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Abstract

Spiking neural networks (SNNs) have attracted intensive at-
tention as a promising energy-efficient alternative to con-
ventional artificial neural networks (ANNs) recently, which
could transmit information in the form of binary spikes rather
than continuous activations thus the multiplication of activa-
tion and weight could be replaced by addition to save en-
ergy. However, the binary spike representation form will sac-
rifice the expression performance of SNNs and lead to accu-
racy degradation compared with ANNs. Considering improv-
ing feature representation is beneficial to training an accurate
SNN model, this paper focuses on enhancing the feature rep-
resentation of the SNN. To this end, we establish a similarity-
sensitive contrastive learning framework, where SNN could
capture significantly more information from its ANN coun-
terpart to improve representation by Mutual Information (MI)
maximization with layer-wise sensitivity to similarity. In spe-
cific, it enriches the SNN’s feature representation by pulling
the positive pairs of SNN’s and ANN’s feature representation
of each layer from the same input samples closer together
while pushing the negative pairs from different samples fur-
ther apart. Experimental results show that our method consis-
tently outperforms the current state-of-the-art algorithms on
both popular non-spiking static and neuromorphic datasets.

Introduction
Recent developments in deep neural networks (DNNs) have
achieved great success in a variety of computer vision
tasks including pattern recognition (Simonyan and Zisser-
man 2014; He et al. 2016), semantic image segmentation
(Chen et al. 2018), object detection (Girshick 2015; Ren
et al. 2015), and so on. However, the increasing complex-
ity of these full-precision DNN models brings high energy
consumption, which makes them difficult to deploy in real-
world resource-constrained environments. The spiking neu-
ral network (SNN), inspired by how the brain represents
and processes information, has become one of the energy-
efficient alternatives of conventional DNNs in some specific
scenarios (Ren et al. 2023; Guo et al. 2023b,d). It trans-
mits information via 0/1 spikes thus the multiplication of
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the SNN’s activation and weight can be replaced by the ad-
dition. Thanks to such an information processing paradigm,
SNNs are more power-efficiency compared with their full-
precision DNN counterparts. Moreover, the SNN could be
implemented more efficiently on some specialized neuro-
morphic hardwares (Akopyan et al. 2015; Davies et al. 2018)
in an event-driven manner, where only there is a spike com-
ing, the SNN will be activated, otherwise, be silent.

Despite the unique binary spike information processing
mode endows SNN with the characteristics of energy sav-
ing, it also limits SNN representative ability to some ex-
tent. Compared with the full-precision feature representa-
tion of the ANNs, the binary spike feature representation
of the SNNs leads to limited information capacity and then
severe accuracy degradation (Guo et al. 2022c, 2023a). To
improve the representative capability of SNN, some pre-
vious works advocated using the ANN to guide the train-
ing of high-precision SNN based on knowledge distilla-
tion (Takuya et al. 2021; Xu et al. 2023; Guo et al. 2023c).
These works enhance the training of SNN either by minimiz-
ing the Kullback-Leibler divergence (KLD) (Takuya et al.
2021) or distance (Xu et al. 2023) of the features or outputs
of ANN and SNN. We note that these methods all only use
the samples from the joint distribution of the features or out-
puts of the ANN and the SNN to assist in the training of
SNN. Taking KLD for example,

DKL(PS || PA) =
∑

PS(s) log
PS(s)

PA(a)
, (1)

where s = fSNN(xi), a = fANN(xi), and (s, a) ∈
PSA(s, a), PSA(s, a) denotes the joint distribution. The loss
function is obtained by the output features of ANN and SNN
based on the same sample input. However, there is also rich
information existing between the ANN’s and SNN’s fea-
tures obtained by independent sample inputs. More specif-
ically, the product of the respective marginal distributions
of ANN’s and SNN’s representation PS(s)PA(a) can also
be important for the construction of the loss function. Con-
sequently, we advocate maximizing mutual information be-
tween SNN’s and ANN’s features, through the KLD of joint
distribution and the product of marginal distributions, to
guide the learning of the SNN. Concretely, the representa-
tion ability of SNN will be strengthened not only via pulling
SNN’s and ANN’s features from the same input samples but
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Figure 1: The overall workflow of the proposed method. To enhance the representation of SNN, a similarity-sensitive contrastive
loss is introduced for transmitting the important information from ANN’s representation to SNN’s representation, where con-
trastive losses at different layers are weighted by CKA.

also by pushing those from different input samples.
In addition, the recent study (Li et al. 2023) has analyzed

the similarity of SNN’s and ANN’s representations, which
is measured by centered kernel alignment (CKA). Accord-
ing to the experimental results, we notice that the similarity
of SNN’s and ANN’s representations at different layers is
different, and the CKA value shows a decreasing trend with
the layers going deep. Considering the difference in repre-
sentation similarity between the ANN and the SNN along
layers, we further introduce the CKA into loss to sense the
similarity of the representations and weigh the contrastive
loss for mutual information maximization at each layer.

Our training framework is shown in Fig.1. For clarity, the
main contribution of this paper is summarized below.

• We propose a novel contrastive learning framework to
train SNNs directly via maximizing the mutual informa-
tion between SNN’s representation and its real-valued
counterparts of the well-trained ANN. The SNN is op-
timized based on both joint distribution and the product
of marginal distributions of the ANN’s and SNN’s repre-
sentation.

• Furthermore, a series of layer-wise similarity indexes are
introduced into the total loss to weigh the mutual infor-
mation maximization at different layers.

• We evaluate our method on both static and neuromor-
phic datasets. Extensive experimental results under vari-
ous experimental settings show that our method signifi-
cantly outperforms state-of-the-art methods, e.g. 78.79%

on CIFAR-100, 66.78% on ImageNet, and 80.00% on
CIFAR10-DVS.

Related Work
Based on the classification of the review (Guo, Huang, and
Ma 2023), the representative ability decreasing of SNNs can
be mitigated on the neuron level, network structure level,
and training technique level. On the neuron level, intro-
ducing learnable hyperparameters into the spiking neuron
is a common way. LSNN (Bellec et al. 2018) and LTMD
(Wang, Cheng, and Lim 2022) proposed adaptive thresh-
old spike neurons to improve the computing and learn-
ing capabilities of SNNs. Besides this, introducing a learn-
able membrane time constant is another commonly used
method (Yin, Corradi, and Bohté 2020; Luo et al. 2022).
Furthermore, DietSNN (Rathi and Roy 2020a) adopted the
learnable membrane leak and firing threshold simultane-
ously. On the network structure level, SEW-ResNet (Fang
et al. 2021a) and DS-ResNet (Feng et al. 2022) replaced the
standard ResNet backbone with activation before the addi-
tion form-based ResNet. The representation capability will
be increased due to that this kind of ResNet will fire positive
integer spikes. However, the multiplication-addition trans-
formation will be lost at the same time. To handle this prob-
lem, MS-ResNet (Hu et al. 2021) proposed a pre-activation
form-based ResNet, where the spike-based convolution can
be retained. On the training technique level, IM-Loss (Guo
et al. 2022a) proposed an information maximization loss to
improve the activation information entropy. Recently, some
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works (Takuya et al. 2021; Xu et al. 2023) introduced the
distillation method in the SNN domain. In these methods,
an ANN teacher is used to guide SNN-student learning with
KLD or distance between their outputs or features, aligning
ANN’s and SNN’s output or features obtained from the same
sample.

Contrastive learning considers both positive and negative
sample pairs to achieve expression learning, which has val-
idated its superiority in many computer vision tasks (Wu
et al. 2018; He et al. 2020; Chen et al. 2020; Tian, Krishnan,
and Isola 2020, 2019). It pulls the representations of positive
sample pairs closer using a contrastive loss function, as well
as pushes the representations of positive and negative sample
pairs away. This study combines the knowledge distillation
method and the contrastive learning method to introduce a
robust learning approach with the push-and-pull scheme to
effectively enhance the representation of SNNs by the guid-
ance of the ANNs.

Preliminary and Methodology
This section first introduces the spiking neuron model and
why its feature’s expression ability is limited, then, why and
how to align the SNN’s representation with the ANN’s rep-
resentation via similarity-sensitive contrastive learning. Fi-
nally, the process to train an SNN with the proposed meth-
ods will be given in detail by pseudocode.

Spiking Neuron Model
The primary computing neuron of an SNN is much different
from that of an ANN. The neuron of an ANN only plays the
role of nonlinear transformation and can output real-valued
values. While the neuron in an SNN enjoys rich spatially-
temporal dynamics. Take the well-known Leaky Integrate-
and-Fire (LIF) neuron model as an example. The LIF neuron
updates its membrane potential based on the input and its
membrane potential at the previous moment as follows,

Ut,pre = τUt−1 +WZt, (2)

where Ut,pre denotes the pre-membrane potential at t-
th timestep, Ut denotes the membrane potential at t-th
timestep, τ is the membrane time constant which repre-
sents the leakage effect of the membrane potential, W is the
weight, and Zt is the binary map comes from the previous
layer at t-th timestep.

When Ut,pre exceeds the firing threshold Uth, the neuron
would fire a spike and reset the Ut to zero, otherwise, the
membrane potential would be presented to the next timestep
with a leak according to Eq. 2, given by

Ot =

{
1, if Ut,pre ≥ Uth

0, otherwise
,Ut = Ut,pre · (1− Ot), (3)

where Uth is a given firing threshold and Ot denotes the out-
put of the LIF neuron. Ot is a binary feature map.

The Representation of SNN
Though the binary spike information processing paradigm
is highly energy efficient, it will result in unsatisfactory per-
formance too, since the binary spike activation maps cannot

carry enough information compared with ANNs. Take the
information entropy concept to analyze it, given a set, M,
its representation capability, R(M) can be measured by the
information entropy of M, as follows

R(M) = maxH(M) = max(−
∑
m∈M

pM(m)logpM(m)),

(4)
where pM(m) is the probability of a sample, m from M.
When pM(m1) = pM(m2) = pM(m3) · · · = pM(mNM

),
H(M) reaches its maximum, log(NM ), where NM is the
total number of the samples from M. And for the activation
map of the ANN, it can be denoted as MR ∈ RC×H×W ,
where C is the channels and H and W are height and width
of the map. Correspondingly, the activation map of the SNN
can be denoted as MB ∈ BT×C×H×W , where T is the total
timesteps. Since the binary spike output o can be expressed
with 1 bit, the number of samples from o is 2. Then, the num-
ber of samples from MB is 2(T×C×H×W ) and R(MB) =
log2(T×C×H×W ) = T×C×H×W . While a real-valued ac-
tivation for ANN needs 32 bits, thus consisting of 232 sam-
ples and R(MR) = log232×(C×H×W ) = 32×C×H×W .
In most of the direct training SNN works, the T is smaller
than 32, thus the representation capability of the SNN is
much worse than that of the ANN.

Mutual Information and Centered Kernel
Alignment
In this paper, we consider maximizing the mutual informa-
tion (MI) of the representations of SNN and ANN to align
the output features of SNN and ANN, so as to achieve the
effect of enhancing the representation ability of the SNN.
For ease of notation, we define random variables Sl and Al

for the SNN’s and ANN’s representation of the data at layer
l respectively:

Sl = fS
l (x), (5)

Al = fA
l (x). (6)

Their mutual information (MI) can be defined as (Solomon
1997):

I(Sl,Al) =
∑
s,a

PSlAl(s, a) log
PSlAl(s, a)

PSl(s)PAl(a)
, (7)

where PSlAl(s, a) is the joint distribution, PSl(s) =∑
a PSlAl(s, a) and PAl(a) =

∑
s PSlAl(s, a) are the

marginals of Sl and Al, respectively. Compared with (1),
mutual information (7) introduces additional information
within the product of the respective marginal distributions
of ANN’s and SNN’s representation PSl(s)PAl(a) to learn
the SNN contrastively. It quantifies the amount of infor-
mation obtained about SNN’s representation by observing
ANN’s representation and can be considered as the reduc-
tion in uncertainty about SNN’s representation given knowl-
edge of ANN’s representation. High mutual information
indicates a large reduction in uncertainty and vice versa
(Solomon 1997). We would like ANN’s and SNN’s repre-
sentations to share as much information as possible, because
the more similar they are in the feature space, the smaller the
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gap between the accuracy of SNN and ANN after the full-
connection layer calculation. Theoretically, the mutual infor-
mation between those two representations should be maxi-
mized.

During the training phase, the similarity between SNN
and ANN representations of different layers is different (Li
et al. 2023), and this difference should be considered and
balanced when the mutual information of different layers is
integrated in training loss. We uses the trained ANN to guide
the training of SNN, which aims at forcing the representa-
tion of SNN to be similar to the one of the ANN. Thus we
hope our loss can pay more attention to the more different
layers. Here we adopt centered kernel alignment (CKA) to
sense and then adjust this difference of similarity and in-
troduce it into contrastive loss. CKA computes the similar-
ity between pairs of representation matrices to quantitatively
study neural network representations (Kornblith et al. 2019;
Cortes, Mohri, and Rostamizadeh 2012).

Given SNN’s representation Sl ∈ Rn×T×ps,l and ANN’s
representation Al ∈ Rn×pa,l with the batchsize of n at layer
l, the following CKA (Kornblith et al. 2019) is adopted to
measure how similar they are.

CKA(K,L) =
HSIC(K,L)

HSIC(K,K)HSIC(L,L)
, (8)

where HSIC(K,L) = 1
(n−1)2 tr(KHLH), where K =

SlSl⊤ , L = AlAl⊤ are the Gram matrices with the shape of
n×n. Ki,j or Li,j implies the similarity between the i-th and
j-th example in the representation Sl or Al. In order to fur-
ther measure the similarity between K and L, we determine
whether SNN has an inter-example similarity matrix similar
to ANN. Given the centering matrix H = I − 1

n11
⊤, the

Hilbert-Schmidt Independence Criterion (HSIC) proposed
by (Gretton et al. 2005) tests the independence of two groups
of variables statistically. HSIC= 0 indicates independence.
Then, the CKA produces a similarity indicator between 0
and 1 by further normalizing HSIC. The closer CKA is to 1,
the more similar the input pairs are. Here, we use the unbi-
ased estimator of HSIC (Song et al. 2012; Nguyen, Raghu,
and Kornblith 2020) to calculate it across mini-batches.

HSIC1(K,L) =
1

n(n− 3)
·(

tr(K̃L̃) +
1⊤K̃11⊤L̃1

(n− 1)(n− 2)
− 2

n− 2
1⊤K̃L̃1

)
.

(9)

Similarity-Sensitive Contrastive Learning
In this section, we introduce how to construct a similarity-
sensitive contrastive loss based on Noise-Contrastive Esti-
mation (NCE) to maximize the mutual information between
the layer-wise discrete and the full-precision representa-
tions. NCE estimates the mutual information with its lower
bound to avoid computing it directly. As shown in Figure 1,
the discrete and full-precision representations from the same
samples can be pulled close, while representations from dif-
ferent samples can be pushed away, which corresponds to

the core idea of contrastive learning. Then, layer-wise NCE
losses are weighted by the corresponding CKA scale, thus
forming the similarity-sensitive contrastive loss.

For a training batch with N samples, the samples can be
denoted as: {xi}(i ∈ 1, ..., N). Let us define a distribution q
with latent variable G which decides whether a contrastive
pair (fS(xi), f

A(xj)) comes from the same samples (i =
j ⇔ G = 1) or different samples (i ̸= j ⇔ G = 0):

q(Sl,Al|G = 1) = p(Sl,Al), (10)

q(Sl,Al|G = 0) = p(Sl)p(Al). (11)
Suppose that in the data, for every N − 1 incongruent pair
(different samples input to fS

l and fA
l from the product of

marginal distributions), 1 congruent pair (the same sample
input to fS

l and fA
l ) is given. Then the priors of the latent

variable G are:

q(G = 1) =
1

N
, q(G = 0) =

N − 1

N
. (12)

Through simple operations and Bayes’ rule, the posterior for
G = 1 can be obtained by:

q(G = 1|Sl,Al) =

q(Sl,Al|G = 1)q(G = 1)

q(Sl,Al|G = 0)q(G = 0) + q(Sl,Al|G = 1)q(G = 1)

=
p(Sl,Al)

p(Sl,Al) + (N − 1)p(Sl)p(Al)
.

(13)

Next, taking the logarithm on both sides of the above equa-
tion, we have:

log q(G = 1|Sl,Al)

= log
p(Sl,Al)

p(Sl,Al) + (N − 1)p(Sl)p(Al)

= − log(1 + (N − 1)
p(Sl)p(Al)

p(Sl,Al)
)

≤ − log(N − 1) + log
p(Sl,Al)

p(Sl)p(Al)
.

(14)

Then taking expectation on both sides w.r.t. q(Sl,Al|G =
1) and rearranging, we obtain:

I(Sl;Al) ≥ log(N − 1)+

Eq(Sl,Al|G=1) log q(G = 1|Sl,Al),
(15)

where I(Sl;Al) denotes the mutual information between
the SNN’s and ANN’s representations. Therefore, maxi-
mizing the mutual information is equivalent to maximizing
its lower bound Eq(Sl,Al|G=1) log q(G = 1|Sl,Al) w.r.t.
the parameters of the SNN. However, the true distribution
q(G = 1|Sl,Al) is not known, but can be estimated in-
stead by fitting a critic function h : {S,A} → [0, 1] (Tian,
Krishnan, and Isola 2019) to samples from the data distri-
bution q(Sl,Al|G = 1) and q(Sl,Al|G = 0), where S
and A represent the domains of the representations. Accord-
ing to the properties of h, (N − 1)Eq(Sl,Al|G=0)[log(1 −
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h(Sl,Al))] is strictly negative. Thus, by simply adding
(N − 1)Eq(Sl,Al|G=0)[log(1− h(Sl,Al))] to the inequality
(15), the inequality also holds as previous contrastive learn-
ing work (Tian, Krishnan, and Isola 2019).

I(Sl;Al) ≥ log(N − 1) + Eq(Sl,Al|G=1)[log h(S
l,Al)]

+ (N − 1)Eq(Sl,Al)|G=0)[log(1− h(Sl,Al))].
(16)

Next, let

Ll
NCE(h) = Eq(Sl,Al|G=1)[log h(S

l,Al)]

+ (N − 1)Eq(Sl,Al|G=0)[log(1− h(Sl,Al))].
(17)

In order to learn the SNN by maximizing the mutual infor-
mation I(Sl;Al), the final optimization problem becomes

f∗
S = argmax

fS

max
h

Ll
NCE(h) (18)

Based on inequality (16), for any h, fS∗ =
argmax

fS
l

Ll
NCE(h) also optimizes a lower-bound on

mutual information. Thus, the above learning problem (18)
does not rely on h being optimized perfectly. We design
our critic function h for our SNN case based on the critic
function (Tian, Krishnan, and Isola 2019):

h(Sl,Al) =
eg

S(Sl)
′
gA(Al)/τ

egS(Sl)′gA(Al)/τ + N
M

(19)

where τ is a temperature constant to control the concentra-
tion level, and M is the total number of possible pairs. Since
the dimensionality of Sl and Al are different, they need to
be linearly transformed to the same dimension by gS and
gA as well as further normalized by L2 norm before inner
product.

Finally, for constructing the similarity-sensitive con-
trastive loss to enhance representations of SNNs, we weigh
the NCE loss Ll

NCE by CKA-based weight λl
CKA =

1/CKA(K,L) at l-th layer and combine it with classifica-
tion loss. Then, the total loss L can be defined as:

LTotal =
∑
l

λl
CKALl

NCE + LCE , (20)

where LCE is the cross-entropy loss. When the represen-
tation similarity between ANN and SNN of a certain layer
is relatively smaller, The CKA-based weight λl

CKA will be
larger, and the contrastive loss based on mutual informa-
tion maximization of this layer is greater, and the repre-
sentation of this layer will be preferentially optimized. We
adopt the spatial-temporal backpropagation (STBP) algo-
rithm (Wu et al. 2019) to train the SNN with our method
and the following STE surrogate gradients to solve the non-
differentiable firing activity of the spiking neuron as other
surrogate gradient (SG) methods (Rathi and Roy 2021; Guo
et al. 2022b).

dO
dU

=

{
1, if 0 ≤ U ≤ 1
0, otherwise

(21)

Experiments
In this section, extensive experiments were conducted to
validate the effectiveness of the proposed method adopt-
ing widely-used spiking ResNet20 (Rathi and Roy 2020b;
Sengupta et al. 2018), VGG16 (Rathi and Roy 2020b),
ResNet18 (Fang et al. 2021a), ResNet19 (Zheng et al. 2020),
and ResNet34 (Fang et al. 2021a) on both static and neu-
romorphic datasets including CIFAR-10 (Krizhevsky, Nair,
and Hinton 2010), CIFAR-100 (Krizhevsky, Nair, and Hin-
ton 2010), ImageNet (Deng et al. 2009), and CIFAR10-
DVS (Li 2017). These networks are typically divided into
four stages corresponding to four downsamples of the input
feature map. The layer-wise representations used in our im-
plementation consist of the representations after these four
stages and the output feature representation after a subse-
quent global averaging pooling. We used the same architec-
ture of ANN and SNN. We first train an ANN and then use
it to guide the learning of the homogenous SNN. The hyper-
parameters for LIF neuron including the firing threshold
Uth, the membrane potential decaying τ , and reset potential
Ureset were set as 0.5, 0.25, and 0 respectively. For static
image datasets, the images were fed into the SNN model
directly and encoded to 0/1 spikes using the first layer as
recent works (Zheng et al. 2020; Rathi and Roy 2020b). For
the neuromorphic image dataset, the 0/1 spike format was
used directly. For comparison results, we list the mean top-1
accuracy and standard deviation when running three times
for each experiment.

Ablation Study
To verify the effectiveness of our method, a series of abla-
tion studies were conducted first, including the studies us-
ing spiking ResNet20 architecture with different time steps
on the CIFAR-100. Table 3 lists the top-1 accuracy of these
models. As can be seen, the test accuracy of our SNN mod-
els with similarity-sensitive contrastive learning (SSCL) is
consistently higher than that of these vanilla SNN mod-
els. Moreover, it can be clearly seen that the proposed con-
trastive loss and the CKA benefit the overall improvement.
Specifically, 2-timestep baseline SNN provides an accuracy
of 68.27% on CIFAR-100, while SSCL could help SNN im-
prove its accuracy to 69.81%, which is a huge improvement
in the SNN field (close to 2.0%).

Comparison with SoTA Methods
We then conducted various experiments on both static and
neuromorphic datasets. The details for the datasets and set-
tings are given in the appendix.

CIFAR-10. The result for CIFAR-10 is shown in Table 1.
Our models provide better performance than other SoTA
methods using three commonly used networks with fewer
time steps. Our VGG16 model with only 2 timesteps out-
performs the KDSNN (Xu et al. 2023) with 4 timesteps
by 2.78% accuracy. This demonstrates that, compared with
the KD method which only uses the sample pairs from the
joint distribution, it can improve the accuracy better that
our model also uses the sample pairs of the product of
the marginal distributions to align the representation. With
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Dataset Method Type Architecture Timestep Accuracy

CIFAR-10

SpikeNorm (Sengupta et al. 2018) ANN2SNN VGG16 2500 91.55%
Hybrid-Train (Rathi et al. 2020) Hybrid training VGG16 200 92.02%
Spike-basedBP (Lee et al. 2020) SNN training ResNet11 100 90.95%
STBP (Wu et al. 2019) SNN training CIFARNet 12 90.53%
TSSL-BP (Zhang and Li 2021) SNN training CIFARNet 5 91.41%
PLIF (Fang et al. 2021b) SNN training PLIFNet 8 93.50%
GLIF (Yao et al. 2023) SNN training ResNet19 2 94.44%
KDSNN (Xu et al. 2023) SNN training VGG16 4 91.05%

Diet-SNN (Rathi and Roy 2020b) SNN training
VGG16 5 92.70%

10 93.44%

ResNet20 5 91.78%
10 92.54%

STBP-tdBN (Zheng et al. 2020) SNN training ResNet19
2 92.34%
4 92.92%
6 93.16%

TET (Deng et al. 2022) SNN training ResNet19
2 94.16%
4 94.44%
6 94.50%

Our method SNN training

VGG16 2 93.83%±0.10
4 94.27%±0.09

ResNet19 1 95.33%±0.09
2 96.08%±0.10

ResNet20
1 92.16%±0.07
2 93.40%±0.08
4 94.27%±0.07

CIFAR-100

BinarySNN (Lu and Sengupta 2020) ANN2SNN VGG15 62 63.20%
Hybrid-Train (Rathi et al. 2020) Hybrid training VGG11 125 67.90%
T2FSNN (Park et al. 2020) ANN2SNN VGG16 680 68.80%
SNNThroughKD (Takuya et al. 2021) SNN training VGG16 5 74.42%

Diet-SNN (Rathi and Roy 2020b) SNN training ResNet20 5 64.07%
VGG16 5 69.67%

TET (Deng et al. 2022) SNN training ResNet19
2 72.87%
4 74.47%
6 74.72%

TEBN (Duan et al. 2022) SNN training ResNet19
2 75.86%
4 76.13%
6 76.41%

GLIF (Yao et al. 2023) SNN training ResNet19 2 75.48%
4 77.05%

Our method SNN training

VGG16 5 76.37%±0.11

ResNet19 1 77.75%±0.08
2 78.79%±0.10

ResNet20
1 67.93%±0.12
2 69.81%±0.12
4 72.86%±0.10

CIFAR-DVS

Rollout (Kugele et al. 2020) Rollout DenseNet 10 66.80%
STBP-tdBN (Zheng et al. 2020) SNN training ResNet19 10 67.80%
RecDis-SNN (Guo et al. 2022b) SNN training ResNet19 10 72.42%
LIAF-Net (Wu et al. 2022) Conv3D LIAF-Net 10 71.70%
LIAF-Net (Wu et al. 2022) LIAF LIAF-Net 10 70.40%

Real Spike (Guo et al. 2022c) SNN training ResNet19 10 72.85%
ResNet20 10 78.00%

Our method SNN training ResNet19 10 80.00%±0.20
ResNet20 10 78.50%±0.10

Table 1: Comparison with SoTA methods on CIFAR.
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Method Type Architecture Timestep Accuracy
Hybrid-Train (Rathi et al. 2020) Hybrid training ResNet34 250 61.48%
SpikeNorm (Sengupta et al. 2018) ANN2SNN ResNet34 2500 69.96%
STBP-tdBN (Zheng et al. 2020) SNN training ResNet34 6 63.72%
TET (Deng et al. 2022) SNN training ResNet34 6 64.79%
RecDis-SNN (Guo et al. 2022b) SNN training ResNet34 6 67.33%
OTTT (Xiao et al. 2022) SNN training ResNet34 6 63.10%
MS-ResNet (Hu et al. 2023) SNN training ResNet18 6 63.10%

Real Spike (Guo et al. 2022c) SNN training ResNet18 4 63.68%
ResNet34 4 67.69%

SEW ResNet (Fang et al. 2021a) SNN training ResNet18 4 63.18%
ResNet34 4 67.04%

Our method SNN training ResNet18 4 62.95%±0.08
ResNet34 4 66.78%±0.10

Table 2: Comparison with SoTA methods on ImageNet.

Methods Accuracy/Timestep=2 Accuracy/Timestep=4
baseline 68.27% 71.45%

Distillation 68.74% 71.72%
Contrastive loss(uniform weighted) 69.25% 72.16%

w/ SSCL 69.81% 72.86%

Table 3: Ablation experiments for the proposed contrastive loss and the CKA.

only 2 timesteps, our ResNet19 model also outperforms the
TET (Deng et al. 2022) and the STBP-tdBN (Zheng et al.
2020) with 6 timesteps by 1.58%, and 2.92%, respectively.
The same superiority can also be seen with ResNet20 back-
bone. These comparison results demonstrate the effective-
ness and efficiency of our method.

CIFAR-100. We have also validated our approach on
CIFAR-100. The results for CIFAR-100 are presented in Ta-
ble 1. With 5 timesteps, our VGG16 model achieves an ac-
curacy of 76.37%, which outperforms the SNNThroughKD
(Takuya et al. 2021) by 1.95%. This once again demonstrates
the superiority of our method over KD methods. Moreover,
our method also achieves better accuracy than other previ-
ous works with fewer timesteps on ResNet19 and ResNet20.
For instance, the accuracy of our ResNet19 model with just
1 timestep can be as high as 77.75%, while the GLIF (Yao
et al. 2023) and the TEBN (Duan et al. 2022) are even less
accurate at 4 time steps by 0.7% and 1.62%.

CIFAR10-DVS. The result for CIFAR10-DVS is shown
in Table 1. Our method achieves 80.00% and 78.50% accu-
racy with ResNet19 and ResNet20 as the backbone respec-
tively. It can be observed that the accuracy of our ResNet19
model is much higher than that of ResNet20 one. This can
be explained from the perspective of mitigating overfitting.
Since the data for training of CIFAR10-DVS is less suf-
ficient than that of CIFAR10, and the overfitting issue is
more severe on spiking ResNet19 model than ResNet20 one.
Our contrastive learning method introduces the information
of contrastive pairs from the product of marginal distribu-
tions and can be regarded as a proxy of data augmentation.
Thus, it can alleviate the overfitting as well as improve the

accuracy of spiking ResNet19 model more noticeably on
CIFAR10-DVS.

ImageNet. All training settings for ImageNet are the
same as CIFAR dataset but a temperature of 0.07 (τ = 0.07)
and training epoches as 320. We present the result for Im-
ageNet in Table 2. It can be seen that our ResNet18 and
ResNet34 model achieve 62.95% and 66.78% top-1 ac-
curacy with only 4 timesteps, better than most of recent
SoTA methods, only relatively smaller compared with SEW
ResNet (Fang et al. 2021a) and Real Spike (Guo et al.
2022c). However, SEW ResNet (Fang et al. 2021a) and Real
Spike (Guo et al. 2022c) are both SEW ResNet-based mod-
els, which are not typical SNN models. SEW ResNet-based
models can fire positive integer spikes with the form of ac-
tivation before addition. Since they have lost SNN’s advan-
tages of event-driven and multiplication-addition transform,
we adopt the original spiking ResNet which fires standard
binary spikes.

Conclusion
In order to enhance the representation of SNNs, this work
proposes a new similarity-sensitive contrastive learning
framework. Via Mutual Information (MI) maximization, the
positive pairs of SNN’s and ANN’s representation of each
layer from the same input samples will be pulled closer,
while the negative pairs from different samples will be
pushed apart. Futhermore, a similarity indicators (CKAs) for
each layer is introduced to balance the layer-wise “push and
pull” scheme. A series of ablation studies show that the pro-
posed method can greatly increase the SNN’s accuracy and
will consistently outperforms the other SoTA methods.
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