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Abstract

Personalized Federated Learning (pFL) can effectively ex-
ploit the non-IID data from distributed clients by customiz-
ing personalized models. Existing pFL methods either sim-
ply take the local model as a whole for aggregation or require
significant training overhead to induce the inter-client person-
alized weights, and thus clients cannot efficiently exploit the
mutually relevant knowledge from each other. In this paper,
we propose a knowledge-aware parameter coaching scheme
where each client can swiftly and granularly refer to param-
eters of other clients to guide the local training, whereby ac-
curate personalized client models can be efficiently produced
without contradictory knowledge. Specifically, a novel regu-
larizer is designed to conduct layer-wise parameters coach-
ing via a relation cube, which is constructed based on the
knowledge represented by the layered parameters among all
clients. Then, we develop an optimization method to update
the relation cube and the parameters of each client. It is the-
oretically demonstrated that the convergence of the proposed
method can be guaranteed under both convex and non-convex
settings. Extensive experiments are conducted over various
datasets, which show that the proposed method can achieve
better performance compared with the state-of-the-art base-
lines in terms of accuracy and convergence speed.

Introduction
Federated learning (FL) (McMahan et al. 2017) allows dis-
tributed clients to collaboratively exploit their local data
to train a shared global model without delivering the local
data to a centralized server, which not only avoids exposing
sensitive user information but also reduces communication
overhead for saving the transmissions of raw data.

Traditional FL paradigms suffer from significant perfor-
mance degradation when the client data is non-identically
and independently distributed (non-IID) (Kairouz et al.
2021; Tan et al. 2022a), which is quite common in the di-
verse FL environments and data domains. As a solution,
personalized federated learning (pFL) is proposed to miti-
gate the non-IID issue, and many pFL methods have been
studied to improve model accuracy for diverse clients in-
cluding meta learning-based methods (Fallah, Mokhtari, and
Ozdaglar 2020; Jiang et al. 2019; Lin, Yang, and Zhang
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2020), knowledge distillation-based methods (Li and Wang
2019; Zhang et al. 2021a; Lin et al. 2020; Chen et al. 2022;
Jin et al. 2023) and so on.

However, there are two critical issues in the existing pFL
methods. Firstly, a local model is usually taken as a whole
for global weighted aggregation, which disregards the het-
erogeneous knowledge represented by the layered DNN pa-
rameters and thus limits the optimization of personalized
models (Yosinski et al. 2014; Zeiler and Fergus 2014). For
example, shallow layers are close to the data plane, and they
can reveal the low-level and regional features that are typi-
cally irrelevant to data heterogeneity, such that sharing these
layers can boost the pFL training even under non-IID condi-
tion (Luo et al. 2021). Conversely, deep layers often cor-
respond to the semantic features that may contain differ-
ent knowledge from different clients, so recklessly sharing
these layers can lead to degraded performance and exces-
sive training time (Zeiler and Fergus 2014). Secondly, sig-
nificant training overhead is often required to induce fine-
grained personalized weights for inter-client collaboration,
and thus a client cannot efficiently leverage the mutually
beneficial knowledge from different clients. For example,
pFedLA uses a hypernetwork to exploit the inter-similarities
among non-IID clients, but it requires excessive communi-
cation rounds to converge (Ma et al. 2022).

To solve the aforementioned issues, we propose an effi-
cient knowledge-aware parameter coaching method for per-
sonalized federated learning, where a client refers to the
granular knowledge from other clients to coach the per-
sonalized training of the local parameters without incurring
much additional overhead. Specifically, the server maintains
a personalized model for each client, where the layer-wise
parameters are a linear combination of all clients’ corre-
sponding parameters with adaptive weights. A personalized
server model acts as a regularizer to guide the update of local
layer-wise parameters. Moreover, the adaptive weights rep-
resented by relation cube can be derived efficiently from the
clients’ parameters, resulting in minimal computation bur-
den in the server and low training time. We summarize the
main contributions of our paper as follows.

• Based on the layered property of the deep neural net-
works (DNN) model, a relation cube is defined to ex-
plicitly demonstrate the similarity of layered knowledge
among all clients. In addition, a lightweight optimization
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method is designed to learn the relation cube, which sim-
plifies the training process and speeds up the convergence
of a local model.

• We propose an efficient knowledge-aware parameter
coaching method, where a personalized regularizer de-
rived from the relation cube is designed to coach the gen-
eral knowledge to be shared among all the clients and the
specific knowledge to be shared among similar clients.

• We theoretically prove that the proposed parameter
coaching method achieves convergence under both con-
vex and non-convex settings. As far as we know, this is
the first paper that proves the convergence of adaptive
aggregation-based federated learning.

• Extensive experiments are conducted, and the results
show that the proposed method is robust under various
levels of heterogeneity and more accurate than the state-
of-the-art personalized algorithms.

Related Works
In order to tackle the non-IID issue, many pFL methods have
been developed (Mansour et al. 2020; Duan et al. 2022; Luo
et al. 2021; Oh, Kim, and Yun 2021; Tang et al. 2022; Li and
Zhan 2021). Among the existing methods, the regularization
and layer-wise methods have been widely studied.

Regularization Methods. The regularization methods
limit the local training with various regularizers to improve
the personalization of local models. Several studies con-
struct the regularizer with model parameters to provide di-
rect guidance for local training (Li et al. 2020; Acar et al.
2021; Huang et al. 2021; Li, He, and Song 2021; Dinh, Tran,
and Nguyen 2020). Some works correct the update direc-
tion for each client to reduce the data drift in non-IID set-
ting (Karimireddy et al. 2020; Zhang et al. 2021b). Other
works align the prototype of heterogeneous clients to en-
force the learning for global extractor with less communi-
cation cost (Tan et al. 2022b; Xu, Tong, and Huang 2023).
Recent works regularize the local training with soft label or
statistic information to enhance the knowledge sharing from
other clients (Jin et al. 2023; Mendieta et al. 2022).

Layer-wise Personalized Methods. Considering the dis-
tinct representations of different layers in DNN, some per-
sonalized methods propose layer-wise aggregation. Some
methods keep the batch normalization layer personalized
without aggregation in the server to avoid the drift of lo-
cal features (Li et al. 2021b; Mills, Hu, and Min 2022). Ad-
ditionally, many works focus on the aggregation of partial
shallow layers of DNN with the same weights to transfer the
general knowledge among clients (Oh, Kim, and Yun 2021;
Arivazhagan et al. 2019; Pillutla et al. 2022; Collins et al.
2021; Li et al. 2021a). Recently, pFedLA considers the im-
pacts of different layers and adopts hypernetwork to gener-
ate layer-wise aggregation weights for each client, such that
the knowledge transfer conflicts can be avoided for some
clients with large data distance (Ma et al. 2022).

In the abovementioned methods, most regularization pFL
methods take the entire layered DNN model as a whole for

aggregation, which may cause contrary knowledge to trans-
fer from other clients and thus degrade the performance of
local models. Some layer-wise methods aim to aggregate the
partial layers with the same weights, which still explore the
inter-client similarity in a coarse way. For pFedLA, a hy-
pernetwork is used to exploit the fine-grained similarities
among non-IID clients. However, the hypernetwork usually
requires significant training efforts to achieve convergence
which may even prevent adaptive knowledge transfer among
clients. Furthermore, these layer-wise methods have no the-
oretical guarantee of convergence.

Knowledge-Aware Parameter Coaching
Method

In this section, a knowledge-aware parameter coaching
method is proposed. Firstly, the preliminary in pFL is given,
and then relation cube is defined to explore the fine-grained
relation among clients. Based on the relation cube, the loss
function and optimization method are designed to update
client models and relation cube. Finally, the detailed algo-
rithms are outlined.

Preliminary
Assuming there are N clients, and Di = {(xij , yij)}mi

j=1

denotes the dataset of client i (i∈[1, N ]), and mi is the
data number of dataset Di. In our settings, the DNN
model is used, and h(·;wi) with the parameters wi =
[w1

i ,w
2
i , · · ·,wL

i ] is denoted as the model of client i, where
L is the number of DNN layers. The bias is neglected for
simple representation. The local loss function for client i can
be defined as

fi (wi) =
1

mi

mi∑
j=1

l (h (xij ;wi) , yij) (1)

Then the global loss function of personalized federated
learning can be denoted as

F (W) =

N∑
i=1

mi

m
fi (wi) (2)

where W = [w1,w2, · · ·,wN ] is the set of client parame-
ters and m =

∑N
i=1 mi.

Relation Cube
To explicitly describe the similarity of layer-wise knowledge
among all clients, a relation cube R∈RN×L×N is defined as

R = [r1, r2, · · ·, rN ] (3)

where element ri∈RL×N is a matrix defined as

ri =


r1i1, r1i2 · · · r1iN
r2i1, r2i2 · · · r2iN

...
...

. . .
...

rLi1, rLi2 · · · rLiN

 (4)

The relation cube R is composed of the relation matrix
ri of client i (i ∈ [1, N ]), which represents the similarity of
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layered knowledge between client i and other clients. The
relation matrix ri is composed of relation coefficient rlij ,
which represents the similarity between client i and client
j on DNN layer l.

Optimization Objective
Different from the general federated learning, the proposed
method maintains a specific server model for each client to
aggregate the beneficial knowledge from other clients. The
parameters of the server model are derived from the linear
combination of the clients’ parameters weighted by the rela-
tion cube. The server parameters are leveraged as a regular-
izer to coach the local training. Therefore, our objective is
not only to minimize the empirical loss of the client as gen-
eral personalized federated learning, but also minimize the
distances between the local parameters and server parame-
ters. The formulation of the local loss function of client i can
be represented as

f(wi, ri) =fi(wi) + λ
L∑

l=1

fs

 N∑
j=1

rlijw
l
j ,w

l
i


+
β

2

N∑
j=1

L∑
l=1

∥∥∥∥rlij − 1

N

∥∥∥∥2
(5)

where fi(wi) defined by Eq. (1) is the general loss of client
i, fs is the coaching loss to guide the layer-wise local train-
ing and we adopt l2-norm in this paper. The third term is
used to motivate all the clients to share their layered knowl-
edge equally. λ and β are hyperparameters that trade off the
main loss and regularization term.

When the local loss function is stacked by layer, Eq. (5)
can be rewritten as

f(wi, ri) =fi(wi) + λfs(riW,wi) +
β

2

∥∥∥∥ri − 1

N

∥∥∥∥2

(6)

where 1∈RL×N is an identity matrix.
Then, the global optimization objective can be formulated

as

min
W,R

{
Fper(W,R) :=

N∑
i=1

mi

m
f(wi, ri)

}
(7)

where W is the parameter set of clients in Eq. (2), and R is
the relation cube defined by Eq. (3).

Optimization Mehtod
Inspired by FedAMP (Huang et al. 2021) and FedProto (Tan
et al. 2022b), we present an optimization method by alterna-
tively updating client parameters and relation cube until the
convergence of the proposed method. Consequently, there
are two updating steps in the (k + 1)-th iteration. Firstly,
when client parameter set Wk is fixed, the relation cube
Rk+1 in the (k + 1)-th iteration can be updated. Then, af-
ter relation cube Rk+1 is determined and the personalized
regularizer is updated, client parameter set Wk+1 will be
optimized.

To describe the update method in detail, the first, second
and third terms of Fper(W,R) are denoted as F (W) :=

∑N
i=1

mi

m fi(wi), H(W,R) :=
∑N

i=1
mi

m fs(riW,wi) and
G(R) := β

2

∑N
i=1

mi

m ∥ri −
1
N ∥

2, and the global optimiza-
tion objective (7) can be rewritten as

min
W,R

{Fper(W,R) := F (W) + λH(W,R) +G(R)} (8)

Relation Cube Update. When the relation cube is updated
in the (k+1)-th iteration, the parameters of all the clients in
the k-th iteration have been uploaded to the server. Then the
updated Rk+1 is

Rk+1 = Rk − ηr∇RFper(W
k,R)

= Rk − ηr
(
∇RG(R) + λ∇RH(Wk,R)

) (9)

where ηr is the learning rate for R.
Specifically, for relation matrix rk+1

i of client i, there are
detailed update phases. With the fixed parameters of all the
clients, the loss function of rk+1

i can be represented as

f(ri) =λfs(riW
k,wk

i ) +
β

2

∥∥∥∥ri − 1

N

∥∥∥∥2 (10)

and then the updated rk+1
i is

rk+1
i = rki − ηr∇rif(ri)

= rki − ηr

(
λ∇rifs(riW

k,wk
i ) + β

(
ri −

1

N

))
(11)

where the gradient ∇rifs is a matrix with the same size as
ri and can be computed as

∇rifs(riW
k,wk

i )

=

∇rlij
fs

 N∑
j=1

rlijw
l,k
j ,wl,k

i

N,L

j=1,l=1

(12)

Clients Parameters Update. When the client parameters
are updated in the (k + 1)-th step, the relation cube in the
current step is fixed. Based on the gradient decent method,
the updated Wk+1 is

Wk+1 = Wk − ηw∇WFper(W,Rk+1)

= Wk − ηw
(
∇WF (W) + λ∇WH(W,Rk+1)

)
(13)

where ηw is the learning rate for updating W.
To better clarify the update process in Eq. (13), the de-

tailed phases for individual client are provided. Firstly, the
personalized regularizer, i.e., the server model, of client i is
calculated in the (k + 1)-th step to guide the local training,
and can be denoted as

sk+1
i = rk+1

i Wk, (14)

where rk+1
i is the fixed relation matrix at current iteration,

and Wk is the parameters of all clients in the server. Then
with the regularizer sk+1

i , the local loss Eq. (6) for updating
wi can be reformulated as

f(wi) =fi(wi) + λfs(s
k+1
i ,wi) (15)
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Algorithm 1: Parameter Coaching Process in the Server

Input: communication rounds K, clients number N , up-
date iterations of relation cube Er, update iterations of
client E

Output: the personalized parameters W =
[w1,w2, . . . ,wN ]

1: initialize and distribute w1
i for client i, i∈[1, N ]

2: initialize R1

3: for k = 1 to K do
4: for i = 1 to N in parallel do
5: for t = 1 to Er do
6: obtain Rt by Eq. (9)
7: end for
8: Rk+1←REr

9: obtain the server parameters sk+1
i by Eq. (14)

10: send the parameters sk+1
i to client i

11: wk+1
i ← Algorithm 2(E, sk+1

i )
12: end for
13: end for
14: return W = [wK

1 ,wK
2 , · · ·,wK

N ]

Algorithm 2: Parameter Coaching Process in Client i

Input: update iterations of client parameters E, the corre-
sponding server parameters at current step sk+1

i
Output: the client parameters wi

1: for t = 1 to E do
2: for each batch in dataset i do
3: update parameters wk+1

i by Eq. (16)
4: end for
5: end for
6: return wk+1

i

Finally, according to Eq. (15), the updated model of client i
in the (k + 1)-th step is

wk+1
i = wk

i − ηw∇wi
f(wi)

= wk
i − ηw

(
∇wi

fi(wi) + λ∇wi
fs(s

k+1
i ,wi)

)
(16)

Furthermore, the update with Eq. (13) can be decoupled to
the update with Eq. (16) of all the clients.

Parameter Coaching Procedures
Based on the above designs, the detailed procedures of the
proposed knowledge-aware parameter coaching method in
the server and client i are shown in Algorithm 1 and Algo-
rithm 2, respectively.

As shown in Algorithm 1, the server firstly initializes the
client parameters and relation cube randomly (lines 1-2).
The relation cube is updated according to Eq. (9) with the
current client parameters (lines 4-8). Then server model for
each client is aggregated according to Eq. (14), and then dis-
tributed to the corresponding client (lines 9-10). The update
for the client parameters is shown in Algorithm 2 (line 11).
When the new models of all the clients are uploaded to the
server, the new iteration begins. Finally, the personalized

models of all the clients are returned (line 14). The train-
ing process of client i is shown in Algorithm 2. After the
client receives the server parameters, the local model takes
the server parameters as the regularizer to update the model
(lines 1-5), and then the trained parameters are returned to
the server (line 6).

Convergence Analysis
In this section, we analyze the convergence of the proposed
method under both convex and non-convex settings. Differ-
ent from the existing works in pFL (Dinh, Tran, and Nguyen
2020; Li et al. 2019), we introduce the optimization theories
of Block Coordinate Descent (BCD) (Beck and Tetruashvili
2013; Bolte, Sabach, and Teboulle 2014) to pFL and give the
proofs of the proposed theorems based on them. We extend
the original BCD method from solving the single-variable
with multi-dimension problem to the multi-variable problem
by viewing the model parameters and the relation cube as
different dimensions, and thus prove the convergence of the
proposed method.

From the definition of G(R), we can know G(R) is
closed, β-smooth and β-strongly convex for R. Then the
following assumptions are supposed.

Assumption 1 (closed) F (W) is a proper closed function.

Assumption 2 (smooth) (i) F (W) is Lf -smooth; (ii) For
any fixed R, H(W,R) is L1-smooth for W. Likewise, for
any fixed W, H(W,R) is L2-smooth for R.

Assumption 3 (convex) (i) F (W) is convex for W; (ii) For
any fixed R, H(W,R) is convex for any W. Likewise, for
any fixed W, H(W,R) is convex for any R.

Now, the convergence guarantee of the proposed method
in the convex setting is provided.

Theorem 1 (Convergence in convex setting) If As-
sumption 2 and Assumption 3 hold, the sequence
(W0,R0), · · ·, (Wk,Rk) generated by Algorithm 1
satisfies

Fper(W
k,Rk)− Fper(W

∗,R∗)

≤2Lmax

k + 4

(∥∥W0 −W∗∥∥2 + ∥∥R0 −R∗∥∥2) (17)

where (W∗,R∗) is the optimal solution of Eq. (8), Lmax =
max{Lw, Lr}, Lw = Lf +λL1, and Lr = β+λL2. More-
over, the learning rate of W is ηw = 1

Lw
and the learning

rate of R is ηr = 1
Lr

.

Theorem 1 implies that for any ϵ > 0, the pro-
posed method needs at least O(ϵ−1) iterations to find
the sub-optimal solution (Wϵ,Rϵ) of Eq. (8) such that
Fper(Wϵ,Rϵ) − Fper(W

∗,R∗)≤ϵ. It also establishes the
global convergence for the proposed method in the convex
setting. The complete proofs of Theorem 1 are given in Ap-
pendix B.

Then, with Assumptions 1 and 2, the convergence theory
for the proposed method is developed under the non-convex
setting.
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Theorem 2 (Convergence in non-convex setting) If
Assumption 1 and Assumption 2 hold, Algorithm 1 is
convergent, and a subsequence (Wk,Rk) generated from
Algorithm 1 with initial point (W0,R0) can converge to
the critical point of Fper, which satisfies:

lim
k→∞

dist
((
Wk,Rk

)
, ω

(
W0,R0

))
= 0 (18)

ω(W0,R0)∈critFper is the set of limit points starting
from (W0,R0) and critFper is the critical points of Fper.
dist(a, b) is the distance between a and b.

Theorem 2 provides theoretical guarantee of the proposed
method under the non-convex setting. The complete proofs
of Theorem 2 are given in Appendix C.

Experiment
In this section, we first introduce the experiment settings in-
cluding the datasets, model structure, implementation details
of the proposed method, and the baselines. Then we evalu-
ate the accuracy of the proposed method on four datasets
under various levels of heterogeneity, by comparisons with
those of state-of-the-art personalized algorithms. We plot the
curve of test accuracy and communication round to verify
the convergence of the proposed method. Then, the impact
of critical hyperparameters on the proposed method is eval-
uated as well. Finally, we visualize the relation matrix in re-
lation cube to reveal the relevance among clients in shallow
and deep layers.

All the experiments are repeated over 3 runs in Pytorch.
During the training, we sample the accuracy of all the meth-
ods per round for MNIST and FMNIST, while 5 rounds for
CIFAR10 and 10 rounds for CIFAR100.

Experiment Setting
Datasets. Four public benchmark datasets are used to
evaluate the proposed method, MNIST, FMNIST, CIFAR10
and CIFAR100. To simulate the heterogeneous distribution
of all the clients, the latent Dirichlet distribution method is
adopted (Hsu, Qi, and Brown 2019), and the heterogeneity
levels are set to α = {0.1, 0.3}. In addition, two scenarios
with and without client selection are provided. In the client
selection scenario, there are 100 clients with 10% participa-
tion ratio, and all the training and test data in the dataset are
used. In the scenario without client selection, there are 10
clients with 100% participation ratio, where 10% training
data and test data is selected randomly from the dataset.

Model Architecture. For MNIST and FMNIST, a CNN
model is used consisting of 2 convolutional layers with 5×5
filters followed by 3 fully connected layers with 512 and
128 hidden neurons. For CIFAR10 and CIFAR100, the same
ResNet18 model as that in (He et al. 2016) is used.

Implementation Details. The model is trained by K = 50
rounds on MNIST/FMNIST, K = 100 rounds on CIFAR10,
and K = 200 rounds on CIFAR100. The local epochs for
W and R are set to 5 and 1 for all cases. In addition,
cross-entropy loss and stochastic gradient descent method
are adopted to update the client parameters and relation

cube, and the learning rates for W and R are both set to
0.01.

Baselines. The proposed method is compared with var-
ious personalized methods related to regularization and
layer-wise methods in addition to local training and Fe-
dAvg (McMahan et al. 2017). FedProx (Li et al. 2020)
introduces proximal term to regularize the distance of lo-
cal model and global model. FedAMP (Huang et al. 2021)
weights personalized server models with cosine similar-
ity to guide the local training. MOON (Li, He, and Song
2021) adopts contrastive learning to make local representa-
tion and global representation closer. FedProto (Tan et al.
2022b) utilizes prototype learning to regularize the local
training of each client. FedBABU (Oh, Kim, and Yun 2021)
shares the global extractor and trains the personalized clas-
sifier for each client. FedBN (Li et al. 2021b) keeps the
batch normalization layer personalized and aggregates other
layers by weighted averaging. pFedLA (Ma et al. 2022)
learns the personalized model with layer-wise aggregation
weights, and a hypernetwork for each client is trained to ob-
tain the weights. In addition, for the above algorithms, the
recommended hyperparameters utilized in their papers are
adopted, but the communication round is same as that in our
implementation for all the compared algorithms.

Performance Evaluation
We demonstrate the best mean accuracy of each baseline and
the proposed method under the scenarios without and with
client selection in Table 1 and Table 2, respectively.

The performance of most personalized methods is bet-
ter than that of local training, which indicates the advantage
of parameter sharing among clients. In addition, the perfor-
mance of FedAvg method is evaluated on each client and the
results show that the accuracy degrades as the heterogeneity
of the clients increases. This indicates that FedAvg is not
adaptive to heterogeneous clients.

Although all personalized methods demonstrate strong
performance on heterogeneous datasets, the proposed
method achieves the highest accuracy. Compared with reg-
ularization methods, e.g., FedProx, FedAMP, MOON and
FedProto, the proposed method can capture the layer-wise
similarity among different clients through the relation cube
which enhances the personalized regularizer and provides
fined-grained guidance for local training. On the other hand,
we design a lightweight optimization method that efficiently
updates client parameters and relation cube, so other layer-
wise methods, e.g., FedBABU, FedBN and pFedLA, con-
verge slower than the proposed method and lead to worse
performance. Particularly, the results of pFedLA signifi-
cantly underperform on all the datasets, which implies the
hypernetwork employed by pFedLA to compute the relation
matrix is difficult to train and converges slowly.

Convergence Evaluation
Theorems 1 and 2 present the convergence analysis of the
proposed method under convex and non-convex settings, re-
spectively. Specifically, Theorem 1 clearly demonstrates the
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MNIST(%) FMNIST(%) CIFAR10(%) CIFAR100(%)

α 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3

local training 95.91(0.10) 93.13(0.66) 88.33(0.09) 84.77(0.23) 76.50(0.25) 54.15(0.23) 25.81(0.57) 15.56(0.62)
FedAvg 60.06(0.25) 64.78(0.04) 57.85(0.42) 76.47(0.32) 19.60(0.69) 17.92(0.50) 4.53(0.19) 4.11(0.28)
FedProx 97.93(0.66) 95.19(0.14) 96.24(0.19) 87.81(0.45) 86.83(0.76) 64.21(0.83) 37.43(0.42) 25.61(0.38)
FedAMP 97.10(0.84) 95.45(0.65) 94.43(0.12) 84.28(0.34) 78.55(0.58) 48.58(0.69) 18.04(0.24) 11.68(0.17)
MOON 97.77(0.04) 97.43(0.66) 96.61(0.35) 86.77(0.23) 88.27(0.24) 64.88(0.36) 26.33(0.07) 26.83(0.48)
FedProto 97.74(0.63) 97.32(0.58) 95.21(0.23) 86.29(0.76) 87.78(0.39) 63.99(0.66) 37.24(0.31) 26.99(0.30)
FedBABU 92.69(0.61) 90.39(0.16) 93.66(0.18) 85.54(0.37) 87.46(0.32) 65.19(0.21) 38.04(0.60) 26.96(0.57)
FedBN 83.99(0.72) 95.16(0.74) 75.14(0.13) 82.96(0.33) 71.42(0.92) 63.66(0.46) 36.10(0.08) 21.77(0.13)
pFedLA 97.80(0.31) 96.35(0.40) 91.23(0.28) 85.74(0.25) 86.78(0.84) 64.35(0.78) 29.13(0.93) 25.22(0.05)

our method 97.97(0.75) 97.66(0.38) 96.71(0.17) 88.04(0.46) 88.32(0.65) 65.75(0.84) 38.25(0.33) 27.02(0.58)

Table 1: Best mean accuracy in the scenario without client selection (10 clients) on four datasets with various heterogeneity
levels. Bold fonts highlight the best accuracy.

MNIST(%) FMNIST(%) CIFAR10(%) CIFAR100(%)

α 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3

local training 96.11(0.26) 95.47(0.08) 89.31(0.88) 88.37(0.60) 73.41(0.24) 57.72(0.36) 37.41(0.07) 20.94(0.84)
FedAvg 41.84(0.15) 71.76(0.96) 51.38(0.38) 81.93(0.65) 18.42(0.99) 28.61(0.10) 4.25(0.68) 4.91(0.74)
FedProx 97.41(0.30) 94.94(0.24) 93.94(0.62) 90.18(0.34) 79.91(0.59) 64.76(0.24) 40.72(0.87) 27.92(0.45)
FedAMP 96.23(0.72) 91.52(0.41) 91.91(0.44) 86.11(0.21) 69.62(0.54) 49.62(0.52) 25.63(0.84) 13.08(0.89)
MOON 96.32(0.12) 95.42(0.11) 93.71(0.14) 60.70(0.56) 76.10(0.71) 62.71(0.85) 45.30(0.05) 28.00(0.71)
FedProto 97.27(0.29) 95.89(0.57) 94.42(0.26) 90.24(0.15) 78.58(0.56) 65.09(0.65) 44.49(0.74) 25.92(0.22)
FedBABU 96.10(0.07) 94.44(0.91) 92.95(0.64) 84.26(0.82) 78.75(0.11) 66.42(0.13) 41.19(0.83) 27.02(0.04)
FedBN 88.31(0.02) 95.56(0.31) 69.15(0.21) 84.24(0.37) 78.70(0.58) 65.24(0.48) 44.45(0.19) 26.88(0.14)
pFedLA 58.35(0.45) 63.49(0.55) 57.23(0.88) 77.36(0.31) 44.35(0.20) 42.74(0.20) 27.37(0.29) 16.16(0.31)

our method 97.53(0.61) 96.17(0.21) 94.57(0.25) 90.34(0.67) 80.65(0.78) 66.51(0.68) 45.49(0.55) 28.05(0.67)

Table 2: Best mean accuracy in the scenario with client selection (100 clients) on four datasets with various heterogeneity levels.
Bold fonts highlight the best accuracy.

(a) CIFAR10 with α = 0.1 (b) CIFAR10 with α = 0.3 (c) CIFAR100 with α = 0.1 (d) CIFAR100 with α = 0.3

Figure 1: Comparison of convergence speed among the proposed method and baselines on CIFAR10 and CIFAR100 in the
scenario with client selection.

upper bound and convergence speed under the convex set-
ting, while Theorem 2 provides the convergence guarantee
under the non-convex setting without presenting the conver-
gence speed. Therefore, in this section, the experiments are
conducted to evaluate the convergence speed of the proposed
method with non-convex DNN model.

Experiments are conducted on CIFAR10 and CIFAR100
with α = {0.1, 0.3} under client selection scenario. The
proposed method is compared with the above personalized

baselines in the accuracy-round space. The results are shown
in Figure 1.

As illustrated in Figure 1, the convergence speed of the
proposed method is approximately same as partial regular-
ization methods (e.g., FedProx and MOON), but is much
faster than the layer-wise methods (e.g., FedBABU, FedBN
and pFedLA), which indicates the proposed method can
learn the layer-wise similarity among clients more effi-
ciently. Moreover, the proposed method achieves higher test
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(a) FMNIST with α = 0.1 (b) FMNIST with α = 0.3 (c) CIFAR100 with α = 0.1 (d) CIFAR100 with α = 0.3

Figure 2: The Relation Matrix of client 9 on FMNIST and CIFAR100 in the scenario without client selection.

(a) Various λs in α = {0.1, 0.3}(b) Various βs in α = {0.1, 0.3}

Figure 3: The best mean accuracy with various hyperpa-
rameters. (a) The accuracy of the proposed method vary-
ing λ = {0.5, 1, 3} with fixed β

2λ = 0.005 when α = 0.1

and varying λ = {0.05, 1, 3} with fixed β
2λ = 0.5 when

α = 0.3. (b) The accuracy of the proposed method varying
β = {0.005, 0.01, 0.1} and varying β = {0.1, 1, 10} with
both fixed λ = 1 when α = 0.1 and α = 0.3, respectively.

accuracy among all methods and further demonstrates the
effectiveness of the proposed method.

Hyperparameter Evaluation
As shown in Eq. (6), the proposed method involves two crit-
ical hyperparameters λ and β. λ is used to trade off local
general loss and personalized regularizer for updating client
parameters, while β can effect regularization term for updat-
ing relation cube R. According to Eq. (15), an appropriate
larger value of λ can enhance the guidance of personalized
regularizer and transfer more knowledge from other clients,
but an increasing λ can also weaken the limit of equal share
in Eq. (10), resulting in inadequate learning of R.

Given the complex impacts of two hyperparameters, a
comprehensive evaluation is conducted with α = {0.1, 0.3}
on CIFAR10 under client selection scenario. In order to in-
vestigate the effects of λ and β independently, β

2λ rather than
β alone is fixed to quantify test accuracy when λ is varying.

Analysis of λ. The best mean accuracy varying λ in
{0.5, 1, 3} for both α = {0.1, 0.3} is shown in Figure 3 (a).
Since the sharable knowledge is less with high heterogeneity
level, β

2λ is fixed with a small value (i.e., 0.005) for α = 0.1
and the results indicate an excessively large or small λ can

actually degrade test accuracy due to overfitting or underfit-
ting the personalized regularizer when α = 0.1. Addition-
ally, when α = 0.3, β

2λ is fixed with a larger value (i.e., 0.5)
that may transfer conflicted knowledge from other clients,
so λ tends to be small values to reduce the guidance of the
personalized regularizer.

Analysis of β. The best mean accuracy varying β in
{0.005, 0.01, 0.1} for α = 0.1 and {0.1, 1, 10} for α = 0.3
is shown in Figure 3 (b). The accuracy with small β out-
performs that with large β for α = 0.1 while the tendency is
contrary for α = 0.3, which implies the fact that there is less
sharable knowledge among higher-heterogeneous clients.

Vision of Relation Cube
In this subsection, we visualize the relation matrix of client
9 on FMNIST and CIFAR100 without client selection. As
shown in Figure 2, the shallow layers of DNN models ap-
pear to be commonly shared by clients, such as layer 0 of the
2CNN model in FMNIST and layers 0− 7 of the ResNet18
model in CIFAR100, while the deeper layers seem to be
more personalized. Additionally, clients with the same het-
erogeneity show distinct inter-layer correlations, verifying
the necessity of layer-wise parameter sharing with different
weights, which is the core idea of the proposed method.

Conclusion
In this paper, we have proposed a knowledge-aware param-
eter coaching method to leverage the granular knowledge
among clients to guide local training efficiently. We have
defined a relation cube to represent the similarity of het-
erogeneous knowledge in DNN layers among clients, which
weights the personalized regularizer to share the mutually
beneficial knowledge among clients. In addition, we have
designed an efficient optimization method to alternately up-
date the client parameters and relation cube, and the theoreti-
cal proofs of the proposed method under the convex and non-
convex settings have been given. Finally, we have verified
the proposed method on popular datasets with various lev-
els of heterogeneity, which shows that the proposed method
outperforms the state-of-the-art pFL methods in terms of ac-
curacy and convergence speed.
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