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Abstract

Deep learning methods have achieved outstanding perfor-
mance in various signal tasks. However, due to degraded sig-
nals in real electromagnetic environment, it is crucial to seek
methods that can improve the representation of signal fea-
tures. In this paper, a Singular Value decomposition-based
Attention, SVA is proposed to explore structure of signal data
for adaptively enhancing intrinsic feature. Using a deep neu-
ral network as a base model, SVA performs feature semantic
subspace learning through a decomposition layer and com-
bines it with an attention layer to achieve adaptive enhance-
ment of signal features. Moreover, we consider the gradient
explosion problem brought by SVA and optimize SVA to im-
prove the stability of training. Extensive experimental results
demonstrate that applying SVA to a generalized classification
model can significantly improve its ability in representations,
making its recognition performance competitive with, or even
better than, the state-of-the-art task-specific models.

Introduction
Signal classification tasks play an important role in various
application scenarios, such as communication signal clas-
sification (Ma et al. 2023; Hao et al. 2023), medical de-
tection (Malik et al. 2021; Li et al. 2020b), sound recog-
nition (Zhang et al. 2021c; Tzinis et al. 2020), and so on.
With the advancements in artificial intelligence technolo-
gies like deep learning, signal classification methods have
become more precise and intelligent. Communication signal
classification task is a time series classification problem that
can be addressed using sequence models like RNN (Chang
et al. 2021) and LSTM (Zhou et al. 2020b), which excel
at handling temporal information. However, these models
may overlook the spatial information of orthogonal signals
and suffer from proportional growth of parameters with se-
quence length due to recurrent connections. Therefore, mod-
els that retain long sequence modeling characteristics while
adept at processing spatial information are needed.

In order to better imitate human comprehension of com-
plex scenes, attention mechanisms have been introduced to
assist models in adaptively focusing on and processing dif-
ferent parts of signals, whether temporal or spatial. Signif-
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Figure 1: Singular value decomposition and image recon-
struction. (a) The original image; (b) Reconstruction result
retaining the first 10 singular values; (c) Reconstructed re-
sults retaining only the k-th singular value.

icant progress has been made in attention mechanism mod-
ules in existing works, such as SENet (Hu, Shen, and Sun
2018), ECA (Wang et al. 2020), CBAM (Woo et al. 2018),
SimAM (Yang et al. 2021), self-attention (Zhao, Jia, and
Koltun 2020) , etc. Due to the provision of a universal way to
enhance input representation, integrating attention modules
into mainstream models (e.g., CNN (Li et al. 2020a), Trans-
former (Xia et al. 2022)) can lead to further improvements.
In particular, for signal classification tasks, CNN models
with limited global modeling capabilities require an auxil-
iary module to extend their view and improve their mod-
eling capabilities for long sequences. Also, different type
of attention can provide new representation subspaces for
Transformer-based models, thereby enhancing the model’s
ability to capture complex patterns.

However, these attention mechanisms often enhance the
focus expression of key features in an explicit manner, which
may not be the optimal solution for signal classification. It is
well known that communication signals contain a significant
amount of noise, or redundancy. When features are explic-
itly enhanced, it is inevitable to strengthen this part. On the
other hand, they ignore the internal structure of the data, es-
pecially the different semantic subspaces of the data itself.
Signals can be viewed as a superposition of subspaces com-
posed of different semantic information, and the information
contained in the internal structure plays an important role in
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Figure 2: SVA module (middle), embedded network diagram (left) and some module operations (right).In the SVA module, the
dashed line is the attention layer and the solid line is the decomposition layer.

signal classification. This motivates us to find an attention
module that can model long sequences, attenuate noise, and
enhance features based on its own internal structure.

Singular Value Decomposition (SVD) has been widely
used in machine learning and signal processing. The factors
obtained through the importance-ranked ordering of SVD
are beneficial for analyzing the intrinsic structure of the
original data. For instance, using an image for visual rep-
resetation, Figure 1 illustrates the semantic subspaces ob-
tained through the decomposition of an image. As the im-
portance decreases (corresponding to larger K-th singular
values), the information contained in each subspace dimin-
ishes. Remarkably, similar images can be reconstructed us-
ing only a small portion of the information. Motivated by
this, we propose an a SVD-based Attention, SVA. Specif-
ically, different semantic subspaces are obtained through
SVD, and the dependencies between different semantic sub-
spaces are learned to conduct differentiated weighting across
subspaces. Moreover, the computation of such attention
across subspaces helps alleviate the misleading effects of
random noise in signals. This internally structured atten-
tion mechanism tailored to communication signals facili-
tates more robust and standardized feature enhancement.
Our contributions are summarized as follows:
• A new attention mechanism based on SVD, SVA, is

advanced to enhance features by exploring the internal
structure of data itself, i.e., the semantic subspace ob-
tained through SVD.

• Due to the drawbacks of embedding SVD into deep
learning models, we propose a training method to min-
imize the time-consuming of SVD as well as the possi-
bility of gradient explosion during training.

• We validate SVA in communication signal classification
tasks. By incorporating this module into a generic back-
bone network, its performance can be significantly im-
proved, becoming competitive with or even surpassing
specialized task-specific models. Moreover, results on an
EEG signal recognition task demonstrate that SVA can be

broadly applied to other time series classification tasks.

Related Work
Signal Classification
Signal classification has been a longstanding and seminal
problem in communications. Early methods of signal clas-
sification were mainly based on the application of manu-
ally crafted feature extraction techniques, such as Likeli-
hood Based (LB) and Feature Based (FB) methods (Wang
et al. 2016; Liu et al. 2020). However, in light of the remark-
able achievements of deep learning, a wave of deep learning
models have found their application in the realm of signal
classification. Intuaky, the strategy employed merely trans-
formed signals into a visual format with the objective of
leveraging computer vision-based models for classification
(Wu et al. 2021; Li et al. 2022; Abdel-Moneim et al. 2022).
Nevertheless, contemporary studies have shifted this focus
onto the exploration of inherent characteristics of commu-
nication signals themselves (Fu et al. 2021; Zheng et al.
2023). For instance, Transformer models that capture long-
range dependencies in sequences have demonstrated supe-
rior performance compared to CNN and RNN models on
signal classification benchmarks (Kong et al. 2023; Jin and
Chen 2021; Dong et al. 2022). However, these Transformer-
based approaches primarily exploit global information and
do not explicitly address the redundant information perva-
sive in communication signals. Further research into Trans-
former architectures capable of learning redundant local pat-
terns may yield additional benefits.

Attention Mechanisms
The attention mechanism stems from intellectual endeav-
ors to understand the human visual system, and in recent
years, its adoption in deep learning landscapes has become
increasingly prolific. Its core lies in the adaptive reweighting
of features according to their importance. Initially, combin-
ing attention mechanisms with Recurrent Neural Networks
(RNNs) was a common approach to predict salient regions
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of the input (Kornblith, Shlens, and Le 2019; Shen et al.
2018). This was followed by the development of generat-
ing deformable grids to learn the transformation space of
input, enabling spatial warping (Parmar et al. 2018; Sandler
et al. 2018). The subsequent squeeze and excitation mecha-
nism introduces channel-wise attention on the basis of spa-
tial attention (Chen et al. 2018; Zhang et al. 2021b). Finally,
there is the self-attention phase. Self-attention was first pro-
posed for natural language processing (Rabinovich et al.
2007) and soon gained great success after its introduction
into computer vision (Zhou et al. 2020a; Carion et al. 2020;
Liu et al. 2021). The series of subsequent works focusing
on improving the speed, output quality and generalization
capability of self-attention based models have demonstrat-
eds enormous potential of models based on attention mech-
anisms (Tan et al. 2019; Vaswani et al. 2017).

Method
In this section, we outline the proposed SVA module to cap-
ture the internal structure of long sequences. First, we intro-
duce the specific approach of SVA. Then, to make it compat-
ible with backpropagation-based optimization frameworks
and reduce time complexity, we provide the implementation
details of the SVA module. Finally, we give the testing pro-
cedure and discuss a special case of the SVA module.

SVA Module
The main idea of SVA is to uncover internal structure in the
data, enhancing important patterns while suppressing irrel-
evant ones to improve the modeling power of the network.
Specifically, given the output X ∈ Rn×m of an intermedi-
ate layer in a deep neural network, this feature serves as the
input to the SVA module. The SVA module consists of two
main components: the decomposition layer and the attention
layer. The decomposition layer takes the intermediate fea-
ture X as input and performs SVD on it. The attention layer,
which is dynamically generated based on the input feature
X itself, produces the singular value attention Λ ∈ Rn×m.
Assuming n ≤ m, Λ = diag(λ1, λ2, . . . , λn), then we have

X = UΣV T (1)

Λ = gϕ(X) (2)

X ′ = U(Λ ◦ Σ)V T (3)
where U ∈ Rn×n is the left singular matrix of X , UUT = I .
V ∈ Rm×m is the right singular matrix of X , V V T = I .
Σ ∈ Rn×mis the singular value matrix, and it is a diagonal
matrix . ◦ denotes the Hadamard product. X ′ ∈ Rn×m is
the output of the SVA module. gϕ(·) represents an attention
mapping that dynamically generates singular value attention
based on the input feature X . The attention layer can be con-
structed using a mapping, which defined as:

x = vec(X) = (x11, . . . , x1m, . . . , xn1, . . . , xnm) (4)

λ = σ (f3 (ReLU (f2 (f1 (x))))) (5)
Λ = diag(λ) = diag(λ1, λ2, . . . , λn) (6)

where vec(·) : Rn×m → Rnm is a vectorization operator
to flatten the input feature for mapping. f1, f2, f3 are two

linear layers and a convolution layer, and σ is the sigmoid
function used to derive the strength of singular value atten-
tion λi, i = 1, 2, . . . , n. diag(·) : Rn → Rn×m is a diag-
onalization operator that turns the attention vector λ into a
diagonal matrix Λ.

Figure 2 shows the architecture of the SVA module in
detail. In principle, this module can be embedded into any
backbone model and applied to different tasks. However,
here we primarily integrate this module into the prevalent
ResNet architecture based on residual modules and the pop-
ular Transformer architecture to uncover internal structure in
the intermediate feature representations of different model
architectures. Next, we describe the detailed setup in the
SVA module.

Back Propagation and Training
When global matrix operations are used in deep networks,
they are combined with layers of other processing performed
along the way. These steps are architecture-specific and crit-
ical. SVD has a strong formulation that allows expressing
complex transformations such as matrix functions and algo-
rithms in a numerically stable form. Given a loss function L,
when constructing layers that perform global computations
in a deep network using SVA, the backward pass through the
matrix follows the chain rule (Ionescu, Vantzos, and Smin-
chisescu 2015):

∂L
∂X

= U ·

{
2 · Σ

(
KT ◦

(
V T ∂L

∂V

))
sym

+

(
∂L
∂Σ

)
diag

}

· V T +

(
∂L · g
∂X

)
diag

(7)
where

Kij =

{
1

σ2
i−σ2

j
, i ̸= j

0, i = j
, (8)

where L · g denotes the loss function of the singular value
attention layer in SVA, and ∂L·g

∂X is the partial derivative of
loss with respect to the feature X . σi is the i-th singular
value of the feature X , i = 1, 2, . . . , n. Asym = 1

2 (A
T +A),

and Adiag is the all non-diagonal elements of A set to zero.
From the derivative expression of the SVA module, it can
be seen that the gradient explosion occurs when the singular
values σi,σj are 0 or very small due to the existence of Kij .
Therefore, we need to impose some constraints to the SVA
module to prevent the feature X from generating a number
of singular values tending towards 0.

In order to explore when SVD is prone to producing small
singular values, we randomly generate 10,000 matrices of
size (n,m) for singular value decomposition. The results are
shown in Figure 3. We plot the matrix condition number and
decomposition time, which demonstrate that as n increases,
the matrix condition number also gradually increases, im-
plying that more diminutive singular values will be gener-
ated when continuing SVD on larger matrices. Given an n-
dimensional square matrix, the time complexity of its sin-
gular value decomposition is O(n3). As illustrated in Fig-
ure 3, the larger the matrix the more decomposition time is
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Figure 3: Condition number and decomposition time versus
(n, 1200) size matrix.

required. larger matrices require more decomposition time.
Therefore, we need to reduce the dimension of the first di-
mension of the intermediate feature X .

It is well known that the feature maps have redundancy
(Quanshi and Chun 2018), that is, the intermediate feature
X contains similar features. This fact makes dimension re-
duction. We can combine similar feature maps, to obtain a
feature Y with smaller dimensions. Therefore, we perform
clustering on the feature maps with k cluster centers. The
mean value of the features belonging to the same cluste ring
center is taken to obtain Y ∈ Rk×m. For ease of training,
we perform clustering every G epochs.

As shown in Kij , we know the matrix will generate a gra-
dient explosion if it produces lots number of singular values
of 0 when it is subjected to SVD. Therefore, we need the
rows of Y to be full rank, i.e., having k distinct singular val-
ues. In other words, we need Y Y T to be full rank. To do this,
we constrain the features Y by an orthogonal loss function:

Lorth =
∥∥∥Y Y T

(
Y Y T

)T − Ic
∥∥∥
2

(9)

where Ic is a k-dimensional identity matrix. We utilize the
L2 norm to regularize our mode. This loss pushes Y Y T to-
wards an orthogonal matrix, which means the row vectors of
Y tend to be orthogonal. We balance the regularization loss
and the classification loss by β ∈ (0, 1).

Testing Details
In testing, the features entered in the SVA are still subjected
to dimensionality reduction. At this point, no clustering is
performed, but based on the clustering results obtained in
the training phase, the mean of the samples belonging to the
same cluster center is taken. This feature is then entered into
the SVA module, with the other settings unchanged.

Similarly, K-SVD is a data compression technique that
procures the optimal sparse representation of data (Aharon,
Elad, and Bruckstein 2006). This technique achieves this
objective by employing an iterative optimization of both
the dictionary and sparse coding. From this perspective, K-
SVD could be interpreted as a specific instantiation of SVA.
When attention weights tend toward zero in some feature
subspaces, SVA essentially invokes a low-rank approxima-
tion of characteristics, paralleling K-SVD. In such circum-
stances, SVA selectively disregards a portion of the singular

values, effectuating the decomposition of the feature matrix
into two low-rank matrices, U and V. This strategy facilitates
feature noise reduction by discarding redundancies concur-
rent with the directions of thrown out singular vectors.

Experiments
Experimental Setup
Datasets. Our experiment began with an evaluation of
our models on three benchmark datasets: RML2016.10a
(O’Shea, Corgan, and Clancy 2016), HisarMod2019
(Tekbıyık et al. 2020), and a large-scale real-world radio
dataset (LSRWR) (Ya et al. 2022). The first two are used for
signal modulation classification, with signal-to-noise ratios
(SNR) ranging from -20dB to 18dB in 2dB increments, con-
taining 11 and 26 modulations respectively. The last dataset
consists of ADS-B radio signals from 100 different transmit-
ters, used for Specific Emitter Identification (SEI). For all
datasets, we split them into 70% for training, 10% for val-
idation, and 20% for testing. We also applied EEG signals
to verify the validity of the model on other time series data:
sleep-edf-2002, sleep-edf-2013 (Kemp et al. 2000), and Hu-
man Activity Recognition (HAR) (Yilmaz 2017) datasets.
More details about the datasets can be found in Appendix B.

Implementation Details. In experiments involving SVA,
we set the number of cluster centers k = 10, and reclustered
at intervals of 20 epochs, G = 20. The optimization algo-
rithm used was Adam with a learning rate of 0.001 and batch
size of 256. Our objective function was a weighted combi-
nation of the cross-entropy loss and orthogonality loss, with
the coefficient for orthogonality loss set to λ = 0.5. Un-
less explicitly mentioned, the SVA module during training
includes the SVA module, clustering component, and or-
thogonality loss. Each experiment was run on GeForce RTX
4090, and the reported results demonstrate the average per-
formance over 10 independent runs.

Quantitative Evaluation. In our experiments, we fo-
cused on implementing the SVA in the 1D ResNet (He et al.
2016), as it is widely used as a backbone for classification,
and ViT-Lite (Hassani et al. 2021), a transformer-based clas-
sification network known for its compatibility with smaller
datasets. Comparative evaluations were conducted between
the SVA module and prevalent attention mechanisms such
as SENet , CBAM, ECA and SimAM. Concurrently, we
benchmarked these models against several outstanding task-
specific counterparts, including MCLDNN (Xu et al. 2020)
and PETCGDNN (Zhang et al. 2021a) for modulation recog-
nition, and AttnSleep (Eldele et al. 2021) and DeepSleepNet
(Supratak et al. 2017) for EEG signal classification.

Overall Performance
Table 1 presents the signal classification performance of
three backbones, each supplemented with different atten-
tion modules, including SENet, CBAM, ECA, SimAM, and
SVA. The tasks in focus include modulation classification
(RML2016.10a, HisarMod2019) and SEI (LSRWR). It is
easily noticeable that SVA universally improves the perfor-
mance of most models. In Table 1, the number of model pa-
rameters is listed in the first column for each dataset, and the
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model
RML2016.10a HisarMod2019 LSRWR

Params/M MFlops OA (%) Params/M MFlops OA (%) Params/M MFlops OA (%)

ResNet18 3.849 87.41 58.84 3.849 699.27 73.21 3.849 819.51 55.78

+ SENet 3.936 87.45 58.70 3.936 698.97 74.11 3.936 819.14 73.04

+ CBAM 3.851 87.43 58.90 3.851 699.35 75.08 3.851 819.60 67.00

+ ECA 3.849 87.42 59.46 3.849 699.34 75.29 3.849 819.58 73.24

+ SimAM 3.849 87.41 58.72 3.849 699.27 73.03 3.849 819.51 71.52

+ SVA (Ours) 3.775 83.92 61.44 3.809 671.05 76.41 3.821 786.39 73.62
ResNet34 7.224 178.90 59.40 7.224 1431.18 74.04 7.224 1677.21 66.04

+ SENet 7.382 179.01 59.72 7.382 1430.95 74.60 7.382 1676.91 74.26

+ CBAM 7.226 178.92 59.98 7.226 1431.26 76.35 7.226 1677.30 69.74

+ ECA 7.224 178.91 60.42 7.224 1431.25 75.46 7.224 1677.29 70.58

+ SimAM 7.224 178.90 58.43 7.224 1431.18 75.95 7.224 1677.21 74.68

+ SVA (Ours) 7.149 175.67 61.75 7.183 1405.05 84.59 7.195 1646.54 74.93
ViT-Lite 4.600 532.58 61.38 4.600 306.22 76.52 4.600 360.45 76.27

+ SVA (Ours) 4.344 54.46 61.31 4.344 144.60 76.95 4.344 162.31 76.67

Table 1: Signal classification performance of three common backbones equipped with attention modules. The indicators include
the number of model parameters, the amount of computation and the overall accuracy (OA). The best indicators are bolded.

Figure 4: RML2016.10a dataset contrast curves between the
general purpose model with SVA and the advanced task-
specific model at different SNR.

computational cost in FLOPS during testing is in the second.
Furthermore, the models with SVA modules not only re-
duce parameters and computational cost during testing while
achieving superior performance but also demonstrate scaling
of parameter counts with data dimensionality, attributable to
the attention layers in SVA. Notably, 1D ResNet generally
underperforms in signal classification. However, the perfor-

mance can be improved by integrating attention modules,
with SVA conferring distinct enhancements.

Figure 4 presents the comparative curves of generic mod-
els equipped with SVA versus task-specific models under
different SNR on the RML2016.10a dataset. As evidenced
in the figure, models containing SVA demonstrate substan-
tial improvements from -8dB to 0dB, indicating the efficacy
of SVA in ameliorating signal degradation. Comparisons of
generic models ResNet18, ResNet34, and ViT-Lite equipped
with SVA modules against advanced models for signal clas-
sification and SEI are appended in Appendix C. The addi-
tion of SVA modules enables generic backbones to achieve
on-par performance with task-specific models, especially
for modulation classification where task-specific models ex-
hibit 0.2%-22.26% enhancement. Compared to task-specific
models, the models’ SEI performance improves by 3.77%-
9.15%. Experimental results of generic models equipped
with SVA on EEG data are appended in Appendix D.

Parameters and Model Analysis
Location of SVA. We commenced our examination by
benchmarking our model utilizing three standard datasets.
As illustrated in Table 2, we took ResNet as a reference point
and segregated it into five layers following the model struc-
ture, namely conv1, layer1, layer2, layer3, layer4, and
classification. To analyze the performance impact of the
location of the SVA module at varying positions, we embed-
ded an SVA module subsequent to each of the initial five
layers. We performed these experiments on an assortment
of models, including ResNet18, ResNet34, and ResNet50.
The empirical results indicated that the provision of an SVA
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module beyond layer2 served to significantly bolster the
model’s expressive capacity. In contrast to other ResNet ver-
sions, the ResNet models that incorporated an SVA module
after layer2 demonstrated a performance uplift spanning be-
tween 1.17% and 2.67%.

Location - -
SVA Module

conv1 layer1 layer2 layer3 layer4

ResNet18 58.84 60.25 60.26 61.49 60.07 58.73

ResNet34 59.40 60.37 60.30 61.71 59.97 59.80

ResNet50 59.26 59.33 59.71 60.41 60.37 59.78

Table 2: The effect of adding SVA after different layers. The
indicator is OA(%), and “- -” is the base value of the model.

Number of Cluster Centers. We embarked on our as-
sessment using three benchmark datasets. Throughout the
training phase of our model, we had to determine the num-
ber of hyperparameter clustering centers. Notably, the ex-
perimentally set value of 10 for this parameter isn’t always
optimal. Table 3 highlights the variation in model accuracy
with 2:2:18 as the clustering center configuration. It can be
observed that the accuracy follows an initial increment trend
before starting to diminish, as the count of clustering centers
rises. A pinnacle in accuracy is reached when we designated
the quantity of clustering centers as 6.

k 2 4 6 8 10
OA(%) 61.88 61.85 62.02 61.94 61.49

k 12 14 16 18 20
OA (%) 61.56 60.29 60.36 59.97 59.93

Table 3: The effect of the number of clustering centers.

SVA Clustering Lorth OA(%)
Training Testing

time/µs time/µs

58.83 112 71

✓ 58.84 1897 1776

✓ 59.51 113 74
✓ ✓ 58.86 2009 1792

✓ ✓ 61.11 509 461

✓ ✓ ✓ 61.49 565 506

Table 4: Ablation experiments of each component.

Ablation Experiments on Various Components. Ini-
tially, we scrutinized our model employing three standard
datasets. During the SVA training process, we incorporated
a clustering component and an orthogonal loss term (Lorth).
Table 4 illustrates the ablation studies relating to these three

Figure 5: The number of conditions of the matrix for SVD
varies with training. The figure only shows the matrix con-
taining 10 clustering centers, and the original model cannot
be visually displayed because of the large number of matrix
conditions added to the SVD layer. The dashed line contains
SVA module and clustering module, and the solid line con-
tains SVA, clustering and orthogonal loss Lorth.

components, in conjunction with the time necessitated for
training/testing a singular sample. In comparison to the pris-
tine network, the addition of all components indicated an up-
lift in performance, pronouncedly the inclusion of the SVA
and the clustering element. The incorporation of the cluster-
ing component served a dual role: augmenting performance
and diminishing the time required for training/testing sam-
ples. Upon adding a clustering component to the SVA, the
training/testing time for samples witnessed a reduction of
73.2%. Concurrently, as per a model equipped with all three
components, a performance boost of 2.6% was observed
against the result excluding the clustering module alone,
resulting in a time reduction of 71.8% for training/testing
samples. The orthogonal loss component offered a slight in-
crease in model performance, suggesting the indispensabil-
ity of such a clustering module in enhancing the model.

The ill-conditioned nature of SVD input attributes can
potentially detriment the model’s training process. Thus,
higher condition numbers serve as indicators of an escalat-
ing matrix-ill-condition state. Figure 5 delineates the fluctu-
ation curve of a matrix condition number undergoing SVD
during training. With the progression of training epochs, the
condition number of the SVA, along with its respective con-
stituents, steadily diminishes. Specifically, the introduction
of an orthogonal loss component yields an additional decre-
ment in the condition number, whereas the condition number
tied exclusively to the SVD within the same layer exhibits
a propensity to overflow. Such findings indicate the indis-
pensable role of the orthogonal loss component for ensuring
a seamless experimental process. Figure 7 depicts statisti-
cal findings of failed training attempts (marked by a gradi-
ent explosion or matrix ill-conditioning) during the training
phase of ResNet18 with incorporated SVD and SVA. Here,
the stars signify the experiments involving the SVA and its
components, while circles denote the SVD-included experi-
ments. Observably, the introduction of the SVA and its com-
ponents diminishes the failure rate considerably, with fewer
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(a) Input feature of SVA. (b) Output feature of SVA.

(c) t-SNE visualization of SVA input feature. (d) t-SNE visualization of SVA output feature. (e) Singular value attention weight.

Figure 6: Visual analysis of features and weights.

Figure 7: When SVD and SVA layers are added to
ResNet18, the experimental statistical results of gradient ex-
plosion or ill-conditioned input matrix appear.

errors materializing during the first epoch. Contrariwise, for
experiments merely executing SVD, a marked rise in failures
ensues, prone to flopping in the initiating iterations. These
observations reinforce the significance of the adept design
of clustering and orthogonal loss modules.

Visual Analysis of Weights and Features. Figure 6 of-
fers a visualization of output/input attributes and attention
weights pertaining to SVA. Figure 6a and 6b depict the visu-
alization of features that are inputted and outputted in SVA,
with the x-axis symbolizing feature length dimension and y-
axis corresponding to the feature channel dimension. Con-
versely, Figures 6c and 6d are t-SNE (van der Maaten and
Hinton 2008) diagrams of the input and output features of
SVA, representing their respective distribution profiles. Fig-

ure 6e furthermore provides a visualization of singular value
attention weights, where the segments with a weight of zero
are omitted. As discernable from Figure 6a and 6b, post-
processing by SVA results in features concentrating more
prominently on distinct channels, thus endorsing a more
streamlined and efficient feature representation. Similarly,
Figures 6c and 6d showcase that features outputted by SVA
exhibit higher divergence across distinct categories, intrinsi-
cally closer for the same category, and a denser distribution.
This points to the adaptive feature distribution modification
accomplished by SVA, thereby significantly bolstering fea-
ture representation of the neural network. In Figure 6d, all
the substantial values in the feature matrix are amassed at the
upper-left corner, not arranged in descending order of mag-
nitude. This implies that during classification execution, the
model’s feature attention span synchronized with the crucial
feature yield from SVD, regardless of the sequencing discor-
dance, thereby affirming the necessity of attention in SVA.

Conclusion
To address the issue of signal degradation in real-world elec-
tromagnetic environments, this paper proposes a novel atten-
tion module that excavates the structural information within
signal data based on singular value decomposition. To vali-
date its efficacy, we incorporated it into three simple generic
backbone networks to achieve better performance. Exper-
iments on multiple datasets demonstrate that adding this
module helps improve backbone models and achieves com-
petitive results to task-specific models. We hope the design
of this attention module will facilitate future research on in-
terpretable features for time series data.
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