
A Perspective of Q-value Estimation on
Offline-to-Online Reinforcement Learning

Yinmin Zhang1, 2 *, Jie Liu2, 3 *, Chuming Li1, 2 *, Yazhe Niu2,
Yaodong Yang4†, Yu Liu2†, Wanli Ouyang2

1 The University of Sydney, SenseTime Computer Vision Group, Australia
2 Shanghai Artificial Intelligence Laboratory

3 Multimedia Laboratory, The Chinese University of Hong Kong
4 Institute for AI, Peking University

yinmin.zhang@sydney.edu.au, jieliu@ie.cuhk.edu.hk, chli3951@uni.sydney.edu.au,
yaodong.yang@pku.edu.cn, liuyuisanai@gmail.com, ouyangwanli@pjlab.org.cn

Abstract

Offline-to-online Reinforcement Learning (O2O RL) aims
to improve the performance of offline pretrained policy us-
ing only a few online samples. Built on offline RL algorithms,
most O2O methods focus on the balance between RL objective
and pessimism, or the utilization of offline and online samples.
In this paper, from a novel perspective, we systematically study
the challenges that remain in O2O RL and identify that the rea-
son behind the slow improvement of the performance and the
instability of online finetuning lies in the inaccurate Q-value
estimation inherited from offline pretraining. Specifically, we
demonstrate that the estimation bias and the inaccurate rank
of Q-value cause a misleading signal for the policy update,
making the standard offline RL algorithms, such as CQL and
TD3-BC, ineffective in the online finetuning. Based on this
observation, we address the problem of Q-value estimation by
two techniques: (1) perturbed value update and (2) increased
frequency of Q-value updates. The first technique smooths
out biased Q-value estimation with sharp peaks, preventing
early-stage policy exploitation of sub-optimal actions. The
second one alleviates the estimation bias inherited from offline
pretraining by accelerating learning. Extensive experiments
on the MuJoco and Adroit environments demonstrate that the
proposed method, named SO2, significantly alleviates Q-value
estimation issues, and consistently improves the performance
against the state-of-the-art methods by up to 83.1%.

Introduction
In recent years, deep offline Reinforcement Learning (RL)
(Yu et al. 2020; Agarwal, Schuurmans, and Norouzi 2020; Bai
et al. 2021) has received increasing attention due to its poten-
tial for leveraging abundant logged data or expert knowledge
(e.g., human demonstrations) to learn high-quality policies.
Analogous to trends in computer vision (He et al. 2021; Rad-
ford et al. 2021; Bommasani et al. 2021) and natural language
processing (Devlin et al. 2019; Brown et al. 2020), where
powerful models pretrained on large, diverse datasets general-
ize to task-specific data through finetuning, offline-to-online
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reinforcement learning (O2O RL) aims to enhance the per-
formance of a pretrained offline RL policy via finetuning on
only a few online collected samples. In O2O RL, the central
challenge is to maximize the efficient utilization of additional
online samples for further performance improvement.

We find that directly finetuning offline RL policies with on-
line interactions remains inefficient in many cases, as shown
in Figure 2a. Most existing works (Zhao et al. 2022; Lee
et al. 2022) assume that the above issue results from the
state-action distribution shift between the offline and online
samples. To handle this distribution shift, they propose differ-
ent methods to progressively transfer from offline to online
finetuning settings, including the balance between RL objec-
tive and pessimism (Zhao et al. 2022) and between the usage
of offline and online samples (Lee et al. 2022).

The main contribution of this paper is to offer a compre-
hensive understanding of the problem in O2O RL, focusing
on Q-value estimation, a perspective that has been under-
explored. While prior research acknowledges this issue, our
work delves deeper into it, unveiling two key challenges: (1)
biased Q-value estimation and (2) inaccurate rank of Q-value
estimation, which represents the distinguishability in the qual-
ity of different state-action pairs. Despite most offline RL
policies trained in pessimistic manners such as conservative
Q-learning (Kumar et al. 2020), action constraints (Fujimoto
and Gu 2021), and Q-ensemble (An et al. 2021), we still
observe severe overestimation (CQL and TD3-BC) or under-
estimation (EDAC) compared to an online RL policy trained
from scratch with similar performance. These disparities re-
sult in in a severe bootstrap error, as shown in Figure 2b.
Moreover, it is well-known that the inaccurate rank of Q-
value estimation, such as inaccurate advantage, results in mis-
leading signals to policy updates. To quantitatively assess the
accuracy of Q-value estimation rank, we compute Kendall’s
τ coefficient between the estimated and true Q-values, sepa-
rately for offline RL and online RL policies. Figure 2c shows
that offline RL methods (CQL, TD3-BC, and EDAC) have
lower Kendall’s τ coefficient compared to the online RL,
SAC. This indicates that the offline RL is less accurate in
ranking estimated Q-values than the online RL. Consequently,
the signal from the inaccurate Q-value estimation used in pol-
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icy updates is misleading, which causes instability and slow
improvement of performance during online finetuning.

To mitigate the Q-value estimation problems stated above,
we identify two widely used techniques: (1) perturbed value
update and (2) increased frequency of Q-value updates.
Specifically, we perturb the target action with an extra noise
to smooth out the biased Q-value estimation with sharp peaks.
This prevents the agent from overfitting to a specific action
that might have worked in the past but might not general-
ize well to new situations. By incorporating noisy actions,
the agent is encouraged to explore different actions in the
next state, reducing overestimation bias. This encourages the
agent to consider a range of plausible actions rather than
fixating on a single seemingly optimal action. Consequently,
it leads to more accurate value estimates, mitigating value es-
timation bias in online RL. Additionally, we remark that the
biased Q-value estimation requires an increased frequency
of updates to converge rapidly to a normal level. Increasing
the update frequency for Q-values and policies makes the
learning process more responsive to new experiences, result-
ing in more accurate value estimates and faster convergence
towards the optimal policy. As illustrated in Figure 1, both of
them provide more accuracy of Q-value function estimation
to further improve performance during online finetuning.

The proposed Simple method for O2O RL, named SO2, is
evaluated on (1) MuJoCo locomotion tasks, and (2) dexterous
manipulation tasks, using an offline policy pretrained on the
D4RL. Our experiments highlight that SO2 consistently out-
performs prior state-of-the-art methods in sample efficiency
and asymptotic performance on various tasks and datasets.

Related Work
Offline RL Offline RL employs static datasets to train
agents but faces Q-value overestimation challenges, espe-
cially with unseen state-action pairs (Fujimoto, Meger, and
Precup 2019). Solutions can be categorized as follows: (1)
Policy constraint methods (Nair et al. 2020; Fujimoto and
Gu 2021; Wu, Tucker, and Nachum 2019) enforce policy
alignment with the behavior policy in logged datasets, min-
imizing policy distribution shift through behavior cloning
and KL-divergence; (2) Pessimistic value methods (Kumar
et al. 2020) regularize the Q-value to mitigate the overesti-
mation by adding a conservative penalty to the RL object;
(3) Uncertainty-based methods (An et al. 2021; Kumar et al.
2019; Bai et al. 2021) measure the distribution shift using
Q-value uncertainty to guarantee a robust policy update.

Online RL with offline datasets. Several works (Ijspeert,
Nakanishi, and Schaal 2002; Kim et al. 2013; Zhu et al. 2019;
Nair et al. 2017; Theodorou, Buchli, and Schaal 2010; Gupta
et al. 2020) improve online RL by utilizing offline datasets,
assuming these datasets contain optimal demonstrations spe-
cific to the current environment. However, real-world offline
datasets, sourced from various sources, contain numerous
sub-optimal demonstrations. Consequently, these methods
may not perform well in such scenarios due to estimation
bias from sub-optimal datasets. An alternative approach (Nair
et al. 2020; Lee et al. 2022) takes a pessimistic view, avoid-
ing the assumption of optimality. These methods focus on

the challenge of significant distribution gaps between offline
datasets and online samples during O2O finetuning. Particu-
larly, AWAC (Nair et al. 2020) enforces an implicit constraint
on policy updates to align the learned policy with policies in
both offline and online samples. (Lee et al. 2022) employs
Q-ensemble and balanced replay, encouraging the use of near-
on-policy samples from offline demonstrations using neural
network predictions. AdaptiveBC (Zhao et al. 2022) proposes
a randomized Q-function ensemble, dynamically balancing
the RL objective with behavior cloning based on agent per-
formance and training stability. IQL (Kostrikov, Nair, and
Levine 2021) approximates each state’s upper bound of Q-
values and extracts the policy from the Q-value estimation.
ODT (Zheng, Zhang, and Grover 2022) proposes an O2O RL
algorithm using sequence modeling and entropy regularizers
to unify pertaining and finetuning. PEX (Zhang, Xu, and Yu
2022) introduces a policy expansion approach by incorporat-
ing offline policies for additional learning. QDagger (Agar-
wal et al. 2022) focuses on optimizing knowledge transfer
efficiency within the reincarnating RL paradigm. While some
prior works do acknowledge inaccurate Q-value estimation,
they may not have explicitly dissected the various types of
inaccuracies and their specific effects on policy updates and
online finetuning. Our research extends the existing literature
by providing a more comprehensive understanding of these
issues within O2O RL. Specifically, we focus on uncovering
the challenges related to biased Q-value estimation and in-
accurate Q-value ranking inherited from offline RL. These
issues result in unreliable signals that exacerbate bootstrap
errors during finetuning, leading to instability and subopti-
mal policy updates. Our investigation and proposed solutions
address problems not explored in-depth in previous research.

Background
RL seeks to learn a policy maximizing the cumulative dis-
counted reward in the Markov Decision Process (MDP) de-
fined by (S,A,R, p, γ), with the state space S, the action
space A, reward functionR, transition dynamics p, and dis-
count factor γ ∈ (0, 1). Actor-critic algorithms maintain the
Q-value function Q (s, a) and the learned policy π(a | s).
Offline RL. Offline RL assumes the agent leverages the
logged datasets without any interaction with the environment.
The agent is trained in a logged dataset D which is sampled
from the environment by a behavior policy πβ(a | s). For the
actor-critic algorithm given dataset D = {(s, a, r, s′)}, we
can represent value iteration and policy improvement by:

Qk+1 ← argmin
Q

Es,a∼D

[(
Bπ

k

Qk(s, a)−Q(s, a)
)2

]
,

(1)

πk+1 ← argmax
π

Es∼D,a∼π(a|s)
[
Qk+1(s, a)

]
, (2)

where the Bπ is the bellman operator on the fixed dataset
following the learned policy π (a | s), BπQ (s, a) =

Es′∼p(s,a)

[
r + γEa′∼π(a′|s′)

[
Q̂ (s′,a′)

]]
.

Online RL. Following a given policy π(a | s),
the objective of online RL is the expected cumula-
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Figure 1: Comparison of SO2 against baseline methods. The orange and purple spots represent offline and online dataset samples,
respectively. The two figures on the left exhibit that from offline to online the expanding action support introduces unseen samples
with the biased Q-value. On the right side, we illustrate the basic idea of SO2 compared with the naive update. Specifically,
Perturbed Value Update (PVU) (yellow) provides indirect range-based regularization leading to smoothed Q-value estimation.
The Nupc green provides more frequency of Q-value updates after each online collection. Both of them further improve the
accuracy of Q-value estimation during online finetuning.

tive discounted reward following the policy in the
MDP formulated by Ea∼π(a|s)

∑∞
t=0 γ

trt. Q-Learning
methods maintain a Q-function Qπ(s, a) to estimate
Eπ [

∑∞
t=0 γ

trt | s0 = s, a0 = a], which measures the ex-
pected discounted return following a given policy π(a | s).

O2O RL. In O2O RL, agents aim to enhance performance
by finetuning with online-collected samples. This process in-
volves two phases: (1) offline training, where logged datasets
are used to pretrain the policy, and (2) online finetuning,
where additional samples refine the pretrained policy.

Q-Value Estimation Issues in O2O RL
In this section, we systematically study the issues in O2O RL
by focusing on Q-value estimation. We begin by assessing
the performance of offline RL methods in O2O scenarios and
subsequently pinpoint the root cause as Q-value estimation.

Performance. We evaluate the performance of both stan-
dard online RL methods and offline RL methods with online
finetuning. The online RL methods includes SAC and the
online variant of EDAC, which are trained without any offline
dataset. Their curves are labeled with star marks in Figure 2a.
The offline RL methods include policy constraints (TD3-
BC), conservative Q-value learning (CQL), and Q-ensemble
(EDAC) in the O2O RL setting. Additionally, we evaluate the
loose variant of those methods by removing the pessimistic
constraints during online finetuning after offline pretraining.
The performance of standard online RL methods and offline
RL methods is averaged on three environments (HalfCheetah,
Hopper, and Walker2D). Particularly, for offline RL, each en-
vironment has four datasets with different qualities in D4RL
benchmark and generates four pretrained policies, resulting
total 12 policies to average on. It is observed in Figure 2a that
the improvement of CQL, EDAC, TD3-BC and the loose vari-
ant of CQL and EDAC is slow in online finetuning; and the
asymptotic performance of the loose variant of TD3-BC is
significantly worse than online RL and its initial performance.
In summary, while offline algorithms (CQL, TD3-BC and
EDAC) all achieve excellent performance in offine settings,
all of them achieve slow performance improvement or even
performance degradation during online finetuning.

Normalized difference of the Q-value. We use normalized
difference, also called percent difference in (Fujimoto and

Gu 2021), to measure the difference between the estimated Q-
value and the true Q-value, formalized by Qestimated − Qtrue

Qtrue .
Qtrue is computed based on actual returns obtained along
an adequately extended trajectory collected by the current
policy, providing an accurate reflection of the true Q-value.
To highlight the difference between online RL and offline
RL algorithms, the normalized differences of offline RL al-
gorithms are subtracted by the normalized difference of the
online RL baseline, SAC (Haarnoja et al. 2018). Therefore,
a positive normalized difference means that the Q-value es-
timation of the offline RL algorithm tends to overestimate,
compared to the online baseline, and vice versa. Figure 2b
demonstrates the subtracted normalized difference of CQL,
TD3-BC and EDAC. While offline algorithms deal with the
out-of-distribution problem via a pessimistic perspective,
TD3-BC and CQL usually overestimate the Q-value for the
unseen state-action pairs collected online. Conversely, EDAC
faces the issue of Q-value estimation bias, notably leading to
significant Q-value underestimation when compared to on-
line reinforcement learning algorithms. This Q-value estima-
tion bias propagates through the Bellman Equation, resulting
in suboptimal policy updates or, in some cases, divergence.
Specifically, excessively high Q-value estimates can lead to
the collapse of Q-value, while overly low Q-value estimates
can impede progress, causing slow improvement.

Kendall’s τ coefficient over Q-value. Kendall’s τ coef-
ficient measures the rank correlation between two sets of
variables. To assess the precision of the rank-ordering of
estimated Q-values, we employ Kendall’s τ coefficient to
compare them with true Q-values. We evaluate this metric on
policies pretrained by CQL, TD3-BC, and EDAC, as well as
online SAC, all of which exhibit comparable performance.
This evaluation follows a structured procedure: (1) Roll out
with each pretrained policy to collect multiple episodes of
state-action pairs; (2) Select collections of pairs within each
episode using a sliding window approach, denoting each
collection as Pi, where i ∈ [1, ...,M ] and M represents
the window number (10, as used in reported results); (3)
Compute both the estimated Q-value and true Q-value of
all state-action pairs within each Pi; (4) Compute Kendall’s
ratio Ki for each collection, and derive the final metric K as
the average, given by K = 1

M

∑
Ki. Figure 2c exhibits the

K for each RL algorithm. The results reveal that offline RL
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Figure 2: (a) Learning curve. (b) Normalized difference in the Q-value estimation between offline RL algorithms and an online RL
baseline. A positive normalized difference means that the Q-value estimation of the offline RL algorithm tends to overestimate,
compared to online RL, and vice versa. While offline algorithms deal with the out-of-distribution problem via a pessimistic
perspective, TD3-BC and CQL still overestimate the Q-value for the state-action pairs collected by the corresponding trained
policy with noise. (c) Kendall’s τ coefficient measures the correlation between the Q-value estimation and the true Q-value on
the same batch of state-action pairs. The lower coefficient shows that the rank of Q-value estimation from offline RL algorithms
is severely worse than online RL algorithms, which leads to unstable training and slow improvement. HC = HalfCheetah, H =
Hopper, W = Walker, r = random, m = medium, mr = medium-replay, me = medium-expert, AVG.=average.

algorithms, CQL, TD3-BC, and EDAC, exhibit significantly
lower K values compared to the online RL algorithm SAC.
This suggests that the estimated Q-values are not accurate in
assessing the relative qualities of different state-action pairs.

Summary. While these offline algorithms (CQL, TD3-BC,
and EDAC) achieve outstanding performance after pretrain-
ing and provide great initial actors for online finetuning, all of
them improve slowly with high variances in different environ-
ments with different settings, due to the biased estimation and
inaccurate rank of Q-value. Thus, how to obtain an accurate
Q-value estimation is the bottleneck of O2O RL.

A Simple but Effective Approach to O2O RL
Algorithmic Details
To provide proper guidance for online policy updates, we
present an O2O RL approach that improves the accuracy of
Q-value estimation. Our algorithm builds on top of the SAC
with Q-ensemble, with two modifications, Perturbed Value
Update, and Increased Frequency of Q-value Update.

Perturbed Value Update (PVU). We modify the update
step of the ensemble Q-value, as follows:

T Qϕi(s, a)← r + γ
(
Q̂ϕi(s

′,a′ + ϵ)− β log π (a′ | s′)
)
,

a′ ∼ π (· | s′) ,
ϵ ∼ clip(N (0, σ),−c, c), i = 1, . . . , Nensemble,

(3)
where ϵ represents action noise with variance σ and bounded
by c. ϕi is the parameter of the ith Q network in the ensemble
method, with a total of Nensemble networks. This perturba-
tion enlarges the action distribution used for estimating the
target Q-value, resulting in a smoother Q-value estimate.
Such smooth estimation prevents extremely exploiting the
state on which the action has biased Q-value estimation, often
seen as sharp peaks. Hence, this perturbation encourages pol-
icy exploration of state-action pairs, even when they have low

estimated Q-values inherited from the offline RL pretraining,
and further updates the Q-value estimation of these pairs to
find potential strategies with high returns.

Increased Frequency of Q-value Update. To alleviate
the inaccurate Q-value estimation in offline RL, as discussed
in Sec. , we increase the update frequency of the Q-value
function after each online collection. Specifically, we denote
the update frequency after each online sample collection as
Nupc, where upc means update per collection.

Implementation Details
We describe the implementation of SO2 based on SAC with
Q-ensemble in DI-engine, a DRL framework utilized by vari-
ous methods (Li et al. 2023b,a; Liu et al. 2023; Wang et al.
2023). The pseudocode is shown in Algorithm 1, with differ-
ences from Q-ensemble SAC in Lines 5-8. After each online
collect iteration, we sample a mini-batch B from the replay
buffer. This buffer contains both online and extensive offline
dataset samples, enhancing training stability. Subsequently,
we perform Nupc updates to the Q-value network.

Experiments
Our experiments aim to investigate the following concerns:

• Performance: Can our method improve the performance
compared to existing O2O RL approaches and online RL
approaches trained from scratch (see Figure 3)?

• Nupc : Does increasing update frequency per collection
effectively enhance performance (see Table 3)?

• PVU: Does the proposed Perturbed Value Update stabi-
lize the O2O training (see Table 2)?

• Q-value estimation: Whether the proposed method can
effectively address Q-value estimation issues including
estimation bias and inaccurate rank (see Figure 5b)?

• Extension: Does our method generalize to more chal-
lenging robotic manipulation tasks (see Table 4)?
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Figure 3: Comparison of learning curves between our proposed method and O2O RL baselines pretrained from D4RL datasets
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• Compatibility: Is our method compatible with other
O2O RL algorithms (see Table 5)?

Evaluation on MuJoCo Tasks
Setup. We first evaluate SO2 and baselines O2O RL algo-
rithms on MuJoCo (Todorov, Erez, and Tassa 2012) tasks
trained from the D4RL-v2 dataset consisting of three environ-
ments including HalfCheetah, Walker2d, and Hopper, each
with four level datasets collected by policies with different
levels, including Random, Medium, Medium-Replay, and
Medium-Expert. We report the performance on the standard
normalized return metric in D4RL, averaged over 4 seeds.

Comparison. We take the following methods as baselines:

• OFF2ON: a pessimistic Q-ensemble RL method that
proposes a balanced replay to encourage the use of near-
on-policy samples from the offline dataset.
• IQL-ft: an offline method with a strong finetuning perfor-

mance by approximating the upper bound of the Q-value
distribution and extracting the policy from the Q-value
estimation. We use the implementation in rlkit for IQL.
• AWAC: an O2O RL method that trains the policy to imi-

tate actions with high advantage estimates.
• ODT (Zheng, Zhang, and Grover 2022): an O2O RL

algorithm based on sequence modeling that considers
offline and online finetuning in a unified framework.
• PEX (Zhang, Xu, and Yu 2022): an RL algorithm based

on a policy expansion where the policy set includes offline
policy and another policy used for further learning.

We train policies for 100K environment steps and evaluate
every 1K step. Our method uses perturbation noise with σ =
0.3, c = 0.6, and Nupc = 10 as the default setup.

Figure 3 shows the performance of our proposed SO2
against state-of-the-art O2O algorithms during the online
finetuning. We re-run the baseline algorithms to ensure a fair
comparison. SO2 demonstrates three key advantages: (1) Sig-
nificantly outperforms all baselines in terms of both sample
efficiency and asymptotic performance; (2) Exhibits notably
lower variances per environment and per offline dataset com-
pared to baselines, as shown in Figure 4; (3) Even when the
offline training data is collected by random policy, SO2 still
achieves expert performance with only a few online inter-
actions. Moreover, we compare SO2 and SAC, a standard
off-policy algorithm, as shown in Figure 5a. Although the pre-
trained baseline using the 1M offline data in the HalfCheetah-
Random dataset has quite limited performance, SO2 achieves
outstanding performance with an average episodic return of
13K, requiring only 0.17M online steps, totaling 1.17M. In
comparison, standard SAC requires more than 3M steps to
achieve the same performance. It means we fully release
the potential of O2O RL in sample efficiency, even when
most data is randomly collected and with poor quality –an
achievement not observed in any baseline algorithms.

Figure 3 shows that the differences in starting performance
across different methods arise from each O2O algorithm uti-
lizing distinct baselines. Moreover, the hyperparameters em-
ployed in O2O algorithms are meticulously tailored to their
respective baselines, rendering them inherently sensitive. En-
suring consistent starting performance across all algorithms
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Dataset AWAC ODT IQL Off2ON PEX SO2 (Ours)

R
an

do
m HalfCheetah 6.5 →35.0 10.1 → 18.3 13.4 → 27.3 27.7 → 87.2 15.6 → 55.3 37.7 → 95.6

Hopper 6.7 →21.1 6.9 → 31.2 7.6 → 9.3 10.5 → 80.4 11.0 → 47.0 9.2 → 79.9
Walker2d 5.9 →6.3 6.4 → 12.3 6.8 → 9.9 10.3 → 49.4 8.9 → 15.4 6.9 → 62.9

M
ed

iu
m

R
ep

la
y HalfCheetah 40.5 → 41.2 32.4 → 39.7 42.7 → 36.7 42.1 → 60.0 45.5 → 51.3 62.5 → 89.4

Hopper 37.7 → 60.1 60.4 → 78.5 75.8 → 68.5 28.2 → 79.5 31.5 → 97.1 97.0 → 101.0
Walker2d 24.5 → 79.8 44.2 → 71.8 75.6 → 64.9 17.7 → 89.2 80.1 → 92.3 80.9 → 98.2

M
ed

iu
m HalfCheetah 43.0 → 42.4 42.7 → 42.1 46.7 → 46.5 39.3 → 59.6 50.8 → 60.9 73.3 → 98.9

Hopper 57.8 → 55.1 47.2 → 67.0 73.4 → 61.9 97.5 → 80.2 56.5 → 87.5 77.6 → 101.2
Walker2d 35.9 → 72.1 72.0 → 72.2 84.7 → 78.8 66.2 → 72.4 80.1 → 92.3 76.4 → 107.6

M
ed

iu
m

E
xp

er
t HalfCheetah 65.2 → 93.0 47.1 → 94.7 88.2 → 59.6 56.7 → 99.3 37.3 → 76.2 87.1 → 130.2

Hopper 55.5 → 81.3 64.9 → 111.7 52.8 → 65.0 112.0 → 60.2 91.3 → 99.3 67.2 → 109.1
Walker2d 108.3 → 108.7 78.9 → 107.8 110.8 → 110.4 102.1 → 93.3 83.3 → 114.2 109.5 → 112.9

Average 40.6 → 58.0 42.8 → 62.3 56.6 → 53.2 48.4 → 75.9 46.0 → 75.6 76.1 → 98.9

Table 1: Normalized average returns on D4RL Gym tasks, averaged over 4 random seeds. SO2 significantly improves the
performance compared to the state-of-the-art OFF2ON, despite being much simpler to implement.
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Figure 4: Comparing the standard deviation of ours against O2O RL baselines pretrained from D4RL datasets with 100k
environment steps averaged over 4 seeds. Our proposed method SO2 has a smaller standard deviation compared with baselines.

Dataset σ = 0.15 σ = 0.3 σ = 0.45

W-R 24.6 ±12.9 62.9 ±10.6 22.9 ± 12.8
W-M 93.5 ±16.0 107.6 ±2.3 105.5± 3.3
W-MR 94.5 ±7.7 98.2 ±2.6 91.4 ± 3.1
W-ME 110.6 ±6.9 112.9 ±3.5 110.2± 1.9

Average 80.8 ±10.9 95.4 ±4.7 82.5 ± 5.3

Table 2: SO2 Performance across various σ on the Walker2d.
W=Walker2d, R=Random, M=Medium, E=Expert.

would require an extensive search for suitable parameters.
Consequently, most O2O algorithms (Nair et al. 2020; Lee
et al. 2022; Zheng, Zhang, and Grover 2022; Zhang, Xu,
and Yu 2022) present results from different starting points to
accommodate these algorithm-specific sensitivities.

Analysis on Perturbed Value Update. In this paper, we
argue that in the O2O task, adding appropriate noise to the
target action can make training more stable and result in bet-
ter policy performance. To verify the effectiveness of target
noise, we conduct an ablation over σ. As shown in Table 2,
the baseline without the target noise (σ = 0) has significant
variances in all offline datasets, up to 1/3 of the average per-
formance. The high variance reveals that even if the learned
policies have the same initial performance, some of them

Dataset Nupc = 1 Nupc = 5 Nupc = 10

W-R 29.5 ±12.6 30.8 ± 14.9 62.8 ± 10.6
W-M 97.5 ± 5.0 97.1 ± 17.4 107.6 ± 2.2
W-MR 94.4 ± 2.2 99.0 ± 1.3 98.2 ± 2.5
W-ME 103.7 ± 3.4 111.2 ± 1.4 112.9 ± 3.5

Average 81.3 ± 5.8 84.5 ± 8.7 95.4 ± 4.7

Table 3: Performance of SO2 over various Nupc pretrained on
Walker2d. Nupc denotes the update frequency per collection.
W=Walker2d, R=Random, M=Medium, E=Expert.

may still perform poorly on some episodes, and the learned
policy may fluctuate dramatically among each evaluation.
On the contrary, the volatile policy, once equipped with the
Perturbed Value Update, achieves consistently impressive
performance with low variance across various PVUs.

Analysis on Nupc. To verify the effectiveness of Nupc, we
report the performance of SO2 on Walker2D with different
Nupc. Table 3 shows that the performance consistently im-
proves with the increase of Nupc, in all environments on
Walker2D. It is worth noting that increasing Nupc on random
data has the most obvious effect. Intuitively, the Nupc term
induces the value network to favor frequent updates after
each interaction with environments. Consequently, height-
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Algorithm 1: SO2

1: Initialized policy parameters θ, Q-function parameters
{ϕj}Nj=1, target Q-function parameters {ϕ′

j}Nj=1, offline
replay buffer Doff, online replay buffer Don, epoch num-
ber E and frequency of Q-value updates Nupc, and batch
size B.

2: for epoch e in 1, 2, ..., E do
3: Collect a transition τ = (s, a, r, s′) via environment

interaction with πθ. ▷ Collect samples
4: Update online replay buffer Don ← Don ∪ τ .
5: for Nupc iterations do
6: Sample a mini-batch b of transition (s, a, r, s′)

from Doff ∪ Don.
7: Compute target Q-values T Qϕi

(s, a) with the
objective in Equation 3.

8: Update each Q-function Qϕi
by gradient descent

with: ▷ Value Phase

∇ϕi

1

B

∑
(s,a,r,s′)∈b

(
Qϕi (s, a)− T Qϕi (s, a)

)2

.

9: Update policy by gradient ascent with: ▷ Policy
Phase

∇θ
1

B

∑
s∈b

(
min

j=1,...,N
Qϕj

(s, ãθ(s))− β log πθ (ãθ(s) | s)
)
,

where ãθ(s) is a sample from πθ(· | s) which is
differentiable w.r.t. θ via the reparametrization trick.

10: Update target networks with ϕ′
i ← ρϕ′

i + (1 −
ρ)ϕi.

11: end for
12: end for

Dataset AWAC IQL Ours(400k)

pen-human 44.6→70.3 37.4→60.7 51.4→70.6
door-human 1.3→30.1 0.7→32.3 16.5→66.2

Total 46.7→103.1 38.1→124.0 67.9→ 136.8

Table 4: Normalized average scores on the Adroit. We report
the finetuning results of baselines with 1M environment steps,
while the online finetuning results of ours with 400k steps.

ened Nupc yields more precise Q-value estimations, particu-
larly beneficial when initial estimations are suboptimal.

Analysis on Q-value estimation. Figure 5b shows an accu-
racy comparison of the rank of the estimated Q-value during
online finetuning, between the EDAC and variants that inte-
grate individual components of SO2. It is shown that SO2
outperforms the baseline consistently in all environments,
which further validates our idea of target noise and frequent
updates to boost Q-value estimation to advance finetuning.

Compatibility. We report the results of the combination
of SO2 with OFF2ON and PEX (Zhang, Xu, and Yu 2022)
in Table 5. Our results demonstrate significant performance
improvements when applying our proposed SO2 method to
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Figure 5: (a): Performance comparing our proposed method
against online SAC in HalfCheetah. Although the baseline is
initialized from the HalfCheetah-Random dataset with lim-
ited performance, our proposed method boosts the baseline
algorithm effectively and significantly improves the sample
efficiency by up to 17 compared to SAC. (b): Kendall’s τ
coefficient comparing ablation over Perturbed Value Update
(PVU), and update per collection (Nupc = 10) in the MuJoco.
This measures the rank correlation between true Q-value and
estimated Q-value for similar state-action pairs.

100k Algo. + SO2

OFF2ON 75.89 ± 14.26 88.64 ± 4.33
PEX 67.68 ± 8.83 74.26 ± 4.26

Table 5: Compatibility of SO2. SO2 Integration with
OFF2ON and PEX, Reported with 100K Online Samples.

OFF2ON (Lee et al. 2022), PEX (Zhang, Xu, and Yu 2022),
underscoring the effectiveness of our approach.

Evaluation on Adroit Tasks
Setup and Results. We also conduct experiments on
Adroit. Specifically, the offline policy is trained with lim-
ited human demonstrations, and the online finetuning policy
is trained with 1M environment steps for baseline, and with
only 400k environment steps for ours. Results for AWAC
and IQL are quoted from IQL paper. Table 4 shows that our
method also outperforms all baselines by a large margin.

Conclusion
In this paper, we have delved into O2O reinforcement learn-
ing and systematically studied why this setting is challenging.
Different from most existing works, we in-depth analyze the
Q-value estimation issues in offline-to-online including the
biased estimation and inaccurate rank of the Q-value, besides
the bootstrap error resulting from state-action distribution
shift. Based on this argument, we propose smoothed offline-
to-online (SO2). It effectively and efficiently improves the
Q-value estimation by perturbing the target action and im-
proving the frequency of Q-value updates. The proposed
method, without any explicit estimation of the state-action
distribution shift and complex components to balance offline
and online replay buffers, remarkably improves the perfor-
mance of the state-of-the-art methods by up to 83.1% on the
MuJoco and Adroit environments.
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