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Abstract

Due to its effectiveness and efficiency, anchor based multi-
view clustering (MVC) has recently attracted much attention.
Most existing approaches try to adaptively learn anchors to
construct an anchor graph for clustering. However, they gen-
erally focus on improving the diversity among anchors by us-
ing orthogonal constraint and ignore the underlying seman-
tic relations, which may make the anchors not representative
and discriminative enough. To address this problem, we pro-
pose an adaptive Cluster-wise Anchor learning based MVC
method, CAMVC for short. We first make an anchor cluster
assumption that supposes the prior cluster structure of tar-
get anchors by pre-defining a consensus cluster indicator ma-
trix. Based on the prior knowledge, an explicit cluster struc-
ture of latent anchors is enforced by learning diverse clus-
ter centroids, which can explore both between-cluster diver-
sity and within-cluster consistency of anchors, and improve
the subspace representation discrimination. Extensive results
demonstrate the effectiveness of our proposed method com-
pared with some state-of-the-art MVC approaches.

Introduction
Due to the emergence of multi-source data in real-world,
multi-view learning has recently attracted much attention,
which aims to explore the underlying consistent and com-
plementary information across views to improve the learning
performance (Li, Yang, and Zhang 2019; Wen et al. 2023c;
Sun et al. 2023; Zhang et al. 2023a; Jiang et al. 2023). As a
fundamental task, multi-view clustering (MVC) tries to di-
vide multi-view data into groups by discovering the intrin-
sic cluster structures without label information (Fang et al.
2023; Zhang et al. 2023b,c; Wen et al. 2023a,b).

Generally speaking, most existing MVC approaches can
be divided into subspace based methods (Gao et al. 2015;
Zhang et al. 2017; Gao et al. 2020; Huang et al. 2022), ma-
trix factorization based methods (Liu et al. 2021; Wan et al.
2023), multi-kernel based methods (Liu 2023; Wan et al.
2022; Li et al. 2023a), and deep learning based methods (Lin
et al. 2021; Xu et al. 2022; Wen et al. 2020; Yan et al.
2023). The majority of current MVC methods are based on
subspace learning. Motivated by sparse representation that
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a sample can be approximately represented by the samples
from the same class, multi-view subspace clustering learns
a consensus self-expression matrix (usually sparse or low-
rank), and then adopts spectral clustering on the similarity
graph constructed from the self-expression matrix (Zhang
et al. 2017; Lv et al. 2023; Zhang et al. 2022). However,
multi-view subspace clustering usually suffers from high
time complexity, O(n2) and even O(n3), due to the con-
struction of n × n similarity graph and spectral clustering
steps, making it unscalable to large datasets.

To address this problem, anchor based multi-view clus-
tering is proposed, which leverages m (m ≪ n) anchors to
construct an n ×m graph for clustering, and the time com-
plexity can be greatly reduced to O(mn) (Li et al. 2023b).
The clustering performance highly depends on the quality
of anchors, and how to determine representative anchors re-
ceives much attention. Some early methods randomly se-
lect a part of samples from original data as anchors, which
is simple but usually unstable. Thus, some methods adopt
heuristic strategies such as k-means (Li et al. 2015; Kang
et al. 2020) and feature score based schemes (Li et al. 2022;
Xia et al. 2023). For example, (Li et al. 2022) proposed
a directly alternate sampling scheme for anchor selection
by measuring feature score. Instead of directly selecting
anchors from original samples as mentioned above, adap-
tive anchor learning has become popular recently. It usually
adaptively learns latent anchors and subspace representation
in a unified model. For example, (Sun et al. 2021) adaptively
learns a consensus anchor matrix and a non-negative graph
for all views in a latent subspace. (Chen et al. 2022) incorpo-
rates k-means into adaptive anchor learning to directly learn
a cluster indicator for anchor graph.

Although adaptive anchor learning based MVC methods
have achieved promising performance, they generally im-
pose orthogonal constraint on anchors to improve the anchor
diversity, and jointly construct an anchor graph to recon-
struct the original samples. However, the orthogonal con-
straint may cause an imbalanced anchor distribution, i.e.,
there may be few and even no anchors for some data clusters.
To obtain a discriminative representation matrix, it is ex-
pected that the anchors consist of some representative sam-
ples from each cluster and the samples can be only recon-
structed by those anchors that come from the same class. In
other words, the learned anchors have a balanced and dis-
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Figure 1: Framework of the proposed CAMVC method. CAMVC integrates latent anchors learning and consensus subspace
representation construction into a unified model. Under the anchor cluster assumption, a prior cluster indicator matrix is pre-
defined to guide anchor learning. The latent anchors are enforced to have an exclusive cluster structure with within-cluster
consistency and between-cluster diversity.

criminative distribution that shows a natural cluster struc-
ture matching the original data. The within-cluster anchors
are semantically correlated and between-cluster anchors are
semantically uncorrelated, such that these representative an-
chors can describe the multi-class data distributions and the
learned subspace representation can be more discriminative.

Motivated by this, we propose a Cluster-wise Anchor
learning method for MVC (CAMVC), which enforces an
explicit cluster structure of latent anchors for enhancing the
subspace representation discrimination. Figure 1 illustrates
the framework of our method. In specific, CAMVC adap-
tively learns multi-view anchors and a consensus subspace
representation in a unified optimization model. With an-
chor cluster assumption, a prior cluster indicator matrix is
pre-defined, which can be viewed as a label matrix, and it
is used to guide the adaptive anchor learning. An explicit
anchor cluster structure is enforced to match the original
data. Matrix factorization is applied to learn orthogonal cen-
troids for anchor clusters, such that within-cluster anchors
are semantically correlated and between-cluster anchors ex-
clusive, which benefits the discriminative subspace repre-
sentation learning. The main contributions of this paper are
summarized as follows:
• A novel anchor based multi-view clustering method is

proposed, which adaptively learns discriminative anchors
with cluster structure regularization and discriminative
representation in a unified optimization framework.

• An anchor cluster assumption is introduced by defining a
prior cluster indicator. Diverse centroids of anchor clus-
ters are learned to ensure the within-cluster semantic con-
sistency and between-cluster diversity.

• An alternating optimization algorithm is designed
to solve the proposed model. Extensive experiments
demonstrate the effectiveness of our method compared
with state-of-the-art approaches.

Related Work
In this section, we introduce the multi-view subspace clus-
tering and anchor based MVC methods. Table 1 lists the
main used notations and descriptions.

Notation Description
n, v, k Number of samples, views, clusters
m Number of anchors in each cluster
di Feature dimension of the i-th view
Xi ∈ Rdi×n Data matrix of the i-th view
Ai ∈ Rdi×mk Anchor matrix of the i-th view
Z ∈ Rmk×n Consensus subspace representation
Hi ∈ Rdi×k Anchor cluster centroids of view i
Y ∈ {0, 1}k×mk Prior anchor cluster indicator

Table 1: Main notations and descriptions.

Multi-view Subspace Clustering
Multi-view subspace clustering (MVSC) methods generally
adopt self-expression to learn an affinity matrix, and most of
them can be described by the following framework:

min
Zi,Z

v∑
i=1

∥Xi −XiZi∥2F + λΩ(Z,Zi), (1)

where Zi denotes subspace representation of the i-th view,
and Ω(·) represents the unified regularization term to obtain
a consensus representation Z.

Many existing MVSC methods are developed from the
above model. For example, (Gao et al. 2015) proposes to
learn a subspace representation for each view, and a com-
mon cluster structure is simultaneously obtained based on
spectral clustering framework. (Luo et al. 2018) decomposes
the subspace representation of each view into an invariant
part and an exclusive part to explore the consistent and com-
plementary information across views. Moreover, to enhance
the subspace representation discrimination, various regular-
ization terms are imposed on subspace representation, typi-
cally including low-rank constraints (Zhang et al. 2017; Br-
bic and Kopriva 2018) and sparse constraints (Lu, Yan, and
Lin 2016; Elhamifar and Vidal 2013). Recently, tensor low-
rank based regularization becomes popular, which regards
the subspace representation matrices of different views as a
tensor to explore the high-order low-rank property, such as
(Gao et al. 2020; Xie et al. 2018; Wu, Lin, and Zha 2019).
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However, these methods construct a full n × n similarity
graph and perform spectral clustering with O(n3) complex-
ity, making it unapplicable to large-scale datasets.

Anchor Based Multi-view Clustering
Anchor based multi-view clustering received much attention
to handle large-scale datasets (Li et al. 2015; Kang et al.
2020; Wang et al. 2022; Li et al. 2022; Qiang et al. 2021;
Yang et al. 2023; Kang et al. 2022). The principle of anchor
based method is to construct an n ×m similarity graph be-
tween n samples and m anchors to replace full n×n graph,
which greatly reduces the time complexity and maintains
considerable clustering performance.

Most existing anchor based MVC methods can be divided
into anchor sampling based approaches and anchor learning
based approaches. The former first adopts heuristic strate-
gies to select anchors from original samples and then con-
structs anchor graphs, while the latter adaptively learns an-
chors and graphs in a unified framework. (Kang et al. 2020)
first adopts k-means to select anchors, and then constructs an
anchor graph for each view. (Wang et al. 2022) proposes a
parameter-free method by simultaneously learning a consen-
sus anchor matrix and an anchor graph in a low-dimensional
subspace. (Liu et al. 2022) jointly learns consensus latent an-
chors and a low-rank graph with exactly k connected com-
ponents.

Although these methods achieved considerable perfor-
mance, there are still some limitations. Anchor sampling
based approaches separate the anchor selection and graph
construction into two steps, and the learned representation
may be sub-optimal due to the lack of mutual negotiation.
Anchor learning based approaches unify the two steps, but
they only focus on the anchor diversity and neglect the un-
derlying semantic relations. Therefore, this paper proposes
an adaptive cluster-wise anchor learning based method by
exploring both semantic anchor consistency and diversity.

The Proposed Method
In this section, we will introduce our proposed CAMVC
method in detail, including model formulation, optimiza-
tion, algorithm complexity and convergence analysis.

Formulation
Instead of performing heuristic sampling, we intend to adap-
tively learn anchors and graphs by optimization. Based on
the assumption that heterogeneous data in different views
share a consensus low-dimensional subspace (Zhang et al.
2017), we solve the following problem to obtain view-
specific anchors and a consensus subspace representation,

min
Ai,Z

v∑
i=1

∥Xi −AiZ∥2F + β∥Z∥2F . (2)

Learning representative anchors is the key to obtain dis-
criminative representation and improve clustering perfor-
mance. Previous methods generally adopt orthogonal con-
straint, i.e., AiTAi = I, to improve anchor diversity. How-
ever, the learned pairwise exclusive anchors may be not rep-

Sample Anchor Cluster

Figure 2: Non-cluster-wise (left) anchors and cluster-wise
(right) anchors.

resentative to well reconstruct the complex data Xi. To ob-
tain a discriminative representation, it is reasonable to expect
that each sample xi can be well reconstructed by a few an-
chors {ai1,ai2, ..., aim} that are semantically correlated with
xi, and thus these anchors show a clear cluster structure that
matches the original samples, as shown in Figure 2, where
the cluster-wise anchors are promising to learn more dis-
criminative subspace representation for clustering. Inspired
by this, we make the following anchor cluster assumption to
seek cluster-wise anchors.
Assumption 1 (Anchor Cluster Assumption). Given
multi-view data X = {Xi}vi=1, it is assumed that the latent
multi-view anchors A = {Ai}vi=1 have a consensus cluster
structure {C1, C2, ..., Ck} that matches the cluster structure
of original data X.

Based on Assumption 1, if we want to divide X into k
clusters, it is expected that the anchors A can also be di-
vided into the same k clusters. Without loss of generality,
we assume each anchor cluster Ci contains m representative
anchors {ai1,ai2, ..., aim} (i = 1, ..., v), and the total number
of anchors is mk. We define a prior cluster indicator matrix
Y ∈ {0, 1}k×mk, where yij = 1 if the j-th anchor belongs
to the i-th cluster and 0 otherwise. Then, we solve the fol-
lowing problem to enforce the cluster structure of {Ai}vi=1:

min
Ai,Hi

v∑
i=1

∥Ai −HiY∥2F s.t. HiTHi = I. (3)

Eq. (3) is equivalent to dividing the anchors into k pre-
defined clusters, Hi ∈ Rdi×k contains the k anchor clus-
ter centroids, and the orthogonal constraint ensures the
between-cluster diversity. Eq. (3) enforces the within-cluster
anchors semantically correlated and between-cluster an-
chors exclusive. Combining Eq. (2) and Eq. (3). we formu-
late the objective function of CAMVC as follows:

min
Ω

v∑
i=1

(
∥Xi −AiZ∥2F + α∥Ai −HiY∥2F

)
+ β∥Z∥2F

s.t. HiTHi = I.
(4)

where α and β are balance parameters. Eq. (4) combines la-
tent cluster-wise anchors and discriminative representation
learning into a unified framework. The first term aims to
learn representative anchors to reconstruct the samples, the
second term enforces the anchor cluster structure by prior
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Algorithm 1: CAMVC algorithm
Input: Multi-view data {Xi}vi=1, cluster number k, param-
eters α, β,m.

1: Initialize Ai = 0,Hi = 0.
2: Construct the prior cluster indicator matrix Y.
3: while not converged do
4: Update Z by Eq. (7);
5: Update {Ai}vi=1 by Eq. (9);
6: Update {Hi}vi=1 by solving (11);
7: end while

Output: Perform k-means on Z to obtain the clusters.

cluster indicator, and the last term is to avoid overfitting.
An orthogonal constraint is imposed on the anchor cluster
centers to improve the anchor semantic exclusivity among
different clusters.

Optimization
To solve the CAMVC model, we adopt an alternating opti-
mization strategy. In each iteration, all variables are updated
alternately with other fixed.

Update Z With fixing other variables, the sub-problem
w.r.t. Z is

min
Z

v∑
i=1

∥Xi −AiZ∥2F + β∥Z∥2F . (5)

The above problem can be solved by setting its derivative
over Z to zero, i.e.,

−2
v∑

i=1

AiTXi + 2
v∑

i=1

AiTAiZ+ 2βZ = 0. (6)

Obviously, the optimal solution is

Z =

(
v∑

i=1

AiTAi + βI

)−1( v∑
i=1

AiTXi

)
. (7)

Update Ai Because each Ai (i = 1, ..., v) is independent
from each other in terms of different views, and we can solve
each Ai independently. With fixing other variables, the sub-
problem w.r.t. Ai is

min
Ai

∥Xi −AiZ∥2F + α∥Ai −HiY∥2F . (8)

Similar to Z, by setting the derivative over Ai to zero, we
can obtain the optimal solution as follows:

Ai =
(
XiZT + αHiY

) (
ZZT + αI

)−1

. (9)

Update Hi With other variables fixed, the optimization
problem w.r.t. Hi is

min
Hi

∥Ai −HiY∥2F s.t. HiTHi = I. (10)

It is equivalent to solving

max
Hi

Tr
(
HiTAiYT

)
s.t. HiTHi = I. (11)

Dataset n v k d

MSRC 210 4 7 24/512/256/254
BBCSport 544 2 5 3183/3203

Wiki 2866 2 10 128/10
Notting-Hill 4660 3 5 6750/2000/3304
Caltech101 8677 4 101 2048/4800/3540/1240

Fashion 10000 3 10 784/784/784
MNIST 60000 3 10 342/1024/64

Table 2: General statistics of datasets, where n, v, k, d de-
note the number of samples, views, classes, and feature di-
mension, respectively.

It is an orthogonal Procrustes problem (Wen and Yin 2013),
and can be solved by the Singular Value Decomposition
(SVD) of AiYT , i.e., AiYT = UΣVT . The optimal so-
lution is Hi = UVT .

We can see that CAMVC only needs to update three vari-
ables and each sub-problem can be solved by an efficient
solution. For convenience, the whole optimization process
is summarized in Algorithm 1.

Complexity and Convergence Analysis
In this section, we analyze the computational complexity in-
cluding space complexity and time complexity, and conver-
gence property of our CAMVC.

Complexity 1) Time Complexity: The time consumption
mainly consists of the update of each variable. For updat-
ing Z, the time cost depends on matrix inverse and multi-
plication, and the time complexity is O(m3k3 + m2k2d +
m2k2n + mkdn) where d =

∑v
i=1 di. For updating Ai,

the time complexity is O(m3k3 + dimkn). For updating
Hi, it takes O(dimk2) complexity. Th post-processing of k-
means also has linear complexity w.r.t. n. Since m, k ≪ n,
the overal time complexity of CAMVC is linear to the num-
ber of samples, O(n), which enables it to handle large-scale
datasets.

2) Space Complexity: The major space cost of CAMVC
are matrices Z ∈ Rmk×n, Ai ∈ Rdi×n, Hi ∈ Rdi×k

and matrix multiplication results. The space complexity of
CAMVC is O(m2k2+dmk+(mk+d)n), i.e., linear to n.

Convergence The whole objective function is not con-
vex w.r.t. all variables. We adopt an alternating opti-
mization algorithm to update each variable with an an-
alytical solution. Let J (Zt,At,Ht) denote the objec-
tive function value at the t-th iteration, it can be ob-
tained that J (Zt,At,Ht) ≤ J (Zt+1,At,Ht) ≤
J (Zt+1,At+1,Ht) ≤ J (Zt+1,At+1,Ht+1), indicating
the monotonically decrease of objective function value.
Since it is lower bounded by zero, the algorithm can be ver-
ified to converge to a local minimum.

Experiment
In this section, we conduct experiments to compare our
CAMVC with some state-of-the-art methods, and analyzes
the algorithm performance.
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Dataset LMVSC SMVSC OPMC OMSC SFMC FPMVS EOMSC AWMVC FDAGF Ours

ACC

MSRC 0.3476 0.6952 0.6286 0.7048 0.7286 0.6047 0.5905 0.7810 0.6429 0.8418
BBCSport 0.6544 0.5091 0.6691 0.4522 0.8254 0.4209 0.4154 0.6397 0.4669 0.8997

Wiki 0.1884 0.3273 0.1766 0.3535 0.3039 0.3140 0.5415 0.2170 0.5265 0.5386
Notting-Hill 0.7182 0.8058 0.6751 0.7142 0.7433 0.7835 0.8513 0.9255 0.5382 0.9521
Caltech101 0.5364 0.4681 0.4387 0.4237 0.2691 0.4797 0.4818 0.5676 0.6025 0.6301

Fashion 0.6160 0.6952 0.7894 0.6643 0.7818 0.6397 0.6022 0.7305 0.6454 0.7897
MNIST 0.9896 0.9884 0.8392 0.8922 0.9905 0.9884 0.9808 0.9885 0.9887 0.9826

Ave. Score 0.5787 0.6413 0.6024 0.6007 0.6632 0.6044 0.6376 0.6928 0.6302 0.8049
Ave. Rank 6.42 5.28 7.00 6.85 4.57 6.85 6.57 4.00 5.42 2.00

NMI

MSRC 0.2461 0.6190 0.5533 0.6314 0.6987 0.5557 0.4325 0.7160 0.6207 0.8370
BBCSport 0.4471 0.2118 0.6705 0.2129 0.7770 0.1508 0.2367 0.4820 0.3749 0.8951

Wiki 0.0469 0.1628 0.0454 0.1991 0.3196 0.1715 0.5290 0.0783 0.5149 0.5339
Notting-Hill 0.6890 0.7319 0.7126 0.6587 0.8544 0.6748 0.7247 0.8387 0.4511 0.9624
Caltech101 0.8007 0.6171 0.6683 0.5935 0.4273 0.6323 0.6464 0.8067 0.8182 0.8426

Fashion 0.5504 0.7554 0.8213 0.7713 0.8642 0.7340 0.7207 0.7212 0.7127 0.7817
MNIST 0.9685 0.9650 0.9134 0.9336 0.9709 0.9650 0.9475 0.9647 0.9658 0.9787

Ave. Score 0.5355 0.5804 0.6264 0.5715 0.7017 0.5549 0.6054 0.6582 0.6369 0.8331
Ave. Rank 6.85 6.28 6.28 6.85 3.42 7.14 6.42 4.85 5.57 1.28

Table 3: Clustering performance of different methods w.r.t. ACC and NMI on all datasets. The best results are highlighted in
bold, and the second-best results are underlined.

Experimental Setup
We conduct experiments on seven popular datasets, includ-
ing MSRC (Chen et al. 2021), BBCSport1, Wiki2, Notting-
Hill (Chen et al. 2021), Caltech1013, Fashion (Xiao, Rasul,
and Vollgraf 2017), and MNIST4. Table 2 shows the general
statistics of these datasets.

We adopt nine state-of-the-art MVC methods as base-
lines, including LMVSC (Kang et al. 2020), SMVSC (Sun
et al. 2021), OPMC (Liu et al. 2021), OMSC (Chen et al.
2022), SFMC (Li et al. 2022), FPMVS (Wang et al. 2022),
EOMSC (Liu et al. 2022), AWMVC (Wan et al. 2023),
and FDAGF (Zhang et al. 2023d), in which OPMC and
AWMVC are based on matrix factorization, and the others
are anchor based MVC methods.

For a fair comparison, we use the official codes of base-
lines. Since CAMVC and most baselines need k-means to
obtain final clusters, following (Wang et al. 2022; Wan et al.
2023), we run 50 times k-means on final representation
to report the best results. The optimal parameters of base-
lines are tuned by grid search in suggested ranges. For our
CAMVC, we tune α in the range of {10−3, 10−2, ..., 101},
β in {10−1, 10−2, ..., 103}, and m in {1, 3, 5}. We adopt
four popular evaluation metrics including accuracy (ACC),
normalized mutual information (NMI), purity, and Fscore.
For all metrics, the higher value indicates the better per-

1http://mlg.ucd.ie/datasets/bbc.html
2http://www.svcl.ucsd.edu/projects/crossmodal/
3https://paperswithcode.com/dataset/caltech-101
4http://yann.lecun.com/exdb/mnist/

formance. All experiments are conducted using MATLAB
2017b with i5-1230 CPU and 16GB RAM.

Clustering Results
We compare our method with baselines on seven datasets
w.r.t. four metrics. Table 3 reports the clustering results over
ACC and NMI, and Table 4 reports the results over Purity
and Fscore. The average scores and ranks on all datasets are
also listed. From Table 3 and Table 4, we can obtain the
following observations:

• Our CAMVC achieves the best and second-best results
in most cases, and it obtains the highest average scores
and ranks w.r.t. all metrics. For ACC metric, the aver-
age rank of CAMVC is 2.00, while the second-best rank
is only 4.00. These results demonstrate the effectiveness
and superiority of our method compared with the state-
of-the-art approaches.

• Compared with LMVSC, some methods like SMVSC,
FPMVS, EOMSC and our CAMVC can obtain better
performance. The main reason is that the former adopts
the static anchor strategy, and the latter dynamically
learns anchors to obtain an affinity matrix for clustering,
which is more flexible to construct a discriminative sim-
ilarity matrix for clustering.

• On some datasets like MSRC, BBCSport and Notting-
Hill, our method significantly outperforms most re-
lated anchor based baselines, such as SMVSC, FPMVC,
FDAGF. It is because our method considers the anchor
cluster structure by introducing a prior cluster indicator
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Dataset LMVSC SMVSC OPMC OMSC SFMC FPMVS EOMSC AWMVC FDAGF Ours

Purity

MSRC 0.4048 0.6952 0.6381 0.7381 0.7667 0.6190 0.6048 0.7810 0.7571 0.8466
BBCSport 0.6636 0.5367 0.7445 0.5110 0.8566 0.5183 0.5037 0.6893 0.9228 0.9070

Wiki 0.2083 0.3433 0.2069 0.3765 0.3458 0.3367 0.6141 0.2547 0.6811 0.5434
Notting-Hill 0.8101 0.8305 0.7942 0.7807 0.8723 0.7836 0.8513 0.9255 0.8790 0.9420
Caltech101 0.7206 0.5071 0.4897 0.4891 0.3575 0.5217 0.5345 0.7701 0.7489 0.8183

Fashion 0.6178 0.6988 0.8287 0.7070 0.7820 0.6723 0.6333 0.7305 0.7846 0.8321
MNIST 0.9896 0.9884 0.9385 0.8922 0.9905 0.9884 0.9808 0.9885 0.9868 0.9826

Ave. Score 0.6307 0.6571 0.6629 0.6421 0.7102 0.6342 0.6746 0.7342 0.8229 0.8389
Ave. Rank 6.85 6.14 6.85 7.57 4.28 7.28 6.85 3.85 3.00 2.28

Fscore

MSRC 0.2480 0.5766 0.5155 0.6123 0.6236 0.5029 0.4261 0.6852 0.5337 0.8454
BBCSport 0.4854 0.3645 0.6501 0.3556 0.7829 0.3274 0.3468 0.5234 0.4978 0.8683

Wiki 0.1294 0.2103 0.1244 0.2243 0.2113 0.2146 0.4832 0.1432 0.4325 0.5547
Notting-Hill 0.6980 0.7832 0.6788 0.6560 0.7670 0.7367 0.7585 0.8363 0.4873 0.9350
Caltech101 0.3946 0.5286 0.3863 0.3986 0.0667 0.5131 0.5278 0.4446 0.4725 0.4607

Fashion 0.4914 0.6738 0.7536 0.6659 0.7288 0.6272 0.6066 0.6573 0.6256 0.8369
MNIST 0.9794 0.9768 0.8550 0.8923 0.9813 0.9768 0.9621 0.9671 0.9735 0.9787

Ave. Score 0.4895 0.5877 0.5662 0.5436 0.5945 0.5570 0.5873 0.6082 0.5747 0.7828
Ave. Rank 7.42 4.42 7.00 6.57 4.14 6.28 6.28 5.00 6.00 1.85

Table 4: Clustering performance of different methods w.r.t. Purity and Fscore on all datasets.
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Figure 3: ACC values of CAMVC w.r.t. α and β on BBCSport and BDGP datasets.

to supervise anchor learning, and thus our method can
obtain more discriminative similarity matrix.

Parameter Analysis
The CAMVC model contains two parameters α and β,
which controls the anchor cluster penalty and subspace
representation smoothness, respectively. In this subsec-
tion, we study the influence of them by grid search.
In detail, we define two ranges {10−3, 10−2, ..., 101},
{10−1, 10−2, ..., 103} for α and β, respectively, and record
the clustering performance of CAMVC with different com-
binations of the two parameters. Figure 3 shows the ACC
values of CAMVC on BBCSport and Notting-Hill datasets
with different combinations of α and β. We can observe
that when α and β are selected from [10−1, 101], CAMVC
can obtain satisfactory performance. Besides, when α is too
small, the results are not optimal, which indicates that the
anchor cluster structure regularization term takes effects to
improve the algorithm performance. To obtain cluster-wise

anchors, our method assumes m anchors for each cluster.
We also investigate the influence of m value and the results
are shown in Figure 3. It can be observed that our method
can obtain satisfactory performance when m is selected from
[2, 5]. Besides, when m = 1, the clustering results are not
desirable, which implies that one anchor for each cluster is
not enough to well reconstruct the samples and the learned
anchor graph is also not optimal.

Convergence and Time Comparison
As illustrated before, the objective value of CAMVC de-
creases monotonically with variables alternate update and
the objective function is lower-bounded. In this subsection,
we experimentally prove the convergence of CAMVC algo-
rithm. Figure 4 plots the convergence curves on BBCSport
and Notting-Hill datasets. It is seen that the objective func-
tion value decreases monotonously and the ACC value grad-
ually increases w.r.t. iterations, demonstrating the good con-
vergence property.
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Figure 4: Convergence curves of CAMVC.
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In addition, to investigate the efficiency of CAMVC, we
compare the running time of CAMVC and baselines on all
datasets. The results are shown in Figure 5, where the y axis
is scaled by log to mitigate the gap between methods. Since
all baselines and CAMVC have O(n) time complexity, they
are scalable on all datasets. Our method is efficient and sur-
passes some baselines such as OMSC, SMVSC, FPMVS,
FDAGF. The main reason is that our method only needs
to update three variables and each update has an efficient
closed-form solution, while those baselines compute the an-
chor graph matrix column by column. Matrix factorization
based approaches, OPMC and AWMVC, are more efficient
than our CAMVC. It is because that they directly learn the
common latent representation by matrix factorization. Al-
though they are more efficient, CAMVC can achieve better
clustering performance in all cases. Generally speaking, the
execution speed of CAMVC is satisfactory and scalable to
large-scale datasets.

Ablation Study
Instead of learning pairwise orthogonal anchors to construct
an affinity matrix in previous methods, our CAMVC as-
sumes the anchor cluster structure to seek cluster-wise la-
tent anchors. In this subsection, we conduct ablation study to
evaluate the effectiveness of cluster structure regularization.
Based on CAMVC, we derive a variant by discarding the
second term in Eq. (4), i.e., α = 0, and adding the orthogo-
nal constraint AiTAi = I, which is widely used in previous
methods. We compare this variant (Ours-a) with our origi-

Dataset Method ACC NMI Purity Fscore

MSRC
Ours-a 0.7507 0.7334 0.7688 0.7683
Ours 0.8418 0.8370 0.8466 0.8454

BBCSport
Ours-a 0.8956 0.8926 0.8987 0.8614
Ours 0.8997 0.8951 0.9070 0.8683

Wiki
Ours-a 0.5201 0.5254 0.5313 0.5342
Ours 0.5386 0.5339 0.5434 0.5547

Notting-Hill
Ours-a 0.9254 0.9336 0.9174 0.8877
Ours 0.9521 0.9624 0.9420 0.9350

Caltech101
Ours-a 0.5597 0.7933 0.7647 0.4367
Ours 0.6301 0.8426 0.8183 0.4607

Fashion
Ours-a 0.7384 0.7343 0.8281 0.8089
Ours 0.7897 0.7817 0.8321 0.8369

MNIST
Ours-a 0.9808 0.9715 0.9726 0.9597
Ours 0.9826 0.9787 0.9826 0.9787

Table 5: Ablation study results.

Ours Ours-a

Figure 6: Representation visualization on Notting-Hill.

nal CAMVC on all datasets, and the results are shown in Ta-
ble 5. We can observe that Ours achieves better performance
than Ours-a in all cases, especially on MSRC, Notting-Hill,
Caltech101, and Fashion datasets, where Ours outperforms
Ours-a with significant gaps. We also make a t-SNE visu-
alization (Van der Maaten and Hinton 2008) comparison of
learned representation Z on Notting-Hill. Ours reveals a rel-
atively more discriminative cluster structure than Ours-a, re-
sulting in better performance. These ablation results demon-
strate that the anchor cluster assumption helps to learn more
discriminative subspace representation.

Conclusion
In this paper, we propose a novel Cluster-wise Anchor based
Multi-view Clustering (CAMVC) method. CAMVC inte-
grates latent anchor and discriminative subspace represen-
tation learning into a unified optimization model. Instead of
learning orthogonal anchors, CAMVC seeks cluster-wise la-
tent anchors for discriminative subspace representation. An
anchor cluster assumption is introduced by pre-defining a
consensus cluster indicator matrix. With the prior super-
vision, an explicit cluster structure of anchors is enforced
by learning diverse cluster centroids, which can explore
both between-cluster diversity and within-cluster consis-
tency. Experiments demonstrate the effectiveness and effi-
ciency of our proposed method.
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