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Abstract

Recently, Heterogeneous Federated Learning (HtFL) has at-
tracted attention due to its ability to support heterogeneous
models and data. To reduce the high communication cost of
transmitting model parameters, a major challenge in HtFL,
prototype-based HtFL methods are proposed to solely share
class representatives, a.k.a, prototypes, among heterogeneous
clients while maintaining the privacy of clients’ models.
However, these prototypes are naively aggregated into global
prototypes on the server using weighted averaging, resulting
in suboptimal global knowledge which negatively impacts the
performance of clients. To overcome this challenge, we intro-
duce a novel HtFL approach called FedTGP, which lever-
ages our Adaptive-margin-enhanced Contrastive Learn-
ing (ACL) to learn Trainable Global Prototypes (TGP) on
the server. By incorporating ACL, our approach enhances
prototype separability while preserving semantic meaning.
Extensive experiments with twelve heterogeneous models
demonstrate that our FedTGP surpasses state-of-the-art meth-
ods by up to 9.08% in accuracy while maintaining the com-
munication and privacy advantages of prototype-based HtFL.
Our code is available at https://github.com/TsingZ0/FedTGP.

Introduction
With the rapid increase in the amount of data required to
train large models today, concerns over data privacy also
rise sharply (Shin et al. 2023; Li et al. 2021a). To facili-
tate training machine learning models while protecting data
privacy, Federated Learning (FL) has emerged as a new dis-
tributed machine learning paradigm (Kairouz et al. 2019;
Li et al. 2020). However, in practical scenarios, traditional
FL methods such as FedAvg (McMahan et al. 2017) expe-
rience performance degradation when faced with statistical
heterogeneity (T Dinh, Tran, and Nguyen 2020; Li et al.
2022). Subsequently, personalized FL methods emerged to
address the challenge of statistical heterogeneity by learn-
ing personalized model parameters. Nevertheless, most of
them still assume the model architectures on all the clients
are the same and communicate client model updates to the
server to train a shared global model (Zhang et al. 2023d,c,b;
Collins et al. 2021; Li et al. 2021b). These methods not only
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bring formidable communication cost (Zhuang, Chen, and
Lyu 2023) but also expose clients’ models, which further
raise privacy and intellectual property (IP) concerns (Li et al.
2021a; Zhang et al. 2018a; Wang et al. 2023).

To alleviate these problems, Heterogeneous FL
(HtFL) (Tan et al. 2022b) has emerged as a novel FL
paradigm that enables clients to possess diverse model
architectures and heterogeneous data without sharing
private model parameters. Instead, various types of global
knowledge are shared among clients to reduce commu-
nication and improve model performance. For example,
some FL methods adopt knowledge distillation (KD) tech-
niques (Hinton, Vinyals, and Dean 2015) and communicate
predicted logits on a public dataset (Li and Wang 2019; Lin
et al. 2020; Liao et al. 2023; Zhang et al. 2021) as global
knowledge for aggregation at the server. However, these
methods highly depend on the availability and quality of
the global dataset (Zhang et al. 2023a). Data-free KD-based
approaches utilize additional auxiliary models as global
knowledge (Wu et al. 2022; Zhang et al. 2022), but the
communication overhead for sharing the auxiliary models
is still considerable. Alternatively, prototype-based HtFL
methods (Tan et al. 2022b,c) propose to share lightweight
class representatives, a.k.a, prototypes, as global knowledge,
significantly reducing communication overhead.

However, existing prototype-based HtFL methods naively
aggregate heterogeneous client prototypes on the server us-
ing weighted-averaging, which has several limitations. First,
the weighted-averaging protocol requires clients to upload
class distribution information of private data to the server
as weights, which leaks sensitive distribution information
about clients’ data (Yi et al. 2023). Secondly, the prototypes
generated from heterogeneous clients have diverse scales
and separation margins. Averaging client prototypes gener-
ates uninformative global prototypes with smaller margins
than the margins between well-separated prototypes. We
demonstrate this “prototype margin shrink” phenomenon in
Fig. 1(a). However, smaller margins between prototypes di-
minish their separability, ultimately generating poor proto-
types (Zhang and Sato 2023).

To address these limitations, we design a novel HtFL
method using Trainable Global Prototypes (TGP), termed
FedTGP, in which we train the desired global proto-
types with our proposed Adaptive-margin-enhanced Con-
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(a) The prototype margins in FedProto using Cifar10.
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(b) The prototype margins in our FedTGP using Cifar10.

Figure 1: The illustration of the prototype margin change after generating global prototypes. The prototype margin is the
minimum Euclidean distance between the prototype of a specific class and the prototypes of other classes, and the maximum
margin is the maximum prototype margin among all clients for each class. To enhance visualization and eliminate the influence
of magnitude, we normalize the margin values for each method in these figures. Different colors represent different classes.
(a) The global prototype margin shrinks compared to the maximum of clients’ prototype margins in FedProto. (b) The global
prototype margin improves compared to the maximum of clients’ prototype margins in our FedTGP.

trastive Learning (ACL). Specifically, we train the global
prototypes to be separable while maintaining semantics via
contrastive learning (Hayat et al. 2019) with a specified mar-
gin. To avoid using an overlarge margin in early iterations
and keep the best separability per iteration, we enhance con-
trastive learning by our adaptive margin, which reserves the
maximum prototype margin among all clients in each itera-
tion, as shown in Fig. 1(b). With the guidance of our separa-
ble global prototypes, FedTGP can further enlarge the inter-
class intervals for feature representations on each client.

To evaluate the effectiveness of our FedTGP, we conduct
extensive experiments and compare it with six state-of-the-
art methods in two popular statistically heterogeneous set-
tings on four datasets using twelve heterogeneous models.
Experimental results reveal that FedTGP outperforms Fed-
Proto by up to 18.96% and surpasses other baseline methods
by a large gap. Our contributions are:
• We observe that naively averaging prototypes can re-

sult in ineffective global prototypes in FedProto-like
schemes, as it causes the separation margin to shrink due
to model heterogeneity in HtFL.

• We propose an HtFL method called FedTGP that learns
trainable global prototypes with our adaptive-margin-
enhanced contrastive learning technique to enhance inter-
class separability.

• Extensive comparison and ablation experiments on four
datasets with twelve heterogeneous models demonstrate
the superiority of FedTGP over FedProto and other HtFL
methods.

Related Work
Heterogeneous Federated Learning
In recent times, Federated Learning (FL) has become a new
machine learning paradigm that enables collaborative model
training without exposing client data. Although personalized
FL methods (T Dinh, Tran, and Nguyen 2020; Zhang et al.
2023e; Yang, Huang, and Ye 2023; Li et al. 2021b; Collins
et al. 2021) are proposed soon afterward to tackle the statisti-
cal heterogeneity of FL, they are still inapplicable for scenar-

ios where clients own heterogeneous models for their spe-
cific tasks. Heterogeneous Federated Learning (HtFL) has
emerged as a solution to support both model heterogeneity
and statistical heterogeneity simultaneously, protecting both
privacy and IP.

One HtFL approach allows clients to sample diverse sub-
models from a shared global model architecture to accom-
modate the diverse communication and computing capabil-
ities (Diao, Ding, and Tarokh 2020; Horvath et al. 2021;
Wen, Jeon, and Huang 2022). However, concerns over shar-
ing clients’ model architectures still exist. Another HtFL ap-
proach is to split each client’s model architecture and only
share the top layers while allowing the bottom layers to
have different architectures, e.g., LG-FedAvg (Liang et al.
2020) and FedGen (Zhu, Hong, and Zhou 2021). However,
sharing and aggregating top layers may lead to unsatisfac-
tory performance due to statistical heterogeneity (Li et al.
2023a; Luo et al. 2021; Wang et al. 2020). Although learn-
ing a global generator can enhance the generalization ability
(Zhu, Hong, and Zhou 2021), its effectiveness highly relies
on the quality of the generator.

The above HtFL methods still require clients to have co-
dependent model architectures. Alternatively, other meth-
ods seek to achieve HtFL with fully independent client
models while communicating various kinds of information
other than clients’ models. Classic KD-based HtFL ap-
proaches (Li and Wang 2019; Yu et al. 2022) share predicted
knowledge on a global dataset to enable knowledge trans-
fer among heterogeneous clients, but such a global dataset
can be difficult to obtain (Zhang et al. 2023a). FML (Shen
et al. 2020) and FedKD (Wu et al. 2022) simultaneously
train and share a small auxiliary model using mutual distil-
lation (Zhang et al. 2018b) instead of using a global dataset.
However, during the early iterations with poor feature-
extracting abilities, the client model and the auxiliary model
can potentially interfere with each other (Li et al. 2023b).
Another popular approach is to share compact class rep-
resentatives, i.e., prototypes. FedDistill (Jeong et al. 2018)
sends the class-wise logits from clients to the server and
guides client model training by the globally averaged logits.
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FedProto (Tan et al. 2022b) and FedPCL (Tan et al. 2022c)
share higher-dimensional prototypes instead of logits. How-
ever, all these approaches perform naive weighted-averaging
on the clients’ prototypes, resulting in subpar global pro-
totypes due to statistical and model heterogeneity in HtFL.
While FedPCL applies contrastive learning on each client
for projection network training, it relies on pre-trained mod-
els, which is hard to satisfy in FL with private model ar-
chitectures as clients join FL due to data scarcity (Tan et al.
2022a). In this work, we explore methods to enhance the op-
timization of global prototypes, while maintaining the com-
munication advantages inherent in such prototype-based ap-
proaches.

Trainable Prototype Learning
In centralized learning scenarios, trainable prototypes have
been explored during model training to improve the intra-
class compactness and inter-class discrimination of feature
representations through the cross entropy loss (Pinheiro
2018; Yang et al. 2018) and regularizers (Xu et al. 2020;
Jin, Liu, and Hou 2010). Besides, some domain adaptation
methods (Tanwisuth et al. 2021; Kim and Kim 2020) learn
trainable global prototypes to transfer knowledge among
domains. However, all these methods assume that data are
nonprivate and the prototype learning depends on access to
model and feature representations, which are infeasible in
the FL setting.

In our FedTGP, we perform prototype learning on the
server based solely on the knowledge of clients’ prototypes,
without accessing client models or features. In this way, the
learning process of client models and global prototypes can
be fully decoupled while mutually facilitating each other.

Method
Problem Statement and Motivation
We have M clients collaboratively train their models with
heterogeneous architectures on their private and heteroge-
neous data {Di}Mi=1. Following FedProto (Tan et al. 2022b),
we split each client i’s model into a feature extractor fi
parameterized by θi, which maps an input space RD to a
feature space RK , and a classifier hi parameterized by wi,
which maps the feature space to a class space RC . Clients
collaborate by sharing global prototypes P with a server.
Formally the overall collaborative training objective is

min
{{θi,wi}}M

i=1

1

M

M∑
i=1

Li(Di, θi, wi,P). (1)

In FedProto, each client i first obtains its prototype for
each class c:

P c
i = E(x,c)∼Di,c

fi(x; θi), (2)

where Di,c denotes the subset of Di consisting of all data
points belonging to class c. After receiving all prototypes
from clients, the server then performs weighted-averaging
for each class prototype:

P̄ c =
1

|Nc|
∑
i∈Nc

|Di,c|
Nc

P c
i , (3)

(a) FedProto (b) FedTGP

Figure 2: The global and client prototypes in FedProto and
our FedTGP. Different colors and numbers represent classes
and clients, respectively. Circles represent the client pro-
totypes and triangles represent the global prototypes. The
black and yellow dotted arrows show the inter-class sepa-
ration among the client and global prototypes, respectively.
Triangles with dotted borders represent our TGP. The red
arrows show the inter-class intervals between TGP and the
client prototypes of other classes in our ACL.

where Nc and Nc are the client set owning class c and the
total number of data of class c among all clients. Next, the
server transfers global information P = {P̄ c}Cc=1 to each
client, who performs guided training with a supervised loss

Li := E(x,y)∼Di
ℓ(hi(fi(x; θi);wi), y)+λEc∼Ci

ϕ(P c
i , P̄

c),
(4)

where ℓ is the loss for client tasks, λ is a hyperparameter,
and ϕ measures the Euclidean distance. Ci is a set of classes
on the data of client i. Different clients may own different C
in HtFL with heterogeneous data.

We observe that performing simple weighted-averaging
to clients’ prototypes in a heterogeneous environment may
not generate desired information as expected, and we illus-
trate this phenomenon in Fig. 2(a). Due to the statistical and
model heterogeneity, different clients extract much diverse
feature representations of different classes with various sep-
arability and prototype margins. The weighted-averaging
process assigns weights to client prototypes based solely
on the amount of data, as indicated by Eq. (3). However,
since model performance in a heterogeneous environment
can not be fully characterized by the data amount, proto-
types generated by a poor client model may still be assigned
a larger weight, causing the margin of global prototypes
worse than the well-separated prototypes and impairing the
training of the client models that previously produce well-
separated prototypes.

To address the above problem, we propose FedTGP to (1)
use Trainable Global Prototypes (TGP) with a separation ob-
jective on the server, (2) guide them to maintain large inter-
class intervals with client prototypes while preserving se-
mantics through our Adaptive-margin-enhanced Contrastive
Learning (ACL) in each iteration, as shown in Fig. 2(b), and
(3) finally improve separability of different classes on each
client with the guidance of separable global prototypes.
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Trainable Global Prototypes

Figure 3: An example of trainable vectors ({Ṕ c}Cc=1) and the
further processing model (θF ). They only exist on the server.

In this section, we aim to learn a new set of global proto-
types P̂ = {P̂ c}Cc=1. Formally, we first randomly initialize a
trainable vector Ṕ c ∈ RK for each class c. Next, we place a
neural network model F , parameterized by θF , on the server
to further process Ṕ c to improve its training ability. The
model F transforms a given trainable vector to a global pro-
totype with the same shape, i.e., ∀c ∈ [C], P̂ c = F (Ṕ c; θF ),
P̂ c ∈ RK , as shown in Fig. 3. F consists of two Fully-
Connected (FC) layers with a ReLU activation function in
between. This structure is widely used for the server model
in FL (Chen and Chao 2021; Shamsian et al. 2021; Ma et al.
2022). In other words, the trainable global prototype P̂ c

is parameterized by {Ṕ c, θF }, and prototypes of different
classes share the same parameter θF .

In order to learn effective prototypes, the trainable global
prototype of class c needs to achieve two goals: (1) closely
align with the client prototypes of class c to retain seman-
tic information, and (2) maintain a significant distance from
the client prototypes of other classes to enhance separabil-
ity. The compactness and separation characteristics of con-
trastive learning (Hayat et al. 2019; Deng et al. 2019) meet
these two targets simultaneously. Thus, we can learn P̂ by

min
P̂

C∑
c=1

Lc
P , (5)

Lc
P =

∑
i∈It

− log
e−ϕ(P c

i ,P̂
c)

e−ϕ(P c
i ,P̂

c) +
∑

c′ e
−ϕ(P c

i ,P̂
c′ )

, (6)

where c′ ∈ [C], c′ ̸= c, and It is the participating client set
at tth iteration with client participation ratio ρ. Notice that all
C trainable global prototypes participate in the contrastive
learning term in Eq. (6), which means they share pair-wise
interactions with each other when performing gradient up-
dates, and the gradient updates can be performed even with
partial client participation.

Adaptive-Margin-Enhanced Contrastive Learning
Although the standard contrastive loss Eq. (6) can im-
prove compactness and separation, it does not reduce intra-
class variations. Moreover, the learned inter-class separa-
tion boundary may still lack clarity (Choi, Som, and Turaga
2020). To further improve the separability of global proto-
types, we enforce a margin between classes when learning

Algorithm 1: The learning process of FedTGP.

Input: M clients with their heterogeneous models and data,
trainable global prototypes P̂ on the server, η: learning
rate, T : total communication iterations.

Output: Well-trained client models.
1: for iteration t = 1, . . . , T do
2: Server randomly samples a client subset It.
3: Server sends P̂ to It.
4: for Client i ∈ It in parallel do
5: Client i updates its model with Eq. (11).
6: Client i calculates prototypes Pi by Eq. (2).
7: Client i sends Pi to the server.
8: Server obtains δ(t) through Eq. (9)
9: Server updates P̂ with Eq. (10).

10: return Client models.

P̂ . Inspired by the additive angular margin of ArcFace (Deng
et al. 2019) used in an angular space for face recognition, we
introduce a scalar δ to Eq. (6) in our considered Euclidean
space and rewrite Lc

P as

Lc
P =

∑
i∈It

− log
e−(ϕ(P c

i ,P̂
c)+δ)

e−(ϕ(P c
i ,P̂

c)+δ) +
∑

c′ e
−ϕ(P c

i ,P̂
c′ )

, (7)

where δ > 0. According to (Schroff, Kalenichenko, and
Philbin 2015; Hayat et al. 2019), minimizing Lc

P is equiva-
lent to minimizing L̃c

P ,

Lc
P ∝ L̃c

P :=
∑
i∈It

∑
c′

eϕ(P
c
i ,P̂

c)−ϕ(P c
i ,P̂

c′ )+δ, (8)

which reduces the distance between P c
i and P̂ c while in-

creasing the distance between P c
i and P̂ c′ with a margin δ.

However, we observe that setting a large δ in early itera-
tions may also mislead both the prototype training and the
client model training because the feature extraction abilities
of heterogeneous models are poor in the beginning. To retain
the best separability of client prototypes within the semantic
region in each iteration, we set the adaptive δ(t) to be the
maximum cluster margin among client prototypes of differ-
ent classes with a threshold τ ,

δ(t) = min( max
c∈[C],c′∈[C],c̸=c′

ϕ(Qc
t , Q

c′

t ), τ), (9)

where Qc
t =

1
|Pc

t |
∑

i∈It P c
i , ∀c ∈ [C] represents the cluster

center of the client prototypes for each class, and it differs
from the weighted average P̄ c which adopts private distribu-
tion information as weights. Pc

t = {P c
i }i∈It , and τ is used

to keep the margin from growing to infinite. Thus, we have

Lc
P =

∑
i∈It

− log
e−(ϕ(P c

i ,P̂
c)+δ(t))

e−(ϕ(P c
i ,P̂

c)+δ(t)) +
∑

c′ e
−ϕ(P c

i ,P̂
c′ )

.

(10)

FedTGP Framework
We show the entire learning process of our FedTGP frame-
work in Algorithm 1. With the well-trained separable global
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Settings Pathological Setting Practical Setting

Datasets Cifar10 Cifar100 Flowers102 Tiny-ImageNet Cifar10 Cifar100 Flowers102 Tiny-ImageNet

LG-FedAvg 86.82±0.26 57.01±0.66 58.88±0.28 32.04±0.17 84.55±0.51 40.65±0.07 45.93±0.48 24.06±0.10
FedGen 82.83±0.65 58.26±0.36 59.90±0.15 29.80±1.11 82.55±0.49 38.73±0.14 45.30±0.17 19.60±0.08
FML 87.06±0.24 55.15±0.14 57.79±0.31 31.38±0.15 85.88±0.08 39.86±0.25 46.08±0.53 24.25±0.14
FedKD 87.32±0.31 56.56±0.27 54.82±0.35 32.64±0.36 86.45±0.10 40.56±0.31 48.52±0.28 25.51±0.35
FedDistill 87.24±0.06 56.99±0.27 58.51±0.34 31.49±0.38 86.01±0.31 41.54±0.08 49.13±0.85 24.87±0.31
FedProto 83.39±0.15 53.59±0.29 55.13±0.17 29.28±0.36 82.07±1.64 36.34±0.28 41.21±0.22 19.01±0.10

FedTGP 90.02±0.30 61.86±0.30 68.98±0.43 34.56±0.27 88.15±0.43 46.94±0.12 53.68±0.31 27.37±0.12

Table 1: The test accuracy (%) on four datasets in the pathological and practical settings using the HtFE8 model group.

prototypes, we send them to participating clients in the next
iteration and guide client training with them to improve sep-
arability locally among feature representations of different
classes by minimizing the client loss Li for client i,

Li := E(x,y)∼Di
ℓ(hi(fi(x; θi);wi), y)+λEc∼Ci

ϕ(P c
i , P̂

c),
(11)

which is similar to Eq. (4) but using the well-trained separa-
ble global prototypes P̂ c instead of P̄ c. Following FedProto,
we also utilize the global prototypes for inference on clients.
Specifically, for a given input on one client, we calculate the
ϕ distance between the feature representation and C global
prototypes, and then this input belongs to the class of the
closest global prototype.

Since our FedTGP follows the same communication
protocol as FedProto by transmitting only compact 1D-
class prototypes, it naturally brings benefits to both pri-
vacy preservation and communication efficiency. Specifi-
cally, no model parameter is shared and the generation of
low-dimensional prototypes is irreversible, preventing data
leakage from inversion attacks. In addition, our FedTGP
does not require clients to upload the private class distribu-
tion information (i.e., |Di,c| in Eq. (3)) to the server any-
more, leading to less information revealed than FedProto.

Experiments
Setup
Datasets. We evaluate four popular image datasets
for the multi-class classification tasks, including Cifar10
and Cifar100 (Krizhevsky and Geoffrey 2009), Tiny-
ImageNet (Chrabaszcz, Loshchilov, and Hutter 2017) (100K
images with 200 classes), and Flowers102 (Nilsback and
Zisserman 2008) (8K images with 102 classes).
Baseline methods. To evaluate our proposed FedTGP,
we compare it with six popular methods that are applica-
ble in HtFL, including LG-FedAvg (Liang et al. 2020), Fed-
Gen (Zhu, Hong, and Zhou 2021), FML (Shen et al. 2020),
FedKD (Wu et al. 2022), FedDistill (Jeong et al. 2018), and
FedProto (Tan et al. 2022b).
Model heterogeneity. Unless explicitly specified, we eval-
uate the model heterogeneity regarding Heterogeneous Fea-
ture Extractors (HtFE). We use “HtFEX” to denote the HtFE
setting, where X is the number of different model architec-
tures in HtFL. We assign the (i mod X)th model archi-
tecture to client i. For our main experiments, we use the

“HtFE8” model group with eight architectures including the
4-layer CNN (McMahan et al. 2017), GoogleNet (Szegedy
et al. 2015), MobileNet v2 (Sandler et al. 2018), ResNet18,
ResNet34, ResNet50, ResNet101, and ResNet152 (He et al.
2016). To generate feature representations with an iden-
tical feature dimension K, we add an average pooling
layer (Szegedy et al. 2015) after each feature extractor. By
default, we set K = 512.
Statistical heterogeneity. We conduct extensive ex-
periments with two widely used statistically heteroge-
neous settings, the pathological setting (McMahan et al.
2017; Tan et al. 2022b) and the practical setting (Tan
et al. 2022c; Li, He, and Song 2021; Zhu, Hong,
and Zhou 2021). For the pathological setting, follow-
ing FedAvg (McMahan et al. 2017), we distribute non-
redundant and unbalanced data of 2/10/10/20 classes to
each client from a total of 10/100/102/200 classes on
Cifar10/Cifar100/Flowers102/Tiny-ImageNet datasets. For
the practical setting, following MOON (Li, He, and Song
2021), we first sample qc,i ∼ Dir(β) for class c and client
i, then we assign qc,i proportion of data points from class c
in a given dataset to client i, where Dir(β) is the Dirichlet
distribution and β is set to 0.1 by default (Lin et al. 2020).
Implementation Details. Unless explicitly specified, we
use the following settings. We simulate a federation with
20 clients and a client participation ratio ρ = 1. Follow-
ing FedAvg, we run one training epoch on each client in
each iteration with a batch size of 10 and a learning rate
η = 0.01 for 1000 communication iterations. We split the
private data into a training set (75%) and a test set (25%)
on each client. We average the results on clients’ test sets
and choose the best averaged result among iterations in each
trial. For all the experiments, we run three trials and report
the mean and standard deviation. We set λ = 0.1 (the same
as FedProto), τ = 100, and S = 100 (the number of server
training epochs) for our FedTGP on all tasks. Please refer to
the Appendix for more results and details.

Performance
As shown in Tab. 1, FedTGP outperforms all the baselines
on four datasets by up to 9.08% in accuracy. Specifically,
using our TGP with ACL on the server, our FedTGP can
improve FedProto by up to 13.85%. The improvement is at-
tributed to the enhanced separability of global prototypes.
Besides, FedTGP shows better performance in relatively
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Settings Heterogeneous Feature Extractors Heterogeneous Classifiers Large Client Amount

HtFE2 HtFE3 HtFE4 HtFE9 Res34-HtC4 HtFE8-HtC4 50 Clients 100 Clients

LG-FedAvg 46.61±0.24 45.56±0.37 43.91±0.16 42.04±0.26 — — 37.81±0.12 35.14±0.47
FedGen 43.92±0.11 43.65±0.43 40.47±1.09 40.28±0.54 — — 37.95±0.25 34.52±0.31
FML 45.94±0.16 43.05±0.06 43.00±0.08 42.41±0.28 41.03±0.20 39.23±0.42 38.47±0.14 36.09±0.28
FedKD 46.33±0.24 43.16±0.49 43.21±0.37 42.15±0.36 39.77±0.42 40.59±0.51 38.25±0.41 35.62±0.55
FedDistill 46.88±0.13 43.53±0.21 43.56±0.14 42.09±0.20 44.72±0.13 41.67±0.06 38.51±0.36 36.06±0.24
FedProto 43.97±0.18 38.14±0.64 34.67±0.55 32.74±0.82 32.26±0.18 25.57±0.72 33.03±0.42 28.95±0.51

FedTGP 49.82±0.29 49.65±0.37 46.54±0.14 48.05±0.19 48.18±0.27 44.53±0.16 43.17±0.23 41.57±0.30

Table 2: The test accuracy (%) on Cifar100 in the practical setting using heterogeneous feature extractors, heterogeneous
classifiers, or a large number of clients (ρ = 0.5) with the HtFE8 model group. “Res” is short for ResNet.

harder tasks with more classes, as more classes mean more
client prototypes, which benefits our global prototype train-
ing. However, the generator in FedGen does not consistently
yield improvements in HtFL, as FedGen cannot outperform
LG-FedAvg in all cases in Tab. 1.

Impact of Model Heterogeneity
To examine the impact of model heterogeneity in HtFL,
we assess the performance of FedTGP on four additional
model groups with increasing model heterogeneity with-
out changing the data distribution on clients: “HtFE2”
including the 4-layer CNN and ResNet18; “HtFE3”
including ResNet10 (Zhong et al. 2017), ResNet18,
and ResNet34; “HtFE4” including the 4-layer CNN,
GoogleNet, MobileNet v2, and ResNet18; “HtFE9” includ-
ing ResNet4, ResNet6, and ResNet8 (Zhong et al. 2017),
ResNet10, ResNet18, ResNet34, ResNet50, ResNet101, and
ResNet152. We show results in Tab. 2.

Our FedTGP consistently outperforms other FL methods
across various model heterogeneities by up to 5.64%, ir-
respective of the models’ sizes. We observe that all meth-
ods perform worse with larger model heterogeneity in HtFL.
However, our FedTGP only drops 1.77%, while the decrease
for the counterparts is 3.53%∼15.04%, showing that our
proposed TGP with ACL is more robust and less impacted
by model heterogeneity.

We further evaluate the scenarios with four Heteroge-
neous Classifiers (HtC4)1 and create another two model
groups: “Res34-HtC4” uses the ResNet34 to build homoge-
neous feature extractors while both the feature extractors and
classifiers are heterogeneous in “HtFE8-HtC4”. We allocate
classifiers to clients using the method introduced in HtFEX .
Since LG-FedAvg and FedGen require using homogeneous
classifiers, these methods are not applicable here. In Tab. 2,
our FedTGP still keeps the superiority in these scenarios. In
the most heterogeneous scenario HtFE8-HtC4, our FedTGP
surpasses FedProto by 18.96% in accuracy with our pro-
posed TGP and ACL.

Partial Participation with More Clients
Additionally, we evaluate our method on the Cifar100
dataset with 50 and 100 clients, respectively, using par-

1Please refer to the Appendix for the details.

tial client participation. When assigning Cifar100 to more
clients using HtFE8, the data amount on each client de-
creases, so all the methods perform worse with a larger client
amount. Besides, we only sample half of the clients to par-
ticipate in training in each iteration, i.e., ρ = 0.5. In Tab. 2,
the superiority of our FedTGP is more obvious with more
clients. Specifically, our FedTGP outperforms other meth-
ods by 4.66% and 5.48% with 50 clients and 100 clients,
respectively.

Impact of Number of Client Training Epochs

E = 5 E = 10 E = 20

LG-FedAvg 40.33±0.15 40.46±0.08 40.93±0.23
FedGen 40.00±0.41 39.66±0.31 40.07±0.12
FML 39.08±0.27 37.97±0.19 36.02±0.22
FedKD 41.06±0.13 40.36±0.20 39.08±0.33
FedDistill 41.02±0.30 41.29±0.23 41.13±0.41
FedProto 38.04±0.52 38.13±0.42 38.74±0.51

FedTGP 46.44±0.26 46.59±0.31 46.65±0.29

Table 3: The test accuracy (%) on Cifar100 in the practical
setting using the HtFE8 model group with a different number
of client training epochs (E).

During collaborative learning in FL, clients can alleviate
the communication burden by conducting more client model
training epochs before transmitting their updated models to
the server (McMahan et al. 2017). However, we notice that
increasing the number of client training epochs leads to re-
duced accuracy in methods such as FML and FedKD, which
employ an auxiliary model. This decrease in accuracy can be
attributed to the increased heterogeneity in the parameters
of the shared auxiliary model before server aggregation. In
contrast, other methods such as our proposed FedTGP, can
maintain their performance with more client training epochs.

Impact of Feature Dimensions
We also vary the feature dimension K to evaluate its impact
on model performance, as shown in Tab. 4. We find that most
methods show better performance with increasing feature di-
mensions from K = 64 to K = 256, but the performance
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K = 64 K = 256 K = 1024

LG-FedAvg 39.69±0.25 40.21±0.11 40.46±0.01
FedGen 39.78±0.36 40.38±0.36 40.83±0.25
FML 39.89±0.34 40.95±0.09 40.26±0.16
FedKD 41.06±0.18 41.14±0.35 40.72±0.25
FedDistill 41.69±0.10 41.66±0.15 40.09±0.27
FedProto 30.71±0.65 37.16±0.42 31.21±0.27

FedTGP 46.28±0.59 46.30±0.39 45.98±0.38

Table 4: The test accuracy (%) on Cifar100 in the practical
setting using the HtFE8 model group with different feature
dimensions (K).

degrades with an excessively large feature dimension, such
as K = 1024, as it becomes more challenging to train classi-
fiers with too large feature dimension. In Tab. 4, our FedTGP
achieves competitive performance with K = 64, while Fed-
Proto lags by 6.45% compared to K = 256.

Communication Cost

Theory Practice

LG-FedAvg
∑M

i=1 |wi| × 2 2.05M
FedGen

∑M
i=1(|wi| × 2 + |Θ|) 8.69M

FML M × (|θg|+ |wg|)× 2 36.99M
FedKD M × (|θg|+ |wg|)× 2× r 33.04M
FedDistill

∑M
i=1 C × (Ci + C) 0.29M

FedProto
∑M

i=1 K × (Ci + C) 1.48M

FedTGP
∑M

i=1 K × (Ci + C) 1.48M

Table 5: The communication cost per iteration using the
HtFE8 model group on Cifar100 in the practical setting.
Θ represents the parameters for the auxiliary generator in
FedGen. θg and wg denote the parameters of the auxiliary
feature extractor and classifier, respectively, in FML and
FedKD. r is a compression rate introduced by SVD for pa-
rameter factorization in FedKD. |θg| ≫ K × C. Ci denotes
the number of classes on client i. “M” is short for million.

We show the communication cost in Tab. 5. Specifically,
we calculate the communication cost in both theory and
practice. In Tab. 5 FML and FedKD cost the most over-
head in communication as they additionally transmit an aux-
iliary model. Although FedKD reduces the communication
overhead through singular value decomposition (SVD) on
the auxiliary model parameters, its communication cost is
still much larger than prototype-based methods. In FedGen,
downloading the generator from the server brings noticeable
communication overhead. Although FedDistill costs 5.12×
less communication overhead than our FedTGP, the infor-
mation capacity of the logits is 5.12× less than the proto-
types, so FedDistill achieves lower accuracy than FedTGP.
In summary, our FedTGP achieves higher accuracy while
preserving communication-efficient characteristics.

Ablation and Hyperparameter Study

SCL FM w/o F Proto TGP

Cifar100 40.11 43.46 40.37 36.34 46.94
Flowers102 46.81 52.03 49.39 41.21 53.68
Tiny-ImageNet 22.26 26.13 23.12 19.01 27.37

Table 6: The test accuracy (%) in the practical setting using
the HtFE8 model group for ablation study. “Fed” is omitted
in the method name due to limited space.

We replace ACL with the standard contrastive loss
(Eq. (6)), denoted by “SCL”. Besides, we modify ACL and
TGP by using a fixed margin (Eq. (7)) and removing the fur-
ther processing model F but only train {Ṕ c}Cc=1, denoted by
“FM” and “w/o F ”, respectively. According to Tab. 6, with-
out utilizing a margin to improve separability, SCL shows
a mere improvement of 5.60% for FedProto on Cifar100,
whereas the improvement reaches 10.82% for FM with a
margin. Nevertheless, our adaptive margin can further en-
hance FM and improve 12.47% for FedProto on Cifar100.
Without sufficient trainable parameters in TGP, the perfor-
mance of w/o F decreases up to 6.57% compared to our
FedTGP, but it still outperforms FedProto by a large gap.

Different τ Different S

1 10 100 1000 1 10 100 1000

43.23 44.81 46.94 46.09 43.41 44.62 46.94 47.01

Table 7: The test accuracy (%) on Cifar100 in the practical
setting using the HtFE8 model group with different τ or S.
Recall that we set τ = 100 and S = 100 by default.

We study the hyperparameters of FedTGP by varying the
hyperparameters τ and S in our FedTGP, and the results are
shown in Tab. 7. Our FedTGP performs better with a larger
threshold τ ranging from 1 to 100. However, the accuracy
slightly drops when using τ = 1000, because an excessively
large τ leads to unstable prototype guidance on clients, and
δ(t) may keep growing during the later stage of training.
Unlike τ , increasing the number of server training epochs
S leads to higher accuracy in our FedTGP. As the improve-
ment from S = 100 to S = 1000 is negligible, we adopt
S = 100 to save computation. Even with τ = 1 or S = 1,
our FedTGP can achieve at least 43.23% in accuracy, which
is still higher than baseline methods’ accuracy as shown in
Tab. 1 (Practical setting, Cifar100) but setting S = 1 can
save a lot of computation.

Conclusion
In this work, we propose a novel HtFL method called
FedTGP, which shares class-wise prototypes among the
server and clients and enhances the separability of different
classes via our TGP and ACL. Extensive experiments with
two statistically heterogeneous settings and twelve hetero-
geneous models show the superiority of our FedTGP over
other baseline methods.
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