PreRoutGNN for Timing Prediction with Order Preserving Partition: Global Circuit Pre-training, Local Delay Learning and Attentional Cell Modeling

Ruizhe Zhong1, Junjie Ye2, Zhentao Tang2, Shixiong Kai2, Mingxuan Yuan2, Jianye Hao2, 3, Junchi Yan1*

1Dept. of Computer Science and Engineering & MoE Key Lab of AI, Shanghai Jiao Tong University
2Huawei Noah’s Ark Lab
3College of Intelligence and Computing, Tianjin University
zerzerzerz271828@sjtu.edu.cn, kourenmu@163.com, tangzhentao1@huawei.com, kaishixiong@huawei.com, Yuan.Mingxuan@huawei.com, haojianye@huawei.com, yanjunchi@sjtu.edu.cn

Abstract

Pre-routing timing prediction has been recently studied for evaluating the quality of a candidate cell placement in chip design. It involves directly estimating the timing metrics for both pin-level (slack, slew) and edge-level (net delay, cell delay), without time-consuming routing. However, it often suffers from signal decay and error accumulation due to the long timing paths in large-scale industrial circuits. To address these challenges, we propose a two-stage approach. First, we propose global circuit training to pre-train a graph auto-encoder that learns the global graph embedding from circuit netlist. Second, we use a novel node updating scheme for message passing on GCN, following the topological sorting sequence of the learned graph embedding and circuit graph. This scheme residually models the local time delay between two adjacent pins in the updating sequence, and extracts the lookup table information inside each cell via a new attention mechanism. To handle large-scale circuits efficiently, we introduce an order preserving partition scheme that reduces memory consumption while maintaining the topological dependencies. Experiments on 21 real world circuits achieve a new SOTA R^2 of 0.93 for slack prediction, which is significantly surpasses 0.59 by previous SOTA method. Code will be available at: https://github.com/Thinklab-SJTU/EDA-AI.

Introduction

The process of integrated circuit (IC) design can be thought of as a series of hierarchical decomposition steps, typically consisting of architectural design, logic synthesis, physical design (macro & cell placement, routing) and verification. As IC becomes more and more complex, timing constraints, such as delay and slack, are becoming more difficult to satisfy during the physical design stage. ‘Shift-left’ (Zhou et al. 2022) suggests circuit constraints and performance should be considered in earlier stages of design flow, for instance, taking timing into consideration during standard cell placement stage (Liao et al. 2022). Timing metrics are critical to judge the performance of a design, but accurate timing information is only available after routing, which is one of the most time-consuming steps. Since repetitive routing in
do not take the global graph information into consideration. For example, CircuitGNN (Yang et al. 2022) converts each circuit to a heterogeneous graph, and design the topo-geom message passing paradigm for prediction of wirelength and congestion. Wirelength is estimated in each net using half-perimeter wirelength, and congestion is predicted in local area measured with pixel values. Both tasks are enclosed in local area, where local information is already sufficient. However, in pre-routing slack prediction, it relies all elements through timing paths, where long range dependencies and global view play a critical role, and they are absent in CircuitGNN. Consequently, we cannot directly apply these GNNs into the prediction of slack. Net² (Xie et al. 2021) for wirelength prediction applies graph partition and merges cluster embedding into node features, but cannot avoid the local receptive field enclosed in cluster. TimingGCN (Guo et al. 2022) utilizes a timing engine inspired GNN to predict slack, where node embedding is updated with predecessors asynchronously. However, it is prone to signal decay and error accumulation, demonstrated in Fig. 1. We first apply topological sorting (Lasser 1961) on circuit graph to get topological level (topological sorting order) of each pin. Then we calculate MSE (Mean Squared Error) between AT prediction and ground truth for pins belonging to the same sorting order. In other methods, MSE increases rapidly with level, demonstrating the existence of signal decay and error accumulation problems.

Motivated by these issues, we propose our two-stage approach for pre-routing slack prediction. In the first stage, we pre-train an auto-encoder to extract node and graph embeddings for following downstream tasks, providing a global receptive field and an informative representation. In the second stage, we design a new message passing and node updating scheme for long timing paths, and train our GNN for pre-routing slack prediction. We list features of different methods in Table 1. **The highlights of this work are:**

- **First time to introduce global circuit pre-training into timing (specifically slack) prediction.** Global view plays a critical role in addressing the signal decay and error accumulation issues. We capture this feature via graph embeddings, which can be effectively learned by global circuit pre-training technique. Besides, our global circuit pre-training can serve as a plug-and-play module for other timing prediction GNN.

Figure 1: MSE of AT prediction vs. topological level. In previous ML-based methods TimingGCN (Guo et al. 2022), MSE increases rapidly with level, showing the existence of signal decay and error accumulation.

Table 1: Features comparison among different methods.

<table>
<thead>
<tr>
<th>Model</th>
<th>Update scheme</th>
<th>Global</th>
<th>Embed.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN</td>
<td>Sync./Direct</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>GAT</td>
<td>Sync./Direct</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>GINE</td>
<td>Sync./Direct</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>GCNII</td>
<td>Sync./Direct</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>CircuitGNN</td>
<td>Sync./Direct</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>TimingGCN</td>
<td>Async./Direct</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Net²</td>
<td>Sync./Direct</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>LHNN</td>
<td>Sync./Direct</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Ours</td>
<td>Async./Residual</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Preliminaries and Related Works

Static Timing Analysis Static timing analysis (STA) provides a profile of a design’s performance by evaluating the timing propagation from inputs to outputs, forming multiple timing paths. A timing path (Hu, Sinha, and Keller 2014) is a set of directed connections through circuit elements and connections, and all signals travel through it. After routing, STA should be done under four corner conditions: early-late/risefall (EL/RF) (Hu, Sinha, and Keller 2014).

During STA, the circuit is represented as an Activity-On-Edge network, where each pin is a node and pin-to-pin connection is an edge. The activity cost on each edge is either a feature or an activity cost. The activity cost on each edge is either a feature or an activity cost. The activity cost on each edge is either a feature or an activity cost. The activity cost on each edge is either a feature or an activity cost. The activity cost on each edge is either a feature or an activity cost.

Handling large-scale and strong performance. For scalability and making training on large-scale circuits tractable, we design a order preserving graph partition algorithm to reduce memory cost while preserving the order dependencies. Experiments on public benchmark with 21 real world circuits demonstrate the effectiveness of our method. For R^2 of slack prediction, we achieve new SOTA 0.93, surpassing 0.59 of peer SOTA method.

Residual local learning of signal delay. We design a new message passing and node updating scheme, with residual local learning to explicitly model local signal delay in long time paths.

Attention-based cell modeling. We re-explore the modeling process of cell and explain it as a ‘query-index-interpolation’ procedure. Based on this, we propose multi-head joint attention mechanism to depict it.

$\text{slack}^E = AT^E - RAT^E, \text{slack}^L = RAT^L - AT^L, \quad (1)$

where E, L means early and late, and a positive slack means timing constraint is satisfied. Since RAT is usually provided
in external files, so we mainly focus the estimation of AT, and use provided RAT and estimated AT to calculate slack.

Besides, the signal transition is characterized by its slew, which is defined as the required amount of time of transition between electrical levels. Slew is also an important timing metric to evaluate the quality of circuit, and accurate slew can be accessed by STA after routing.

Pre-training in EDA As training from scratch requires much time and data, pre-training has been recently and widely applied in vision (Devlin et al. 2018; Brown et al. 2020), and it is becoming a promising trend in EDA. Using pre-trained model not only saves these costs but provides more informative representation. DeepSeq (Khan et al. 2023), DeepGate (Li et al. 2022) and Bulls-Eye (Chowdhury et al. 2022) transform circuits into AND-Inverter-Graph format and learn corresponding representation for logic synthesis. DeepPlace (Cheng and Yan 2021) uses reinforcement learning agent pre-trained on macro connection to jointly solve placement and routing. However, few works about pre-training have been done in timing prediction, especially slack. We think pre-training can provide a graph embedding containing global view, which plays a critical role in addressing the signal decay and error accumulation in long timing paths.

GNNs for Timing Prediction GNNs are optimizable transformations for graph-structured data attributes. As they continue to evolve, new variants are emerging that target graph topological structure (Zhao et al. 2023) and large-scale characteristics (Wu et al. 2022, 2023a,b). Due to the graph structure of circuit netlist, it is natural to apply GNN in EDA field. GCN (Defferrard, Bresson, and Vandergheynst 2016; Kipf and Welling 2017) is proposed as a generalization from low-dimensional regular grids to high-dimensional irregular domains. GAT (Velickovic et al. 2018) introduces attention mechanism to assign learnable weights for neighbours. GCNI (Chen et al. 2020) introduces initial residual and identity mapping to mitigate over-smoothing problem. GINE (Hu et al. 2020) is a variant of GIN (Xu et al. 2019) with additional edge features. At first, it is designed to address the graph isomorphism problem, but it also demonstrates strong ability in other graph related tasks, e.g. node classification. However, aforementioned GNNs are not specifically designed for circuits containing long timing paths, thus they are faced with local receptive field and over-smoothing problems. CircuitGNN (Yang et al. 2022) converts each circuit to a heterogeneous graph, and designs the topo-geom message passing paradigm for prediction of wirerelength and congestion. TimingGCN (Guo et al. 2022) is a timing engine inspired GNN especially for pre-routing slack prediction. LHNN (Wang et al. 2022a) uses lattice hyper-graph neural network to prediction routing congestion. Net² (Xie et al. 2021) applies graph attention network into pre-placement net length estimation.

Methodology

Formulation. Given the intermediate design result after standard cell placement and before routing, we predict the AT and slack for all pins in the circuit after routing. Each circuit is represented as a heterogeneous and directed acyclic graph (DAG), containing one type of node and three types of edge. Primary inputs (input ports), primary outputs (output ports), and pins are treated as one type of node. cell, net and net_inv are three types of edges, corresponding to fan-in to fan-out, net driver to net sink, net sink to net driver connection, respectively. Details of graph feature are shown in Appendix. Pipeline of our approach is shown in Fig. 2.

Global Circuit Pre-training

Due to the local receptive field of common message passing paradigm based GNNs, the global view is often absent. It plays an essential role in accurately modeling the timing feature along timing path. As a consequence, the lack of global view leads to the signal decay and error accumulation problems. Motivated by this issue, we capture this feature via graph embeddings, which can be effectively learned by global circuit pre-training.

The first stage of our approach is to train an auto-encoder for graph reconstruction in a self-supervised way. We use it to explicitly extract the global embedding for downstream tasks. It provides a global view for the whole graph, which is absent in previous methods. Since the pre-training is implemented in a self-supervised way, circuits without timing labels (AT, slew, delay) can also be used for graph recon-
The directed edge from u where x learning (RLL) in our node updating scheme: and i where the activity cost on each edge is net delay or cell Activity-On-Edge network (Hu, Sinha, and Keller 2014), computation of AT, the circuit can be represented as an and node updating scheme for long timing paths.

ods, MSE increases rapidly with topological level, suggest-

level. Given a level, we can set the sorting order of any its

ical sorting order. Each vertex belongs to one and only one

vertex set, and all vertices in a level have the same topolog-

In line with TimingGCN (Guo et al. 2022), we define

Residual Local Learning of Signal Delay

In line with TimingGCN (Guo et al. 2022), we define topological level (level for short) as a sub-set of whole graph’s vertex set, and all vertices in a level have the same topological sorting order. Each vertex belongs to one and only one level. Given a level, we can set the sorting order of any its vertices as its level index, and this level index is unique. From Fig. 1 we can see that, in previous estimation methods, MSE increases rapidly with topological level, suggesting the existence of signal decay and error accumulation. To mitigate these problems, we propose our message passing and node updating scheme for long timing paths.

Considering a circuit and its signal propagation, e.g. the computation of AT, the circuit can be represented as an Activity-On-Edge network (Hu, Sinha, and Keller 2014), where the activity cost on each edge is net delay or cell delay. The AT of current node i is computed as $AT_i = \max_{j \in N(i)}(AT_j + d_{ji})$, where $N(i)$ is the predecessors of i and d_{ji} is the delay from j to i.

To explicitly model this delay, we introduce residual local learning (RLL) in our node updating scheme:

$$m^{(t+1)}_v = x^{(t)}_v + \phi\left(x^{(t)}_u, x^{(t)}_v, f^{(t)}_e\right), e \in E$$
$$x^{(t+1)}_v = x^{(t)}_v + \rho\left(\left\{m^{(t+1)}_e : e \in E\right\}\right),$$

where $x_v \in \mathbb{R}^{d_l}$ is the feature for node v, $e = (u, v)$ is the directed edge from u to v, $f_e \in \mathbb{R}^{d_s}$ is the feature for edge e, E is the edge set, t is the GNN layer index, ϕ is the message function, ρ is the reduce function, and ψ is the update function. This inductive bias better depicts the signal computation process and learning incremental value is the direct manifestation of learning cell delay and net delay.

Topological level encoding. Node topological sorting order is useful to address the signal decay and error accumulation, as it indicates the node location in timing path. We incorporate topological level encoding to map the level index to a multi-frequency vector. Inspired by NeRF (Mildenhall et al. 2021) and Transformer (Vaswani et al. 2017), we use following encoding:

$$\gamma(x) = [x, \sin(2^0\pi x/L), \cos(2^0\pi x/L), \sin(2^1\pi x/L), \cos(2^1\pi x/L), \ldots, \sin(2^{N-1}\pi x/L), \cos(2^{N-1}\pi x/L)],$$

where x is the level index of each pin, N is the number of different frequency components and L is the maximum level. This level encoding explicitly incorporate high-frequency components into node embedding, assisting the GNN to identify the level information. Besides, the multi-head joint attention we proposed in the following section can be explained as a low-pass filter (Wang et al. 2022b; Park and Kim 2022) The level encoding enhances and amplifies the high-frequency components, keeping them active during forward propagation. As a result, it is beneficial to model the topological order.

Multi-head Joint Attention for Cell Modeling

The output slew and cell delay for cell can be represented by the non-linear delay model (Hu, Schaeffer, and Garg 2015) stored in two-dimensional look-up tables (LUTs) in external files, e.g. Liberty files. The row and column indices of LUTs are pre-defined input slew and driving load. The values of LUTs are pre-defined cell delay or output slew. In STA, given an input slew and a driving load, the corresponding output slew or cell delay can be calculated by referencing the table with two input indices and applying bi-linear interpolation, which is a ‘query-index-interpolation’ procedure. From the perspective of attention mechanism, input slew and driving load can be treated as queries, LUT’s row and column as keys, and table of LUT as values. Since the two kinds of keys are not independent, we use multi-head joint attention (MJA) to model cell as follows:

$$K = K_1 \times K_2 \in \mathbb{R}^{n \times n \times d_k} \xrightarrow{\text{reshape}} \mathbb{R}^{n^2 \times d_k}$$
$$O = \text{softmax}\left(\frac{(QW_Q)(KW_K)^T}{\sqrt{d}}\right)VW_V,$$
Algorithm 1: Order Preserving Graph Partition

Input: Circuit directed acyclic graph \(G \), maximum size \(m \) for sub-graph, number of padding levels \(k \).

Output: All partitioned sub-graphs \(G_s \) of \(G \).

1. function TOPLOGICALSORT(\(G \))
2. \(L = [] \);
3. \# \(i \) is a list of nodes belonging to the same level
4. for level \(i \) in \(G \) do
5. \(L.append(i) \);
6. end for
7. return \(L \)
8. end function
9. \(L = \text{TOPLOGICALSORT}(G) \);
10. \(i = 0 \), \(j = 0 \), \(g_s = [] \), \(G_s = [] \);
11. while \(i < \text{len}(L) \) do
12. if \(i < \text{len}(L) \) and \(\text{len}(g_s) + \text{len}(L[i]) < m \) then
13. Add all nodes in \(L[i] \) to \(g_s \): \(i = i + 1 \);
14. else
15. Padding nodes do not involve training
16. \(g_s = L[\max(0, j - k): j] \| g_s \| L[i: \min(i + k, \text{len}(L))] \);
17. \(j = i \);
18. Construct sub-graph with nodes \(g_s \) from \(G \);
19. Add the sub-graph to \(G_s \);
20. \(g_s = [] \);
21. end if
22. end while

where \(m \), \(n^2 \) is the number of queries and keys/values respectively, \(Q \in \mathbb{R}^{m \times d_q}, K_1 \), \(K_2 \in \mathbb{R}^{n \times d_k}, V \in \mathbb{R}^{n \times d_v}, K_{ijk} = (K_1)_{ik}(K_2)_{jk} \) is the joint key matrix. \(K_1, K_2 \) are key matrices from LUT rows and columns, \(Q \) is value matrix from LUT value, and \(Q \) is the query matrix. Our MIA is demonstrated in Fig. 3. We calculate AT for node \(i \) as follows if it is the end point of cell edge (edge type is ‘cell’):

\[
\begin{align*}
Q_{ji} &= \text{MLP}(f_i || f_j || \text{AT}_j) + \text{AT}_j \\
O_{ji} &= \text{MJA}(Q_{ji}, K_{ji}, V_{ji}) \\
Y_{ji} &= \text{LayerNorm}(O_{ji} + Q_{ji}) \\
m_{ji} &= \text{MLP}(f_i || f_j || \text{AT}_j || Y_{ji}) + \text{AT}_j \\
a_i &= \frac{\sum_{j \in \mathcal{N}(i)} m_{ji}}{\text{size}(\mathcal{N}(i))}, b_i = \max_{j \in \mathcal{N}(i)} m_{ji} \\
\text{AT}_i &= \text{MLP}(a_i || b_i || f_i).
\end{align*}
\]

Order Preserving Graph Partition

Feeding the entire graph into GNN for training is faced with huge peak GPU memory cost. An appropriate graph partition method is necessary to reduce the memory cost while preserving topological order information.

To adapt to the signal propagation, we propose a order preserving graph partition algorithm. Given a circuit graph, we first apply topological sorting (Lasser 1961) to compute the sorting order of each pin. After sorting, we construct sub-graphs by selecting continuous levels of pins based on the given maximum sub-graph size. However, the marginal nodes of sub-graph lose their \(1 \sim k \) hop (1 to \(k \)) neighbours, and the inner nodes also lose \(2 \sim k, 3 \sim k, \ldots, k \)-th hop neighbours, where \(k \) is the number of stacked GNN layers.

To resolve this problem, we pad the sub-graph with \(k \) preceding and successive levels of pins. Note that these padding nodes are excluded in loss computation and backward propagation (BP), which ensures nodes involved gradient descent have full access to their \(k \)-hop neighbours like in the whole graph. Detailed graph partition algorithm is shown in Alg. 1 and Fig. 4. Our partition algorithm reduces the GPU memory cost from more than 48 GB (out of memory) to 22 GB, and preserves the consistency without losing neighbours.

Finally, we build our PreRoutingGNN (Pre-Routing estimation GNN), which consists of stacked residual local learning-based GCN layers and a attention-based propagation layer. Extracted node embedding, graph embedding from pre-trained auto-encoder and multi-frequency level encoding are concatenated to the original node features. Graph is firstly fed into stacked GCN layers. For the forward process of attention-based propagation layer, we apply topological sorting on the circuit graph to calculate the order of each node and select nodes with the same order as a level. We feed this single level into the attention-based propagation layer, and calculate AT for its vertices. Note that we feed each level into attention-based propagation layer with ascending order, ensuring that when calculating AT of current level of nodes, AT of all their predecessors have already been calculated. Nodes belonging to the same level are updated first, followed by nodes of next order until to the last. This process realizes the asynchronous calculation of AT for each node, enabling the signal propagation along timing paths.

Our model predicts AT as a main task, with slew, net delay and cell delay prediction as auxiliary tasks following (Guo et al. 2022). Complete pipeline is shown in Fig. 2.

The total loss for second stage is as follows:

\[
\begin{align*}
\mathcal{L}_{AS} &= \| M_{AS}^{y_{\psi_1}}(g, X, E_{\theta}(g, X)) - AS \|^2 \\
\mathcal{L}_{CD} &= \| M_{CD}^{y_{\psi_1}}(g, X, E_{\theta}(g, X)) - CD \|^2 \\
\mathcal{L}_{ND} &= \| M_{ND}^{y_{\psi_1}}(g, X, E_{\theta}(g, X)) - ND \|^2 \\
\mathcal{L}_{GNN} &= \mathcal{L}_{AS} + \lambda_{CD} \mathcal{L}_{CD} + \lambda_{ND} \mathcal{L}_{ND},
\end{align*}
\]

where \(g \) is the circuit graph, \(\psi_1 \) to \(\psi_4 \) are trainable parameters of GNN, \(X \) is node feature. \(CD, ND, AS \) are cell delay, net delay, AT concatenated with slew, \(\lambda_{CD}, \lambda_{ND} \) are loss weights for cell delay and net delay.

Experiments

Evaluation Protocols

Benchmarks and compared methods. We evaluate our approach on public benchmark (Guo et al. 2022) with 21 real world circuits. Given the circuit after standard cell placement, the objective is to predict slack, slew, cell delay and net delay after routing. Details of datasets are shown in Appendix. The compared methods include GCNI (Chen et al. 2020), GAT (Veličković et al. 2018), GINE (Hu et al. 2020) and TimingGCN (Guo et al. 2022).

Metrics. We evaluate the prediction of slack with the \(R^2 \) determination coefficient score as follows:

\[
R^2 = 1 - \frac{\sum_{i=1}^{n}(y_{\hat{i}} - y_i)^2}{\sum_{i=1}^{n}(y_i - \bar{y})^2} = 1 - \frac{\text{MSE}(y, \hat{y})}{\text{VAR}(y)},
\]

\(R^2 \) ranges from 0 to 1, with higher values indicating a better fit.
Table 3: Ablation studies. We remove one and only one module each time. R^2_{uf} of slack prediction is reported. AE: global pre-trained auto-encoder, RLL: residual local learning, MJA: multi-head joint attention, FT: fine-tune the pre-trained encoder. Bold/underline indicates best/second. Due to page limitation, detailed results on training set are shown in Appendix.

where y_i is ground truth, \hat{y} is prediction and \tilde{y} is the mean value of ground truth. Since slack has four channels (EL/RF), we can calculate R^2 in two ways: 1) un-flatten R^2_{uf} and 2) flatten R^2_f. In R^2_{uf}, we calculate R^2 on un-flatten data with shape $\mathbb{R}^{n \times 4}$, where n is the number of nodes. We calculate R^2 on each channel independently and average these four R^2s as the final R^2_{uf}. In R^2_f, we flatten the data to \mathbb{R}^{4n}, merging four different channels together and the number of nodes increases from n to $4n$. Under R^2_{uf}, previous method achieves 0.866. However, under R^2_{uf}, it only achieves 0.576 (more details in Appendix).

After reforming R^2 in Eq. 8, we calculate it with VAR (variance) of y, MSE(Mean Squared Error) between y and \hat{y}. After merging four different channels into a single channel, both MSE and VAR increase, but VAR increases more than MSE, resulting in the improvement of R^2. Let $k = \text{VAR}(y)/\text{MSE}(y, \hat{y})$. Since slack has four channels, we compute k on each channel and average them to get the mean k_{uf}. Flatten ratio k_f is computed in the same way, except for flattening slack from $\mathbb{R}^{n \times 4}$ to \mathbb{R}^{4n} with only one channel. With $k_f/k_{uf} > 1$ (more details in Appendix) we can see that, after flattening the multi-channel slack, VAR increases faster and higher than MSE, leading to the improvement about 0.3 of R^2.

We think the distance, e.g. Kullback-Leibler divergence, between distributions under different corners is high.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>R^2_{uf}</th>
<th>R^2_{uf}</th>
<th>R^2_{uf}</th>
<th>R^2_{uf}</th>
<th>R^2_{uf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM64</td>
<td>0.763 ± 0.101</td>
<td>0.354 ± 0.223</td>
<td>0.623 ± 0.161</td>
<td>0.668 ± 0.252</td>
<td>0.986 ± 0.006</td>
</tr>
<tr>
<td>aes128</td>
<td>0.458 ± 0.207</td>
<td>-0.245 ± 0.340</td>
<td>0.029 ± 0.352</td>
<td>-0.055 ± 0.312</td>
<td>0.822 ± 0.008</td>
</tr>
<tr>
<td>aes256</td>
<td>0.581 ± 0.151</td>
<td>-0.097 ± 0.306</td>
<td>0.667 ± 0.311</td>
<td>0.499 ± 0.102</td>
<td>0.937 ± 0.023</td>
</tr>
<tr>
<td>aes_cipher</td>
<td>0.020 ± 0.447</td>
<td>-0.438 ± 0.427</td>
<td>-0.162 ± 0.242</td>
<td>0.644 ± 0.123</td>
<td>0.967 ± 0.000</td>
</tr>
<tr>
<td>blabla</td>
<td>0.889 ± 0.073</td>
<td>0.679 ± 0.131</td>
<td>0.737 ± 0.122</td>
<td>0.958 ± 0.013</td>
<td>0.997 ± 0.001</td>
</tr>
<tr>
<td>cic_decomposer</td>
<td>0.719 ± 0.112</td>
<td>0.597 ± 0.163</td>
<td>0.589 ± 0.107</td>
<td>0.963 ± 0.014</td>
<td>0.996 ± 0.000</td>
</tr>
<tr>
<td>des</td>
<td>0.924 ± 0.056</td>
<td>0.566 ± 0.225</td>
<td>0.776 ± 0.220</td>
<td>0.905 ± 0.058</td>
<td>0.993 ± 0.001</td>
</tr>
<tr>
<td>genericifi</td>
<td>0.710 ± 0.122</td>
<td>-0.436 ± 0.733</td>
<td>0.503 ± 0.219</td>
<td>0.222 ± 0.123</td>
<td>0.871 ± 0.013</td>
</tr>
<tr>
<td>picorv32a</td>
<td>0.672 ± 0.096</td>
<td>0.239 ± 0.240</td>
<td>0.425 ± 0.169</td>
<td>0.839 ± 0.045</td>
<td>0.974 ± 0.007</td>
</tr>
<tr>
<td>salsa20</td>
<td>0.814 ± 0.066</td>
<td>0.530 ± 0.170</td>
<td>0.717 ± 0.073</td>
<td>0.792 ± 0.118</td>
<td>0.994 ± 0.002</td>
</tr>
<tr>
<td>ush</td>
<td>0.747 ± 0.088</td>
<td>0.678 ± 0.115</td>
<td>0.607 ± 0.118</td>
<td>0.934 ± 0.035</td>
<td>0.996 ± 0.000</td>
</tr>
<tr>
<td>usbcdec_core</td>
<td>0.793 ± 0.095</td>
<td>0.502 ± 0.212</td>
<td>0.563 ± 0.177</td>
<td>0.961 ± 0.008</td>
<td>0.997 ± 0.001</td>
</tr>
<tr>
<td>wbpsipiflash</td>
<td>0.742 ± 0.091</td>
<td>0.613 ± 0.131</td>
<td>0.522 ± 0.136</td>
<td>0.956 ± 0.013</td>
<td>0.994 ± 0.002</td>
</tr>
<tr>
<td>zipdiv</td>
<td>0.822 ± 0.070</td>
<td>0.703 ± 0.129</td>
<td>0.593 ± 0.188</td>
<td>0.971 ± 0.011</td>
<td>0.998 ± 0.001</td>
</tr>
<tr>
<td>aes192</td>
<td>-0.017 ± 0.188</td>
<td>-0.727 ± 0.173</td>
<td>-0.048 ± 0.352</td>
<td>0.384 ± 0.205</td>
<td>0.937 ± 0.009</td>
</tr>
<tr>
<td>jpeg_encoder</td>
<td>0.056 ± 0.080</td>
<td>-2.859 ± 0.667</td>
<td>-0.285 ± 0.198</td>
<td>0.478 ± 0.131</td>
<td>0.764 ± 0.010</td>
</tr>
<tr>
<td>spm</td>
<td>-0.247 ± 0.309</td>
<td>-0.474 ± 0.134</td>
<td>0.040 ± 0.161</td>
<td>0.802 ± 0.083</td>
<td>0.985 ± 0.006</td>
</tr>
<tr>
<td>synth_ram</td>
<td>-0.913 ± 0.031</td>
<td>-1.078 ± 0.025</td>
<td>-1.007 ± 0.162</td>
<td>0.735 ± 0.079</td>
<td>0.977 ± 0.008</td>
</tr>
<tr>
<td>usbf_device</td>
<td>-0.215 ± 0.065</td>
<td>-0.946 ± 0.146</td>
<td>-0.133 ± 0.094</td>
<td>0.347 ± 0.119</td>
<td>0.949 ± 0.002</td>
</tr>
<tr>
<td>xtea</td>
<td>0.210 ± 0.044</td>
<td>-0.055 ± 0.091</td>
<td>0.099 ± 0.181</td>
<td>0.888 ± 0.062</td>
<td>0.985 ± 0.000</td>
</tr>
<tr>
<td>y_huff</td>
<td>-0.235 ± 0.450</td>
<td>-0.481 ± 0.114</td>
<td>-1.034 ± 0.999</td>
<td>0.490 ± 0.146</td>
<td>0.931 ± 0.029</td>
</tr>
</tbody>
</table>

Table 2: Slack prediction with R^2_{uf} as primary metric. Experiments are implemented on 5 different seeds.
seemingly high flatten R_f^2 cannot reflect the real performance of model, and it is an inappropriate evaluation metric. Thus, it is more reasonable to calculate R_f^2 on each channel independently and use R_{uf}^2 as the final evaluation metric.

Results and Further Studies

Overall performance comparison. We use MSE and R_{uf}^2 as metrics. In Table 2, our approach achieves R_{uf}^2 of 0.93, while the second best method only achieves 0.59.

Evaluation on other tasks. We also compare effectiveness on other tasks, including prediction of slew, net delay and cell delay. In Table 4, for R_{uf}^2 on testing set, we achieve 0.93, 0.97, 0.91, surpassing the best baseline achieving 0.83, 0.95, 0.71 respectively, demonstrating that our model is also adaptive to multiple pre-routing timing prediction tasks.

Ablation studies. We ablate the effectiveness of each module of our method. In Table 3, we remove one and only one component each time. After removing global pre-training or RLL, R_{uf}^2 drops dramatically, revealing the importance of global view and local modeling for signal delay. We also compare fine-tuning with freezing the pre-trained encoder. Even without fine-tuning, our model behaves well, only with a small drop 0.02 of R_{uf}^2, suggesting the importance of global circuit pre-training: providing a global

Table 4: Comparison of other tasks, including prediction of slew, net delay and cell delay.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>R_{uf}^2 slew (↑)</th>
<th>R_{uf}^2 net delay (↑)</th>
<th>R_{uf}^2 cell delay (↑)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TimingGCN</td>
<td>PreRoutGNN</td>
<td>TimingGCN</td>
</tr>
<tr>
<td>aes192</td>
<td>0.816 ± 0.037</td>
<td>0.967 ± 0.005</td>
<td>0.795 ± 0.010</td>
</tr>
<tr>
<td>jpeg_encoder</td>
<td>0.783 ± 0.038</td>
<td>0.949 ± 0.000</td>
<td>0.966 ± 0.004</td>
</tr>
<tr>
<td>spm</td>
<td>0.904 ± 0.017</td>
<td>0.981 ± 0.001</td>
<td>0.920 ± 0.010</td>
</tr>
<tr>
<td>synth_ram</td>
<td>0.764 ± 0.042</td>
<td>0.946 ± 0.073</td>
<td>0.929 ± 0.014</td>
</tr>
<tr>
<td>usbf_device</td>
<td>0.859 ± 0.023</td>
<td>0.924 ± 0.005</td>
<td>0.968 ± 0.001</td>
</tr>
<tr>
<td>xtea</td>
<td>0.824 ± 0.072</td>
<td>0.978 ± 0.002</td>
<td>0.944 ± 0.011</td>
</tr>
<tr>
<td>y_huff</td>
<td>0.880 ± 0.026</td>
<td>0.896 ± 0.002</td>
<td>0.940 ± 0.014</td>
</tr>
<tr>
<td>Avg. train</td>
<td>0.883</td>
<td>0.968</td>
<td>0.982</td>
</tr>
<tr>
<td>Avg. test</td>
<td>0.833</td>
<td>0.934</td>
<td>0.946</td>
</tr>
</tbody>
</table>

Table 5: Slack prediction with R_{uf}^2. After applying pre-trained graph encoder into TimingGCN, R_{uf}^2 improves 29 %, showing that our pre-trained graph encoder can serve as a plug-and-play module for training.

Figure 5: GPU memory cost and training time comparison between training on whole graphs and partitioned graphs. Number in brackets indicates the maximum sub-graph size.

view and a representation of circuit. We can also apply our global circuit pre-trained graph encoder to other baselines. Training other baselines along with fine-tuning graph encoder achieves better results with improvement of 29% in Table 5. The pre-trained graph encoder serves as a plug-and-play module for downstream tasks.

Runtime and GPU Memory cost. In Fig. 5, our method significantly reduces the peak GPU memory cost. Empirically, maximum sub-graph size 50,000 performs well. For large-scale circuits with about 300,000 pins, inference can be finished within one second.

Conclusion

We propose a novel pre-routing timing prediction method, PreRoutGNN, to address the signal decay and error accumulation issues. We use global circuit pre-training to provide global view, and devise residual local learning, MJA for long timing path modeling. Besides, our global circuit pre-training can serve as a plug-and-play module for various timing prediction GNN. For tractability on large-scale circuits, we also devise order preserving partition scheme to reduce memory cost while preserving the topological dependencies. We believe our works demonstrate accurate modeling of signal propagation along timing paths.
Acknowledgements
This work was partly supported by China Key Research and Development Program (2020AAA0107600) and NSFC (92370132, 62222607).

References
Hu, J.; Schaeffer, G.; and Garg, V. 2015. TAU 2015 contest on incremental timing analysis. In ICCAD.
Park, N.; and Kim, S. 2022. How do vision transformers work? In ICLR.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; and Bengio, Y. 2018. Graph attention networks. In ICLR.
Wu, Q.; Yang, C.; Zhao, W.; He, Y.; Wipf, D.; and Yan, J. 2023a. Diffformer: Scalable (graph) transformers induced by energy constrained diffusion. In ICLR.
Wu, Q.; Zhao, W.; Li, Z.; Wipf, D. P.; and Yan, J. 2022. Nodeformer: A scalable graph structure learning transformer for node classification. In NeurIPS.
Wu, Q.; Zhao, W.; Yang, C.; Zhang, H.; Nie, F.; Jiang, H.; Bian, Y.; and Yan, J. 2023b. Simplifying and Empowering Transformers for Large-Graph Representations. In NeurIPS.
Yang, T.; He, G.; and Cao, P. 2022. Pre-routing path delay estimation based on transformer and residual framework. In ASP-DAC.
Zhao, W.; Wu, Q.; Yang, C.; and Yan, J. 2023. GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks. In SIGKDD.