have the same underlying
circuit structure. That is, we start with a grid of 28× 28 pix-
els and merge, in an alternating fashion, rows and columns.
This corresponds to product nodes in the circuits. Between
each merge we perform a summation. For probabilistic (sum)
circuits (PSCs) this is the usual sum unit, for probabilistic
quotient circuits (PQCs or SPQNs) we use the conditional
mixing operator, and for PNCs we use a neural sum layer.
The kernel type used for PQCs and PNCs is the one depicted
in the right of Figure 5. For the leaves, which encode the
28× 28 pixels, we use one categorical distribution with 256
categories for each pixel. This allows us to represent all pos-
sible pixel values. Within the circuits we used 12 components
per partition. Merging rows and columns in an alternating
fashion and using the kernel from Figure 5 induces a spe-
cific variable ordering on a 2-dimensional grid, which we
graphically represent in Figure 6.

All three models were trained for 100 epochs using
Adam (Kingma and Ba 2014) with a learning rate of 0.001
and a batch size of 50. The best model was selected using a
90 − 10 train-validation data split where we monitored the
negative log-likelihood on the validation set. We refer to the
configuration files of the experiments for more details.

4https://lightning.ai/

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

Figure 6: For simplicity’s sake, assume that we have a 4× 4
grid of pixels (instead of the 28 × 28 MNIST grid). Recur-
sively merging rows and columns and using the kernel from
Figure 5 then gives us the total pixel order as indicated in the
grid. We can then marginalize out pixels with higher numbers
before pixels with lower numbers. For the specific case here
we could marginalize out the lower half of the 4× 4 image,
while retaining a probability distribution for the upper half.

Results We compare the three architectures using bits per
dimension, which are calculated from the average negative
log-likelihood (NLL) as follows: bpd = NLL/(log 2×D), here
D = 282 for MNIST datasets.

The results are reported in Table 1 in the first three columns.
We see that quotient circuits outperform sum circuits when
it comes to minimizing the negative log-likelihood (mini-
mizing bpd). We also see that neural circuits, with their data
dependent weights, outperform both other methods. Note that
PNCs and PQCs allow for the same set of tractable queries,
while PNCs are more performant.

6.2 How Do PNCs Fair Against State of the Art?

Setup We use again the same PNCs as in Section 6.1
and compare them to (decomposable) probabilistic circuits
from the literature: hidden Chow-Liu trees (HCLT) (Liu and
Van den Broeck 2021), sparse HCLT (SHCLT) (Dang, Liu,
and Van den Broeck 2022), random sum-product networks
(RAT-SPN) (Peharz et al. 2019), and continuous mixture cir-
cuits (CMC) (Correia et al. 2023). For completeness, we also
include the bpd for IDF (a flow-based approach) (Hooge-
boom et al. 2019) and for BitSwap (a hierarchical latent
variable model) (Kingma, Abbeel, and Ho 2019). Note that
the results reported for RAT-SPN were taken from (Dang,
Liu, and Van den Broeck 2022).

Results We see again that PNCs outperform the other meth-
ods in terms of bpd. On the one hand this is due to the in-
creased expressive power of PNCs obtained by relaxing de-
composability (and thereby losing tractability). On the other
hand, this is also due to the fact that PNCs use neural sum
units. This can be seen by comparing the results for PQC
and SHCLT. While PQC are in theory more expressive than
SHCLT we don’t see this in practice: the learned structure
of SHCLTs overcomes this expressivity gap. However, we
see that PNCs manage to outperform SHCLTs. Interestingly
our implementation of PCs (PSC) does produce lower bpd
than RAT-SPNs, suggesting that the latter are a rather weak
baseline when it comes to density estimation on image data.
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PNC PQC PSC SHCLT HCLT CMC RAT-SPN IDF BitSwap

MNIST 0.87 1.20 1.32 1.14 1.20 1.28 1.67 1.90 1.27
FashionMNIST 2.51 3.47 3.66 3.27 3.34 3.55 4.29 3.47 3.28
EMNIST (mnist) 1.36 1.84 2.07 1.52 1.77 – 2.56 2.07 1.88
EMNIST (letters) 1.33 1.83 2.07 1.58 1.80 – 2.73 1.95 1.84
EMNIST (balanced) 1.35 1.86 2.16 1.60 1.82 – 2.78 2.15 1.96
EMNIST (byclass) 1.27 1.76 2.02 1.54 1.85 – 2.72 1.98 1.87

# parameters 2.8M 2.6M 2.6M 7.0M 7.0M 0.1M 7.0M 24.1M 2.8M

Table 1: Test set bpd for MNIST datasets (lower is better). The last row shows the number of parameters for each model (the
symbol M stands for millions).

6.3 Can PNCs Perform Discriminative Learning?

Setup Assume that we have a data point x for the random
variables in X and a label y for this data point. Using Bayes
rule we can rewrite the discriminative probability using gen-
erative distributions: p(Y=y|X=x)= p(x|y)∑

z∈Ω(Y ) p(x|y)
, where

we assume that the class prior is identical for each of the
classes belonging to the sample space Ω(Y ). This means
that for every class in Ω(Y ) we have a separate distribution.
That is, a separate circuit. In the case of MNIST and Fash-
ionMNIST we have ten classes. The resulting ten circuits are
jointly optimized using cross-entropy (Peharz et al. 2019).
Architecturally, we used again 12 components per partition
and the 10 different circuits share all parameters but the pa-
rameters in the leaf layer and root layer.

Furthermore, instead representing pixels as categorical ran-
dom variables (with sample space {0, . . . , 255}) we model
them as continuous random variables with samples belong
to the interval [0, 1]. We obtain this value v by dividing the
pixel by 255. Each leaf has then two inputs: the correspond-
ing value v of of the pixel itself and 1− v. This follows the
protocol of (Liang and Van den Broeck 2019). Apart from
optimizing the cross-entropy instead of the log-likelihood
the training protocol was identical to the one for density
estimation.

Results We report the comparison in terms of classifica-
tion accuracy on the test set, which we show in Table 2. We
compare PNCs and PQCs to logistic circuits (LCs) (Liang
and Van den Broeck 2019) and RAT-SPNs (Peharz et al.
2019). We see that PNCs perform better than PQC. However,
neither reaches the accuracies of LCs nor RAT-SPNs. We
hypothesize that this is due to a lack of regularization. For
instance, PNCs reach perfect train accuracy on MNIST and
near perfect train accuracy on FashionMNIST. Furthermore,
the authors of LCs and RAT-SPNs reported having used ag-
gressive regularization techniques – for the former on their
Github page5 and the latter in (Peharz et al. 2019, Section
4.2). While we experimented with various regularization tech-
niques such as weight decay (Loshchilov and Hutter 2018)
or the stochastic delta rule (Hanson 1990), we were not able
to obtain consistent improvements. We leave the study of ef-
fective regularization techniques for discriminative learning
with PNCs for future work.

5https://github.com/UCLA-StarAI/LogisticCircuit

PNC PQC LC RAT-SPN

MNIST 98.04 97.38 99.4 98.29
FashionMNIST 88.84 87.63 91.3 89.89

Table 2: Test accuracies for MNIST and FashionMNIST.

7 Conclusions & Future Work

We first introduced the concept of a conditional probabilistic
circuit, from which we were then able to construct probabilis-
tic neural circuits, which generalize probabilistic circuits and
sum-product-quotient networks. Note that the construction
of PNCs would not have been possible from the formulation
of Sharir and Shashua (2018). Furthermore, our formulation
allows us to intuitively interpret PNCs as neural approxima-
tions of deep mixtures of Bayesian networks.

Experimentally, we have shown that for density estima-
tion PNCs deliver on the promise made by SPQNs. That is,
giving up on tractability improves function approximation in
practice. For the discriminative case the situation is more nu-
anced. While PNCs achieve perfect accuracy on the training
set a lack of proper regularization techniques prevents them
from matching accuracies obtained by competing methods.
We would also like to note that more sophisticated architec-
ture designs for PNCs could possibly further improve their
performance. For instance, using different numbers of com-
ponents per partition dramatically increased the performance
of SHCLT when compared to HCTL.

In future work we would like to explore the potential of
PNCs for sampling, a task that probabilistic models usually
struggle with (Lang et al. 2022) as good likelihood estimates
do not correlate with sample quality (Theis, van den Oord,
and Bethge 2016). This would also establish a tighter link
to autoregressive models (ARM) (e.g. PixelCNN (Van den
Oord et al. 2016)) and we might use ideas developed there
for PNCs. In this regard, any-order ARM (Uria, Murray, and
Larochelle 2014; Shih, Sadigh, and Ermon 2022) seem to be
of particular interest to PNCs as this could allow for arbitrary
conditioning sets in PNCs.

Other open questions concern structure learning for PNCs
and applying them to tabular data or finding applications of
PNCs – an obvious candidate would be lossless compression
with circuits (Liu, Mandt, and Van den Broeck 2022), as
any-order marginalization is not necessary.
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