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Abstract

Graph neural networks have been widely used to represent
3D molecules, which capture molecular attributes and geo-
metric information through various message-passing mech-
anisms. This study proposes a novel quaternion message-
passing (QMP) module that can be plugged into many ex-
isting 3D molecular representation models and enhance their
power for distinguishing molecular conformations. In partic-
ular, our QMP module represents the 3D rotations between
one chemical bond and its neighbor bonds as a quaternion
sequence. Then, it aggregates the rotations by the chained
Hamilton product of the quaternions. The real part of the
output quaternion is invariant to the global 3D rotations of
molecules but sensitive to the local torsions caused by twist-
ing bonds, providing discriminative information for training
molecular conformation representation models. In theory, we
prove that considering these features enables invariant GNNs
to distinguish the conformations caused by bond torsions. We
encapsulate the QMP module with acceleration, so combin-
ing existing models with the QMP requires merely one-line
code and little computational cost. Experiments on various
molecular datasets show that plugging our QMP module into
existing invariant GNNs leads to consistent and significant
improvements in molecular conformation representation and
downstream tasks.

Introduction
With the advent of 3D graph neural networks (GNNs) (Du-
venaud et al. 2015; Fout et al. 2017; Xie and Grossman
2018; Gao and Ji 2019; Liu et al. 2021b; Li et al. 2022a), 3D
molecular representation learning has shown great promise
in molecular dynamics tasks, e.g., predicting the energy (Li
et al. 2022b; Hu et al. 2021), atomic force (Zitnick et al.
2022; Gasteiger, Yeshwanth, and Günnemann 2021), and
other quantum mechanical properties (Cai et al. 2022;
Stärk et al. 2022; Li, Zhao, and Zeng 2022) of molecules.
Message-passing is the most widely used mechanism to re-
alize such GNNs, whose input features and model archi-
tectures significantly impact the quality and efficiency of
3D molecular representation. When implementing message-
passing, existing equivariant GNNs (Thomas et al. 2018;
Satorras, Hoogeboom, and Welling 2021; Fuchs et al. 2020;

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Finzi et al. 2020; Schütt, Unke, and Gastegger 2021; Köhler,
Klein, and Noé 2020) often treat molecules as point clouds
and embed equivariant information (i.e., atoms’ coordi-
nates (Satorras, Hoogeboom, and Welling 2021) or orien-
tations (Thomas et al. 2018)) and relative position informa-
tion (i.e., pairwise distances among atoms) jointly. Invariant
GNNs (Schütt et al. 2017; Gasteiger, Groß, and Günnemann
2020; Gasteiger et al. 2020; Liu et al. 2022; Wang et al.
2022) often model molecules as graphs and consider their
SE(3)/E(3)1-invariant information, e.g., bond lengths, rota-
tions, and torsions caused by twisting bonds.

Although these GNNs have been applied in many tasks,
they suffer from some computational efficiency issues and
have limited performance on molecular conformation anal-
ysis. On the one hand, the equivariant GNNs have high
computational complexity due to their high-order message-
passing (Thomas et al. 2018; Fuchs et al. 2020; Finzi et al.
2020; Köhler, Klein, and Noé 2020) within atoms’ point
clouds, and the lack of bonds’ rotation and torsion angles
make them unable to distinguish molecular conformations.
On the other hand, an ideal SE(3)-invariant GNN represents
3D structures of molecules by recording the dihedrals de-
fined on each bond’s 2-hop neighborhood, whose compu-
tational complexity can be as high as O(ND3) for a 3D
molecule withN atoms andD degrees on average. The sim-
plified invariant GNNs (Gasteiger, Groß, and Günnemann
2020; Gasteiger et al. 2020; Liu et al. 2022) can reduce the
complexity to O(ND2) but sacrifice the power for distin-
guishing molecular conformations.

This study proposes a plug-and-play quaternion message-
passing (QMP) module to improve invariant GNNs in
molecular conformation representation and analysis tasks.
As illustrated in Figure 1, our QMP achieves a new mech-
anism to encode the 3D rotation information of chemical
bonds. For each bond of a 3D molecule, we consider the
3D rotations from its 1-hop neighboring bonds to itself. The
QMP represents each 3D rotation as a quaternion (Dam,
Koch, and Lillholm 1998) and achieves a novel message-
passing mechanism, i.e., sorting the quaternions in descend-
ing order of the corresponding bond rotation angles and

1SE(3) is shorthand for “the special Euclidean group of rigid
body displacements in 3D”. E(3) = SE(3) ⊗ {E, I}, is the Eu-
clidean group in 3D space which contains translations, rotations,
and reflection.
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Figure 1: An illustration of our QMP module. Given a molecule, for each bond (i, j), we first obtain the 3D rotations from
its 1-hop neighboring bonds to itself and sort them according to the rotation angles. Representing the sorted 3D rotations by a
sequence of quaternions, we apply accelerated chained Hamilton product to obtain a quaternion q(i,j), whose real-part Re(q(i,j))
encodes all rotation angles, same-side dihedrals (e.g., the ψ1 in blue), and opposite-side dihedrals (e.g., the ψ2 in red) jointly.
As shown in the orange blocks, the multiplications of quaternion pairs encode dihedrals.

merging the quaternion sequence to a single quaternion by a
chained Hamilton product. The real part of the output quater-
nion is invariant to the global 3D rotation of the molecule
and, moreover, sensitive to the torsions caused by twist-
ing bonds because it encodes opposite-side dihedrals im-
plicitly. Therefore, taking the output of QMP as the in-
put of invariant GNNs helps to enhance their discrim-
inative power on representing molecular conformations
while keeping their global SE(3)-invariance.

We accelerate the chained Hamilton product using a
multi-thread reduction strategy and encapsulate the QMP as
one-line code. Therefore, we can plug the QMP into exist-
ing invariant GNNs with little computational cost. In the-
ory, we demonstrate that the computational complexity of
our QMP is O(ND2), and with the help of the acceler-
ated chained Hamilton product, its runtime can be further
reduced to O(ND logD). We plug the QMP into three rep-
resentative E(3)-invariant GNNs (i.e., SchNet (Schütt et al.
2017), DimeNet (Gasteiger, Groß, and Günnemann 2020),
and DimeNet++ (Gasteiger et al. 2020)) and one typical
SE(3)-invariant GNN (i.e., SphereNet (Liu et al. 2022)), and
analyze its impacts on model performance quantitatively.
Experimental results show that our QMP leads to consis-
tent and significant improvements of these invariant GNNs
in molecular dynamics prediction tasks.

Proposed Quaternion Message-Passing
Motivations and Preliminaries
In this study, we denote a 3D molecule withN atoms andM
chemical bonds as a graphG(V , E ,H(0),Z(0),X). Here, V
and E denote the set of atoms and that of bonds, respectively.
H(0) ∈ RN×Dv represents the atom feature matrix, and the
i-th row of H(0) denotes the initial feature of the i-th atom,
denoted as hi ∈ RDv . Z(0) ∈ RM×De represents the bond
feature matrix. We denote the row corresponding to the bond
(i, j) as zij ∈ RDe . The matrix X ∈ RN×3 contains the 3D

coordinates of atoms, whose rows are denoted as xi ∈ R3

for i = 1, ..., N . Based on the coordinate matrix X , we can
extract the following to SE(3)-invariant information:

1. Bond Length Matrix: We denote the bond length matrix
of G as D = [dij ] ∈ RN×N

+ , where dij = ∥xi − xj∥2 if
(i, j) ∈ E , otherwise, dij = 0.

2. Bond Rotation Set: Given two edges connected at atom
j, i.e., (j, i), (j, k) ∈ E , the bond rotation from (j, k) to
(j, i) is described as follows:

ukji =
pjk × pji

∥pjk × pji∥
, θkji = arccos

⟨pjk,pji⟩
∥pjk∥∥pji∥

, (1)

where pji = xi − xj , ukji is the rotation axis, and θkji
is the bond rotation angle. ⟨·, ·⟩ and × represent the in-
ner and cross product, respectively. The rotation angle is
SE(3)-invariant, and the collection of all rotation angles
is denoted as Θ.

3. Bond Dihedral Set: As shown in Figure 1, given one
bond and its two arbitrary 1-hop neighboring bonds, we
can construct a same-side dihedral or an opposite-side
dihedral. The same-side dihedral is obtained when the
neighboring bonds connect to the same atom of the cen-
tral bond. The opposite-side dihedral is obtained when
the neighboring bonds connect to the two different atoms
of the central bond. We denote the sets of these two kinds
of dihedrals as Ψs and Ψo, respectively.

Invariant GNNs (Gasteiger, Groß, and Günnemann 2020;
Gasteiger et al. 2020; Liu et al. 2022; Wang et al. 2022) take
the above information as input and represent molecules ac-
cordingly. The representations are invariant to the global 3D
rotations of the molecules. However, as shown in Figure 2, a
molecular conformation can be generated by twisting chem-
ical bonds, and the changes of opposite-side dihedrals cap-
ture the geometrical discrepancy between different confor-
mations. Existing invariant models often ignore the informa-
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 ̂2

Figure 2: An illustration of the torsion caused by twisting
bond. When twisting (i, j) with a torsion δ, the same-side
dihedral ψ1 is unchanged, while the opposite-side dihedral
ψ2 changes to ψ̂2 = ψ2 + δ.

tion of the opposite-side dihedrals, leading to sub-optimal
performance when representing molecular conformations.

Motivated by this observation, we require the representa-
tions of conformations to be invariant to global 3D rotations
and sensitive to the local twisting of chemical bonds. To
achieve this aim, we would like to develop a new message-
passing module to encode sufficient information (e.g., dihe-
drals) for representing molecular conformations and ensure
that the module has high efficiency, high compatibility, and
plug-and-play property. In the following content, we will de-
sign such a message-passing module with the help of the
Quaternion Algebra (Dam, Koch, and Lillholm 1998).

Implementation of QMP
Quaternion (Dam, Koch, and Lillholm 1998; Zhu et al.
2018) is a kind of hypercomplex number having one real
part and three imaginary parts, denoted as q = s+xi+yj+
zk ∈ H. Here, H is the quaternion domain, s, x, y, z ∈ R,
and the imaginary units {i,j,k} obey the following rule:
i2 = j2 = k2 = ijk = −1. For convenience, we
can represent a quaternion as a vector, i.e., q = [s,u⊤]⊤

where u⊤ = [x, y, z]⊤. The multiplication of two quater-
nions is achieved by Hamilton product (Zhao et al. 2020):
for q1 = [s1,u

⊤
1 ]

⊤, q2 = [s2,u
⊤
2 ]

⊤ ∈ H, we have

q1 ⊗ q2 = [s1s2 − ⟨u1,u2⟩,u1 × u2 + s1u2 + s2u1]. (2)

Note that the Hamilton product is not commutative, i.e., q1⊗
q2 ̸= q2 ⊗ q1 in general.

Quaternion is a powerful mathematical tool to describe
3D rotations. In particular, suppose that we rotate as a point
v1 ∈ R3 with an angle θ around a unit rotation axis u and
obtain a point v2 ∈ R3. When representing v1 and v2 as
two pure quaternions (whose real parts are zeros), we can
achieve the 3D rotation operation by

[0,v⊤
2 ]

⊤ = q ⊗ [0,v⊤
1 ]

⊤ ⊗ q∗, (3)

where q = [cos θ
2 , sin

θ
2u

⊤]⊤ and q∗ = [cos θ
2 ,− sin θ

2u
⊤]⊤

represents the conjugation of q.
Our QMP module leverages the above algebraic proper-

ties of quaternion to encode the 3D rotations associated with
each bond. As illustrated in Figure 1, our QMP consists of
the following key steps:
1. Quaternion-based Representation of 3D Rotations

Given a molecule G with an atom set V and an edge set
E . For each atom i, we denote its 1-hop neighbors as a
set Ni := {j | (i, j) ∈ E}. Accordingly, for each bond

(i, j) ∈ E , we consider its 1-hop neighbors connecting to
i and j, denoted as Nj→i := {(i, k) ∈ E | k ∈ Ni \ {j}}
and Ni→j := {(k, j) ∈ E | k ∈ Nj \ {i}}, respectively.
We represent the 3D rotation from each bond in the 1-hop
neighboring sets to the bond (i, j) as a unit quaternion.
Take (k, j) ∈ Ni→j as an example. The rotation from
(k, j) to (i, j) is represented as

qkji =
[
cos

θkji
2
, sin

θkji
2

u⊤
kji

]⊤
, (4)

where θkji and ukji are derived based on (1). As a result,
we obtain two sets, i.e., Qi→j = {qkji|(k, j) ∈ Ni→j}
and Qj→i = {qkij |(i, k) ∈ Nj→i}, respectively.

2. Angle-based Quaternion Sorting and Merging Given
the two sets of quaternions, our QMP encodes the cor-
responding rotation information by a chained Hamilton
product. Because of the non-commutativity of the Hamil-
ton product, we first need to convert the two quaternion
sets to a quaternion sequence. In this study, we imple-
ment this conversion by an angle-based sorting and se-
lection method. In particular, we select the quaternions
with top-K rotation angles for each set. Then, we sort the
selected 2K quaternions in descending order of their ro-
tation angles, leading to a quaternion sequence, denoted
as Q(i,j) = {q(i,j)k } ∈ H2K . Therefore, we can merge
the quaternion sequence by a chained Hamilton product:

q(i,j) = q
(i,j)
1 ⊗ q

(i,j)
2 ⊗ ...⊗ q

(i,j)
2K =

⊗
q∈Q(i,j)

q. (5)

In practice, we set K ≤ Dmax in general, where Dmax
is the maximum degree of atoms. For the bond whose
Qi→j or Qj→i has fewer than K quaternions, we pad
the set with the dumy quaternion [1,0⊤

3 ]
⊤.

3. Mixed Encoding of Rotations and Dihedrals The real
part of q(i,j) contains important geometric information.
Given two unit quaternions qk = [cos θk

2 , sin
θk
2 uk] and

qk′ = [cos θk′
2 , sin

θk′
2 uk′ ], the real part of qk ⊗ qk′ is

cos θk
2 cos θk′

2 − sin θk
2 sin θk′

2 ⟨uk,uk′⟩ according to (2).
The first term encodes the information of the bonds’ ro-
tation angles, and the second term records the dihedral
angle defined by the two axes, i.e., cosψ = ⟨uk,uk′⟩.
Therefore, our QMP outputs the real part Re(q(i,j)) as
the feature of the bond (i, j).

In summary, given a molecule G with M bonds, our QMP
achieves a map from the bond set E to a M -dimensional
vector, i.e., QMP : E 7→ [−1, 1]M .

Theoretical Properties and Rationality Analysis
Global SE(3)-Invariance Our QMP is SE(3)-invariant.
As shown in Proposition 1 in (Zhang et al. 2020), for arbi-
trary two quaternions q1 = [s1,u

⊤
1 ]

⊤ and q2 = [s2,u
⊤
2 ]

⊤,
when applying a rotation R on the rotation axes, we have

[s1, R(u1)
⊤]⊤ ⊗ [s2, R(u2)

⊤]⊤

=[s1s2 − ⟨u1,u2⟩ , R (u1 × u2 + s1u2 + s2u1)]
⊤,

(6)

where the real part is invariant to the rotation operation,
while the imaginary part is equivariant to the rotation op-
eration. Therefore, for the Re(q(i,j)) derived by our QMP,
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the global 3D rotation of the molecule does not change its
value. Additionally, because the quaternions in (5) are de-
rived based on the relative positions of chemical bonds, the
Re(q(i,j)) is invariant to the global translation of molecule.

Sensitivity to Local Torsions Besides preserving the
global SE(3)-invariance, our QMP is sensitive to the torsions
of chemical bonds and thus benefits molecular conformation
representation. In particular, the torsion caused by twisting
a bond leads to the change of opposite-side dihedrals, which
is ignored by most existing SE(3)-invariant GNNs (e.g., the
SphereNet (Liu et al. 2022) only encodes the same-side di-
hedrals). As a result, these models fail to distinguish the con-
formations caused by twisting bonds.

On the contrary, the output of our QMP is sensitive to
bond torsions. Take Figure 2 as an example. The twisting of
the bond (i, j) can be represented as rotating the atom “d”
with a torsion angle δ along the axis defined by (i, j), which
equivalently corresponds to imposing a rotation R of the
axis udij associated with the quaternion qdij , i.e., R(udij).
When computing the Hamilton product between qdij and
any other q = [s,u] ∈ {qaji, qbji, qcji}, the real part of the
output is [cos θdij

2 s−sin
θdij
2 ⟨udij ,u⟩]. Here, each ⟨udij ,u⟩

corresponds to an opposite-side dihedral. It is changed by
the bond torsion because ⟨R(udij),u⟩ ̸= ⟨udij ,u⟩ in gen-
eral. In theory, we have the following proposition.

Proposition 1 GivenK quaternions {qk = [sk,u
⊤
k ]

⊤}Kk=1,
their chained Hamilton product involves all K(K − 1)/2
inner products of paired imaginary parts, i.e., ⟨uk,uk′⟩ for
all k ̸= k′.

Proposition 1 means that given a bond, our QMP encodes all
associated (same-side and opposite-side) dihedrals, whose
output changes according to the bond torsion.

Rationality of Angle-based Sorting As a key step of our
QMP module, the angle-base sorting operation determines
the order of quaternions in the chained Hamilton product.
We apply the angles of bond rotations to determine the order
because they are relatively stable for molecular conforma-
tions — the molecular conformation is mainly generated by
twisting bonds, and the twisting of bonds changes opposite-
side dihedrals while keeping the rotation angles unchanged.

Plugging QMP into Invariant GNNs
Based on the above analysis, combining our QMP with
existing invariant GNNs can preserve the global SE(3)-
invariance of the original models and, at the same time, en-
hance their sensitivity to local bond torsions. As shown in
Figure 3, we propose a simple and generic framework to
plug our QMP module into representative invariant GNNs,
which has high efficiency and compatibility. In particular,
given a graph G(V , E ,H(0),Z(0),X), we keep the archi-
tectures of the GNNs and only modify the input of their bond
embedding module by the output of our QMP. Specifically,
in the l-th message-passing layer, we update bond and atom
embeddings as

z
(l+1)
ij = fe(eij), h

(l+1)
i = fv

(
h
(l)
i ,

∑
j∈Ni

z
(l+1)
ij

)
, (7)
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Figure 3: An illustration of how to plug our QMP into SE(3)-
invariant GNNs. Given two molecular conformations, the
QMP-enhanced model can capture bond torsions (i.e., the
blue rotated arrow) and output different representations (i.e.,
the vectors with different colors).

where fe and fv are embedding functions for bonds and
atoms, respectively, which are implemented by message-
passing in general (Gilmer et al. 2017). eij is the intermedi-
ate embedding of the bond (i, j). For DimeNet, DimeNet++
and SphereNet,

eij = z
(l)
ij ⊕

∑
k∈Ni\j

fa(z
(l)
ik , bD,Θ,Ψs

)∥Re(q(i,j)), (8)

where fa is an interaction function that aggregates informa-
tion from neighboring bonds. The operator “∥” means the
concatenation of features, and “⊕” denotes element-wise
addition. b is the base function that transforms the geome-
tries like the bond length matrix D, the bond rotation set
Θ, and optionally, the same-side dihedral set Ψs (Liu et al.
2022) into physically-meaningful representations. Typically,
we can set b based on spherical Bessel and harmonics ba-
sis (Hu et al. 2021). For SchNet,

eij = fs(h
(l)
j )⊙ fcf (bD) ∥ Re(q(i,j)), (9)

where fs is an embedding function, fcf is a filter-generating
function, and “⊙” represents element-wise multiplication.
The main difference between (8) and (9) is whether the bond
embeddings in (l+1)-th layer depend on l-th layer. Accord-
ing to (7)-(9), the only modification we made is concatenat-
ing the hidden vector with the corresponding output of our
QMP, which merely requires one-line code.

Computational Efficiency
Accelerated Chained Hamilton Product As shown in
Figure 3, our QMP is a plug-and-play module — given a
molecule with M bonds, we only need to apply the QMP
once to obtain a feature vector [Re(q(i,j))] ∈ RM . With-
out updating the output, introducing our QMP to existing
models requires little computational cost. Figure 4(a) illus-
trates the memory cost of our QMP achieved under different
numbers of quaternions. The memory cost is small (e.g., the
chained Hamilton product of 100k quaternions only occu-
pies 12MB memory), and its increasing rate is linear.

Moreover, we leverage the associativity of the Hamil-
ton product, applying the multi-thread reduction strategy
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Figure 4: (a) The memory cost of chained Hamilton prod-
uct. (b) The runtime comparison for the accelerated chained
Hamilton product and the non-accelerated one.

in (Santos 2002; Qin et al. 2022) to accelerate the com-
putation of the chained Hamilton product. As illustrated in
Figure 1, this approach involves constructing a complete bi-
nary tree for the quaternion sequence to compute the chained
Hamilton product recursively. Leveraging the tree structure,
we can compute multiple Hamilton products in parallel and
reduce the runtime significantly. Specifically, for the se-
quence with 2K quaternions, the runtime of our acceler-
ated chained Hamilton product is O(logK). As shown in
Figure 4(b), the horizontal axis represents the number of
quaternions, and the vertical axis represents the time con-
sumed by performing chained product on these quaternions.
As the number of quaternions increases, our non-accelerated
method exhibited a rapidly increasing time consumption
trend, whereas our accelerated version remained stable, con-
sistently below 2ms.

Complexity Analysis In this study, we follow the work
in (Liu et al. 2022), constructing radius graphs for molec-
ular conformations and obtaining dense adjacency matri-
ces. For a molecule having N atoms, and D node de-
grees on average, the complexity of typical invariant GNNs
(e.g., DimeNet (Gasteiger, Groß, and Günnemann 2020),
DimeNet++ (Gasteiger et al. 2020), and SphereNet (Liu
et al. 2022)) is O(ND2) when operating within each bond’s
1-hop neighborhood and computing bond rotations. As
aforementioned, these methods fail to distinguish molec-
ular conformations because of lacking the information on
opposite-side dihedrals. These models require each atom’s
2-hop neighborhood information to capture the opposite-
side dihedrals, resulting in a complexity of O(ND3). Our
QMP suppresses this issue by encoding dihedrals implic-
itly, achieving a trade-off between performance and ef-
ficiency. In particular, for each bond, our QMP records and
merges 2K bond rotations from its 1-hop neighbors to it-
self. According to Proposition 1, although our QMP encodes
all K2 opposite-side and K(K − 1) same-side dihedrals,
it only requires 2K − 1 quaternion multiplications. There-
fore, the computational complexity of our QMP is O(MK)
or equivalently, O(ND2) (because the number of bonds
M = O(ND) and K = O(D)), which is comparable
to that of invariant GNNs. The runtime in practice can be
O(M logK) (or O(ND logD)) with the help of the accel-

erated chained Hamilton product.

Connections to Related Work
As aforementioned, invariant GNNs favorably achieve the
invariance merit since the relative information is con-
tained in massage-passing. SchNet (Schütt et al. 2017) en-
codes bond length by continuous-filter convolutional lay-
ers. DimeNet (Gasteiger, Groß, and Günnemann 2020) and
Dimenet++ (Gasteiger et al. 2020) utilize embeddings as-
sociated with the directions to neighboring atoms, encod-
ing both bond length and angle by spherical harmonics.
Nevertheless, these methods fail to provide a comprehen-
sive representation as they overlook dihedral information.
SphereNet (Liu et al. 2022) is developed based on DimeNet
and moves forward to approximate completeness by con-
sidering dihedral information. However, due to the bottle-
neck of computation cost, the calculation only considers
the same-side dihedrals. Recently, ComeENet (Wang et al.
2022) builds a complete 3D graph to represent a molecule
and selects the nearest neighbor for each atom to calculate
bond length, angle, and dihedral. However, ignoring the re-
maining neighboring atoms hurts the model’s expressive-
ness. Our QMP works as a plug-and-play module, providing
a simple, efficient, and generic solution to enhance various
backbone models’ discriminative power when representing
molecular conformations.

Besides our QMP module, some quaternion-based neu-
ral networks have been built for modeling graphs (Zhu et al.
2018; Zhang et al. 2020) and point clouds (Shen et al. 2020),
e.g., the QuaterNet in (Pavllo, Grangier, and Auli 2018), the
quaternion convolution neural network in (Zhu et al. 2018),
and the quaternion product unit (QPU) (Zhang et al. 2020;
Qin et al. 2022). Among these models, the QPU model ap-
plies a similar technical route, aggregating 3D rotations by
chained Hamilton product. However, QPU is designed for
modeling the rotation information of 3D action skeletons,
which requires different skeletons to be modeled in the same
tree structure and merges the 3D rotations of joints in the
same order, which is unsuitable for 3D molecular modeling.
Moreover, different from QPU and other quaternion mod-
els, which have learnable parameters and thus require time-
consuming training, our QMP is a parameter-free module for
feature extraction. It is highly compatible with existing mod-
els, and plugging it into them does not significantly increase
the computational cost.

Experiments
Effectiveness Tests
To demonstrate the effectiveness of our QMP, we conduct
experiments on three datasets, including MD17 (Chmiela
et al. 2017), MD17@CCSD (Chmiela et al. 2018), and
OC20 (Chanussot et al. 2021b). We perform all experi-
ments on MD17 and MD17@CCSD using the DIG2 frame-
work (Liu et al. 2021a). As for OC20, we use the Open
Catalyst Project (OCP) framework3 (Chanussot et al. 2021a)

2https://github.com/divelab/DIG
3https://github.com/Open-Catalyst-Project/ocp
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Dataset Molecule sGDML DimeNet SchNet DimeNet++ SphereNet Q-SchNet Q-DimeNet++ Q-SphereNet

Aspirin 0.68 0.499 1.339 0.325 0.400 1.289↑ 0.316↑ 0.356↑
Benzene 0.20 0.187 0.346 0.168 0.193 0.316↑ 0.151↑ 0.177↑
Ethanol 0.33 0.230 0.738 0.150 0.181 0.468↑ 0.148↑ 0.169↑

MD17 Malonaldehyde 0.41 0.383 1.559 0.263 0.379 1.540↑ 0.241↑ 0.321↑
Naphthalene 0.11 0.215 0.723 0.100 0.159 0.521↑ 0.106 0.138↑
Salicylic acid 0.28 0.374 1.001 0.231 0.261 0.971↑ 0.238 0.321

Toluene 0.14 0.216 0.747 0.117 0.142 0.550↑ 0.107↑ 0.136↑
Uracil 0.24 0.301 1.351 0.189 0.228 1.010↑ 0.178↑ 0.241

Aspirin - - 1.471 0.387 0.458 1.298↑ 0.365↑ 0.475
Benzene - - 0.352 0.049 0.061 0.287↑ 0.048↑ 0.063

MD17@CCSD Ethanol - - 1.321 0.129 0.158 0.786↑ 0.108↑ 0.148↑
Malonaldehyde - - 1.531 0.211 0.289 1.086↑ 0.231 0.264↑

Toluene - - 0.855 0.133 0.160 0.637↑ 0.128↑ 0.052↑

Table 1: Results in terms of force MAE ( kcal
molÅ

). The best results are in bold. The second best results are with underlines. ↑
indicates the performance is improved. The results of sGDML and DimeNet are quoted from (Liu et al. 2022).

to produce results. We apply state-of-the-art invariant mod-
els as our baselines, including SchNet (Schütt et al. 2017),
CGCNN (Xie and Grossman 2018), sGDML (Chmiela et al.
2018), DimeNet (Gasteiger, Groß, and Günnemann 2020),
DimeNet++ (Gasteiger et al. 2020), and SphereNet (Liu
et al. 2022). For performance comparison, we plug QMP
into SchNet, DimeNet, DimeNet++, and SphereNet, re-
spectively, leading to four modified models: Q-SchNet, Q-
DimeNet, Q-DimeNet++, and Q-SphereNet. We quantita-
tively analyze the impacts of QMP on the models in two
tasks, i.e., molecular energy prediction (Li et al. 2022b; Hu
et al. 2021) and atomic force prediction (Zitnick et al. 2022;
Gasteiger, Yeshwanth, and Günnemann 2021), which are in-
fluenced by molecular conformations significantly. To en-
sure experimental fairness, we conduct the experiments us-
ing the same hyperparameter settings and hardware environ-
ment (NVIDIA GeForce RTX 3090). The code is available
at https://github.com/AngxiaoYue/QMP.

MD17 The MD17 dataset consists of eight subsets, each
containing a different molecule, requiring a separate model
to be trained. We train each model using 1,000 conforma-
tions and 1,000 for validation, with the remaining used for
testing. Our objective was to predict the atomic forces of the
molecules using MAE as the evaluation metric. The joint
loss function includes atomic forces and molecular energy,
and we set the hyperparameter weight of force over en-
ergy (WoFE) to 100 in our experiment. The results in Ta-
ble 1 demonstrate that QMP-plugged versions gain substan-
tial performance over their backbone models. In particular,
Q-SchNet surpasses SchNet by a large margin in perfor-
mance on all molecules. Unlike SchNet, which only con-
siders the bond length, Q-SchNet incorporates angle and di-
hedral information through QMP, resulting in significant im-
provements. Furthermore, Q-DimeNet++ and Q-SphereNet
also exhibit superior performance on six molecules even
if the original DimeNet++ and SphereNet have considered
same-side dihedral information, which demonstrates the ne-
cessity of the opposite-side dihedral information.

MD17@CCSD Compared with MD17, MD17@CCSD
provides more accurate target atomic forces with an expen-
sive CCSD or CCSD(T) method. We adopt the train/vali-
dation/test split from (Gasteiger, Becker, and Günnemann
2021) where 950 samples are used for training, 50 for val-
idation, and 500 for testing. The experimental settings are
same with those of MD17. The results in Table 1 demon-
strate Q-SchNet’s superiority to SchNet on all molecules.
Q-DimeNet++ and Q-SphereNet exhibit improved results
on four and three molecules, respectively. The experimental
results show that our QMP can enhance the model perfor-
mance given more accurate target atomic forces.

OC20 The OC20 dataset, which has millions of density
functional theory (DFT) relaxations, was released to fa-
cilitate catalyst modeling and discovery. On average, each
molecule in this dataset is larger than those in MD17, con-
taining 77.75 atoms. The dataset comprises three tasks:
S2EF, IS2RS, and IS2RE. We focused on the IS2RE task,
which involves predicting the adsorption energy of a relaxed
structure given its initial structure as input. We employed a
training set comprising 10,000 samples and four validation
splits: In Domain (ID), Out of Domain Adsorbates (OOD
Ads), Out of Domain Catalysts (OOD Cat), and Out of Do-
main Adsorbates and Catalysts (OOD Both), with the num-
ber of structures in each split being 24,943, 24,961, 24,963,
and 24,987, respectively. In our evaluation, we assessed per-
formance using the mean absolute error (MAE) of energy
predictions and the percentage of energies within a thresh-
old (EwT) of the ground truth energy. Following the base-
line model paper, we compared the performance of different
methods on the validation set. Results are shown in Table 2.
Q-SchNet, Q-DimeNet, and Q-DimeNet++ consistently im-
prove performance compared to their counterparts.

Ablation Study
By fusing angle and dihedral information, QMP enables
backbone models to be sensitive to local torsion. We in-
vestigate the contributions of different QMP components to
demonstrate the rationality of our design. For a bond (i, j),
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Metrics CGCNN SchNet DimeNet DimeNet++ Q-SchNet Q-DimeNet Q-DimeNet++

ID 0.9773 1.0480 0.9314 0.9261 1.0363↑ 0.9132↑ 0.9177↑
Energy OOD Ads 0.9818 1.0450 1.0720 0.9400 1.0640 0.9865↑ 0.9295 ↑
MAE OOD Cat 0.9269 1.0630 0.8945 0.8828 1.0370 ↑ 0.8753↑ 0.8816↑

OOD Both 0.8828 1.0076 0.9643 0.8572 0.9646 ↑ 0.9317↑ 0.8513↑
Average 0.9422 1.0409 0.9656 0.9015 1.0255 ↑ 0.9267↑ 0.8950↑

ID 1.84 1.58 1.80 1.79 1.59↑ 1.84↑ 1.91↑
EwT OOD Ads 1.72 1.53 1.62 1.67 1.52 1.85↑ 1.79↑
(%) OOD Cat 1.93 1.56 1.93 1.81 1.46 1.96↑ 2.13↑

OOD Both 1.69 1.48 1.57 1.80 1.61↑ 1.70↑ 1.75↑
Average 1.80 1.54 1.73 1.77 1.55↑ 1.84↑ 1.90↑

Table 2: Results on OC20 IS2RE task in terms of energy MAE (eV) and the percentage of EwT of the ground truth energy.
Performance is reported for models trained on the 10k training dataset.

QMP Components Force MAE

j-side i-side sorting Aspirin Benzene

✓ X ✓ 0.323 0.152
X ✓ ✓ 0.360 0.166
✓ ✓ X 0.390 0.173
✓ ✓ ✓ 0.316 0.151

Table 3: Effects of ablating components of QMP.

our QMP aggregates its rotations from both sides. There-
fore, we consider two ablating cases, i.e., aggregating the
rotations from either the j-side or the i-side. We selected
DimeNet++ as the backbone model and performed the ab-
lation analysis on the Aspirin and Benzene in the MD17
dataset. The results are reported in Table 3. When we ex-
clusively embedded rotations from the j-side of the bond,
we find that the performance is similar to that of the back-
bone model. DimeNet++ has encoded bond length and an-
gle from the j-side, and thus the j-side aggregated rotation
cannot provide sufficient information to DimeNet++. If we
only use rotations from the i-side, We observed that the
model’s performance is similar or slightly decreases com-
pared to the original model. An intuitive explanation is, the
rotations from the i-side while bond length and angle from
the j-side, this inconsistency has disrupted the learning of
the original model. Additionally, to demonstrate the neces-
sity of the angle-based sorting, we consider applying the
chained Hamilton product directly based on the default or-
der of the quaternions. As shown in Table 3, without sorting,
the model performance is significantly compromised.

Potentials to Equivariant GNNs
Although our QMP is originally designed for invariant
GNNs, it has the potential for improving equivariant GNNs
as well. In particular, besides predicting conformation prop-
erties, we consider the prediction problem of dynamical N-
body systems, in which equivariant models are commonly
used and have achieved encouraging performance. We ap-
ply 3,000 trajectories of five particles for training, 2,000 for
validation, and 2,000 for testing. In the testing phase, we pre-

Method SE(3) Trans. TFN EGNN Q-EGNN

MSE 2.440 1.550 0.724 0.668

Table 4: Mean Squared Error (×10−2) for the future position
estimation in the N-body system experiment.

dict the positions of the five particles after 1,000 timesteps.
The evaluation measure is the averaged mean-squared-error
(MSE) between the estimated positions and the ground truth.

We test three representative equivariant models, i.e.,
SE(3) Transformer (Fuchs et al. 2020), TFN (Thomas et al.
2018), and EGNN (Satorras, Hoogeboom, and Welling
2021). Furthermore, we combine our QMP with EGNN, tak-
ing the real part of QMP as the input of EGNN. The results
are shown in Table 4. We can find that EGNN achieves the
best performance among the baselines in the N-body system
prediction task. Moreover, by applying our QMP, we can fur-
ther boost the performance of EGNN, leading to smaller er-
rors. This experiment somewhat demonstrates the usefulness
of QMP for equivariant models. A combination of QMP and
more advanced equivariant models like Equiformer (Liao
and Smidt 2022), LEFTNet (Du et al. 2023) can be our fea-
ture work. One potential way is using the imaginary part of
QMP which is SE(3)-equivariant.

Conclusion
In this study, we have proposed an efficient and effective
quaternion message-passing module for molecular confor-
mation representation and analysis. With little computa-
tional cost, we can plug this module into most existing in-
variant GNNs by one-line code, achieving global SE(3)-
invariance and enhancing their sensitivity to local bond tor-
sions simultaneously. Experiments show that with the help
of QMP module, the enhanced models perform better on dis-
tinguishing molecular conformations, leading to consistent
improvements in downstream tasks. In the future, we would
like to utilize the imaginary part of QMP to enhance equiv-
ariant GNNs. Additionally, we plan to design more hyper-
complex neural networks for molecular modeling based on
Clifford Algebra (Brandstetter et al. 2022; Ruhe et al. 2023).
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