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Abstract

Multi-view K-means clustering successfully generalizes K-
means from single-view to multi-view, and obtains excellent
clustering performance. In every view, it makes each data
point close to the center of the corresponding cluster. How-
ever, multi-view K-means only considers the compactness of
each cluster, but ignores the separability of different clusters,
which is of great importance to producing a good cluster-
ing result. In this paper, we propose Discriminatively Fuzzy
Multi-view K-means clustering with Local Structure Preserv-
ing (DFMKLS). On the basis of minimizing the distance be-
tween each data point and the center of the corresponding
cluster, DFMKLS separates clusters by maximizing the dis-
tance between the centers of pairwise clusters. DFMKLS also
relaxes its objective by introducing the idea of fuzzy cluster-
ing, which calculates the probability that a data point belongs
to each cluster. Considering multi-view K-means mainly fo-
cuses on the global information of the data, to efficiently use
the local information, we integrate the local structure pre-
serving into the framework of DFMKLS. The effectiveness
of DFMKLS is evaluated on benchmark multi-view datasets.
It obtains superior performances than state-of-the-art multi-
view clustering methods, including multi-view K-means.

Introduction
As an important unsupervised learning method, clustering
has been extensively studied and applied in various fields
such as data mining, pattern recognition and machine learn-
ing (Xu and Wunsch 2005; Wang et al. 2020). K-means is
a popular and widely used clustering method. MacQueen
(MacQueen 1967) introduced the K-means algorithm, which
aims to find a partition that minimizes the squared error be-
tween the empirical mean of a cluster and the data points
within that cluster. Based on this, Cheung (Cheung 2003)
proposed a generalized version of the traditional K-means
algorithm, which is not only suitable for partitioning ellipti-
cal data, but also partitions correctly without pre-assigning
exact cluster numbers.

With the rapid advancement of information technology,
data volumes across various fields are experiencing expo-
nential growth. In numerous practical applications, data is

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

often gathered from diverse domains and different sensors,
resulting in the emergence of multi-view data (Sun 2013).
Multi-view data refers to situations in which a singular ob-
ject or entity can be represented using various data sources
or distinct feature sets. Each data source or feature set can
be considered as a distinct view, and capable of independent
utilization in clustering analysis. It is important to note that
there exist inherent connections as well as variations among
these different views, highlighting the diversity in data rep-
resentation. For example, for medical image data, ultrasound
image, CT image and MRI image can be seen as multiple
views; for data acquisition using sensors, data acquired by
different sensors can be used as different views of the same
data. Multi-view data can provide common semantics to im-
prove the learning effectiveness (Asano et al. 2020; Peng
et al. 2020).

Multi-view clustering is a clustering method for multi-
view data that aims to improve the quality of clustering
results by integrating information from different views. In
multi-view clustering, each view corresponds to a distinct
aspect or feature representation of the data. By combining
multiple views, we can obtain different perspectives of the
data, allowing us to capture more comprehensive and ac-
curate information. In recent years, researchers have pro-
posed lots of multi-view clustering models and algorithms
(Zhang et al. 2018; Cao et al. 2015; Xu et al. 2022; Nie
et al. 2017), and have made great progress. Among them,
multi-view clustering methods based on co-training aim at
maximizing mutual agreement among all views and reach-
ing the broadest consensus. Kumar et al. (Kumar, Rai, and
Daume 2011) proposed a co-regularized multi-view cluster-
ing method that applies the graph Laplacian operator to all
views and regularizes the feature vectors of the Laplacian
operator to obtain consistent clustering results. Ye et al. (Ye
et al. 2016) proposed a co-regularized kernel K-means algo-
rithm that automatically learns the weights of different views
from the data.

In contrast, the graph-learning-based multi-view cluster-
ing methods aim to find a fused graph among all views and
then use graph-cutting algorithms or other clustering tech-
niques to obtain the clustering results. Wang et al. (Wang,
Yang, and Liu 2019) fused the data graph matrices of all
views to generate a unified graph matrix for improving the
data graph matrix of each view and directly derived the final
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clustering results. Liang et al. (Liang et al. 2022) proposed
an robust and parameter-free parametric graph-based multi-
view clustering method. They defined a convex optimization
graph-based multi-view clustering formulation, and used a
gradient descent-based algorithm to solve the resulting op-
timization problem. To obtain accurate similarity graph for
multi-view clustering, Li et al. (Li et al. 2022) constructed
it in the spectral embedding space and developed a graph
learning method which learns spectral embedding and ten-
sor representation simultaneously.

In addition, the subspace learning-based multi-view clus-
tering methods aim to find a shared latent subspace from
multiple low-dimensional subspace, which assume that the
input views can be generated from the latent subspace, and
then use existing clustering algorithms to obtain the final
clustering results. Cheng et al. (Cheng, Jing, and Ng 2018)
proposed a multi-view clustering method based on tensor
self-representation learning of shared subspace, which com-
bines self-representation learning and tensor decomposition
techniques with subspace learning, and can effectively ad-
dress the issue of high dimensionality while considering
the intrinsic connections between data. Li et al. (Li et al.
2019) proposed an interactive multi-layer subspace learning
algorithm for multi-view clustering, using hierarchical self-
representative layers to construct mutually inverse multi-
layer subspace representations, and using backward encod-
ing networks to explore the complex relationships between
different views. Liu et al. (Liu et al. 2013) put forward multi-
view clustering based on Nonnegative Matrix Factorization
(NMF), which seeks a common subspace representation of
multiple views with a joint NMF.

As a classical clustering method, K-means is designed
to solve single-view data clustering problem. To deal with
multi-view data, multi-view K-means algorithms (Xu et al.
2017; Xu, Han, and Nie 2016; Chen et al. 2020) are pro-
posed. In order to solve the weighting problem between dif-
ferent views, Liu et al. (Liu et al. 2020a) proposed a cluster-
weighted kernel K-means method to assign a weight to each
inner cluster of each view, which is learned based on the
intra-cluster similarity between the clusters and all corre-
sponding clusters under different views, so that the clusters
with high intra-cluster similarity have higher weights in the
corresponding clusters. Han et al. (Han et al. 2020) focused
on constructing common affiliation matrices with appropri-
ate sparsity on different views and learning the center of
mass matrix and its corresponding weights for each view.
Cai et al. (Cai, Nie, and Huang 2013) proposed a robust
large-scale multi-view K-means clustering method to inte-
grate heterogeneous representations of multi-view data and
used the structured sparsity norm to make their method ro-
bust to outlier. The computational efficiency of the K-means
based approaches decreases significantly when the dimen-
sion of data is large. For this reason, Yang et al. (Yang et al.
2023) proposed a multi-view K-means clustering method
with multiple anchor graphs to construct anchor graph for
each view and integrate these anchor graphs to obtain the la-
bel of each sample without any additional processing. For
multi-view kernel K-means with incomplete views, to re-
duce the time and space complexities of imputation of kernel

matrix, Liu et al. (Liu et al. 2020b) associated each incom-
plete base matrix generated from incomplete views with the
learned consistent clustering matrix instead of complement-
ing the incomplete kernel matrix.

Multi-view K-means makes great achievements in clus-
tering multi-view data. This category of method mainly
pays attention to the compactness of cluster, which makes
each data point as close as possible to the center of the
cluster that it belongs to in each view. However, multi-
view K-means ignores the separability of different clus-
ters. For a excellent clustering result, we hope that differ-
ent clusters are as far as possible from each other. To ad-
dress this limitation, this paper proposes Discriminatively
Fuzzy Multi-view K-means clustering with Local Structure
preserving (DFMKLS). DFMKLS introduces discrimina-
tive property into multi-view K-means by minimizing the
within-cluster scatter and maximizing the between-cluster
scatter simultaneously. Besides, with the idea of fuzzy clus-
tering, DFMKLS relaxes the objective of multi-view K-
means and calculates the probability that a data point be-
longs to each cluster. To utilize the local information of
the data to improve the clustering performance, the local
structure preserving is also integrated into the framework of
DFMKLS. The contribution of the paper is summarized as
follows:
(1) We bring discriminative property into multi-view K-
means. In every view, the compactness within cluster and
the separability between clusters are considered simultane-
ously.
(2) We introduce the idea of fuzzy clustering into multi-view
K-means. Each data point does not strictly belong to one
cluster, while the probability that it belongs to each cluster
is calculated.
(3) We integrate the local structure preserving into the objec-
tive of multi-view K-means to make the global information
and local information of multi-view data are utilized simul-
taneously.
(4) We develop an iteration algorithm with multiplicative up-
date rule to solve the objective of the proposed DFMKLS.

The remainder of the paper is organized as: Section 2 re-
views two related works, i.e., K-means and Multi-view K-
means. Section 3 gives the proposed DFMKLS, including
its formulation and optimization. Section 4 evaluates the ef-
fectiveness of DFMKLS by experiments. Section 5 provides
the conclusion of the paper.

Related Works
K-means Clustering
K-means (MacQueen 1967) is a typical clustering algorithm
that considers the existence of C clusters among the samples
and the feature distribution of each cluster is represented by
its center, then each data point can be assigned to the clus-
ter nearest to it. The objective function of K-means can be
defined as

min
P,Q

∥X − PQ∥2F

s.t. Qci ∈ {0, 1},
C∑

c=1

Qci = 1, ∀i = 1, 2, · · · , n
(1)
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where X = [x1, x2, . . . , xn] ∈ Rd×n is the input data ma-
trix with n instances and d dimensional features, P ∈ Rd×C

is the cluster centroid matrix, and Q ∈ RC×n is the clus-
ter assignment matrix and each column of the matrix Q is
a one-hot vector. If xi is assigned to the c-th cluster, then
Qci = 1, and Qci = 0, otherwise.

Multi-view K-means Clustering
Robust Multi-view K-Means Clustering (RMKMC) gener-
alizes K-means to multi-view data (Cai, Nie, and Huang
2013). Suppose that a multi-view data set is composed of
V views for n instances denoted by {xv

1, x
v
2, · · · , xv

n}
V
v=1 ∈

Rdv

. Let Xv ∈ Rdv×n denote the data of the v-th view,
P v ∈ Rdv×C be the centroid matrix of the v-th view,
Qv ∈ Rn×C be the clustering indicator matrix of the v-
th view. The clustering results of different views should be
unique, meaning that the clustering indicator matrices Qv

of different views should be consistent. To reduce the nega-
tive impact of outlier on K-means clustering, RMKMC uses
the sparsity-inducing norm, i.e., ℓ2,1-norm, to replace the F-
norm in Eq. (1). The objective function of RMKMC is de-
fined as

min
Pv,Q,εv

V∑
v=1

(εv)
γ ∥Xv − P vQ∥2,1

s.t. Qci ∈ {0, 1},
C∑

c=1

Qci = 1,

V∑
v=1

εv = 1,

(2)

where εv is the weight of the v-th view and γ is the param-
eter controlling the weight distribution. Eq. (2) learns the
weights of different views, allowing important views to ob-
tain big weights.

The Proposed Approach
Formulation
It is easy to know that, the cluster centroid matrix P v

in Eq. (2) can be calculated by P v = XvQTΛ, where
Λ ∈ RC×C is a diagonal matrix with the diagonal element

Λcc = 1/
n∑

i=1

Qci. If we relax the optimization by allowing

Q to be any positive number, and treat all the views equally,
the objective of multi-view K-means clustering can be rep-
resented as

min
Q,Λ

V∑
v=1

∥∥Xv −XvQTΛQ
∥∥2
F

s.t. Q ≥ 0.

(3)

In Eq. (3), we simply use F-norm minimization to make each
data point close to the center of the cluster which it belongs
to. Here, Qci indicates the probability that the i-th data point
belongs to the c-th cluster. Since each column of Q is not
one-hot vector, each data point does not definitely belongs
to one cluster. Thus, Eq. (3) can be seen as the objective
of Fuzzy Multi-view K-means clustering (FMK), and each
column of XvQTΛ is the fuzzy center.

For a good clustering result, not only each data point
is close to the center of the corresponding cluster, but
also these centers should be far away from each other,
which makes different clusters have stronger separability. To
achieve this goal, we maximize the distances between the
centers of fuzzy clusters, and obtain the Discriminatively
Fuzzy Multi-view K-means clustering (DFMK). Its objec-
tive can be formulated as

min
Q,Λ

V∑
v=1

∥∥Xv −XvQTΛQ
∥∥2
F

C∑
l,m

∥∥∥XvQT
l,:Λll −XvQT

m,:Λmm

∥∥∥2
2

s.t. Q ≥ 0,

(4)

where Ql,: and Qm,: are the l-th and m-th rows of Q, re-
spectively, and XvQT

l,:Λll and XvQT
m,:Λmm can be seen as

the centers of the l-th and m-th fuzzy clusters. With Eq. (4),
the fuzzy within-cluster scatter is minimized and the fuzzy
between-cluster scatter is maximized simultaneously.

DFMK mainly focuses on the global structure of data,
but ignores the local structure, which is also important for
clustering. From the local perspective, we think that, two
data points with strong connection should also have similar
cluster assignment result. The connection between two data
points can be represented by the adjacent relation of them,
and the adjacent matrix Sv ∈ Rn×n of the v-th view is con-
structed as

Sv
ij =


1, if xv

i belongs to K-nearest-neighbors of xv
j

or xv
j belongs to K-nearest-neighbors of xv

i

0, otherwise.
(5)

Then, the objective of keeping local clustering structure is
formulated as

min
Q

1

2

V∑
v=1

n∑
i,j

∥Q:,i −Q:,j∥22 S
v
ij , (6)

where Q:,i and Q:,j are the i-th and j-th columns of Q, and
can be seen as the clustering assignment results of the i-th
and j-th data points.

Combining Eq. (4) and Eq. (6), we can obtain the final ob-
jective of Discriminatively Fuzzy Multi-view K-means clus-
tering with Local Structure preserving (DFMKLS) as

min
Q,Λ

V∑
v=1

∥∥Xv −XvQTΛQ
∥∥2
F
+ α

2

n∑
i,j

∥Q:,i −Q:,j∥22 S
v
ij

C∑
l,m

∥∥∥XvQT
l,:Λll −XvQT

m,:Λmm

∥∥∥2
2

s.t. Q ≥ 0,
(7)

where α ≥ 0 is a trade-off parameter. With Eq. (7), the
within-cluster compactness, the between-cluster diversity
and the local cluster structure are preserved simultaneously
to generate a more reasonable clustering result.
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Optimization
The optimization problem in Eq. (7) is non-convex. How-
ever, we can solve it by alternating iteration. The following
is the iterative update process.
Step 1: Update Q with fixed Λ.
For each term in Eq. (7), it can be easily obtained that∥∥Xv −XvQTΛQ

∥∥2
F

=tr

(
XvTXv − 2QXvTXvQTΛ

+QTΛQXvTXvQTΛQ

)
,

(8)

1

2

n∑
i,j

∥Q:,i −Q:,j∥22 S
v
ij = tr

(
QLvQT

)
(9)

and

C∑
l,m

∥∥XvQT
l,:Λll −XvQT

m,:Λmm

∥∥2
2

=2 tr
(
CQTΛ2QXvTXv −QTΛ1ΛQXvTXv

)
,

(10)

where Lv = Dv − Sv is the Laplacian matrix, Dv is a di-
agonal matrix with the diagonal element Dv

ii =
∑n

j=1S
v
ij ,

and 1 ∈ RC×C is a matrix with all elements equal to 1.
Therefore, the optimization problem in Eq. (7) is equivalent
to minimizing

J(Q) =
V∑

v=1

tr

(
XvTXv − 2QXvTXvQTΛ

+QTΛQXvTXvQTΛQ+ αQLvQT

)
tr
(
CQTΛ2QXvTXv −QTΛ1ΛQXvTXv

) .
(11)

The partial deviation J(Q) with respect to Q is

∂J(Q)

∂Q

=
V∑

v=1

 Av

(
2ΛQXvTXvQTΛQ+ 2αQLv

+2ΛQQTΛQXvTXv − 4ΛQXvTXv

)
−Bv

(
2CΛ2QXvTXv − 2Λ1ΛQXvTXv

)
 ,

(12)

where

Av =
1

tr
(
CQTΛ2QXvTXv −QTΛ1ΛQXvTXv

) (13)

and

Bv =

tr

(
XvTXv − 2QXvTXvQTΛ

+QTΛQXvTXvQTΛQ+ αQLvQT

)
(
tr
(
CQTΛ2QXvTXv −QTΛ1ΛQXvTXv

))2 .
(14)

With the multiplicative update rule (Ding, Li, and Jordan
2010), Q is updated as

Qij

−→Qij
4

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

V∑
v=1



Av


ΛQ

(
XvTXv

)−
QTΛQ

+ΛQQTΛQ
(
XvTXv

)−
+2ΛQ

(
XvTXv

)+
+ αQSv



+Bv

 CΛ2Q
(
XvTXv

)+
+Λ1ΛQ

(
XvTXv

)−



ij

V∑
v=1



Av


ΛQ

(
XvTXv

)+
QTΛQ

+ΛQQTΛQ
(
XvTXv

)+
+2ΛQ

(
XvTXv

)−
+ αQDv



+Bv

 CΛ2Q
(
XvTXv

)−
+Λ1ΛQ

(
XvTXv

)+



ij

(15)

where (
XvTXv

)+
=

∣∣XvTXv
∣∣+XvTXv

2
, (16)

(
XvTXv

)−
=

∣∣XvTXv
∣∣−XvTXv

2
(17)

and

XvTXv =
(
XvTXv

)+
−
(
XvTXv

)−
. (18)

Step 2: Update Λ with fixed Q.
Λ is a diagonal matrix and each diagonal element is updated
as

Λcc = 1/

n∑
i=1

Qci (19)

We summarize the iterative update of DFMKLS in Al-
gorithm 1. In the beginning, Q can be simply initialized
by random matrix. Here, to obtain relatively stable result,
we initialize it by the result of spectral clustering. Specifi-
cally, the summation of Laplacian matrices from V views,
i.e.

∑V
v=1 L

v , is eigen-decomposed and the eigen-vectors
are used to perform K-means to obtain the cluster assign-
ment matrix U ∈ RC×n, where Uci = 1, if xi belongs to the
c-th cluster, and Uci = 0, otherwise. Then Q is initialized
as Q = U + E/10, where E ∈ RC×n is a matrix with all
elements equal to 1.

Convergence
On one hand, the value of objective function of DFMKLS in
Eq. (7) is non-negative, which means its lower bound is 0.
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Algorithm 1: DFMKLS algorithm

Input:
Multi-view data Xv|Vv=1 from V views; Trade-off pa-
rameter α; Neighbor parameter K.

Output:
Clustering result.

1: Initialize Q.
2: Construct the adjacent matrix Sv|Vv=1 using Eq. (5),

and compute the diagonal matrix Dv|Vv=1 by Dv
ii =∑n

j=1S
v
ij .

3: repeat
4: With fixed Q, update Λ using Eq. (19).
5: With fixed Λ , update Q using Eq. (15).
6: until convergence.
7: The label of the ith data point xi is argmax

c
Qci.

On the other hand, in the iterative update, with multiplica-
tive update rule, the value of the objective function is mono-
tonically decreasing. Therefore, DFMKLS algorithm must
converge to a local minimum.

Computational Complexity
In each iteration, DFMKLS algorithm includes two steps,
i.e., Eq. (15) and Eq. (19). It is obviously that the compu-
tational complexity of DFMKLS is determined by Eq. (15)
and mainly caused by matrix multiplication. There are sev-
eral matrix multiplication operations in Eq. (15). Because
of C < n, we can easily obtain that, the computational
complexities of two most time consuming operations are
O(Cn2) and O(

∑V
v=1 d

vn2), respectively. Therefore, the
computational complexity of DFMKLS is O(T (Cn2 +∑V

v=1 d
vn2)), where T is the number of iteration.

Experiments
The effectiveness of DFMKLS is evaluated by clustering
experiments on four multi-view datasets. Experiments are
performed in MATLAB R2014a on a computer with 13th
Gen Intel(R) Core(TM) i9-13900K 3.00 GHz CPU, 64.0GB
RAM and Windows11 operating system. Accuracy, F-score,
Normalized Mutual Information (NMI) and Precision are
employed to measure the clustering performance. In the ex-
periments, DFMKLS is compared with the following multi-
view clustering methods:
(1) BSV: Best Single View. K-means is performed in each
single view and the best clustering result is adopted.
(2) Concat: The features of all the views are concatenated
first and K-means is performed on the combined features.
(3) MultiNMF (Liu et al. 2013): Nonnegative Matrix Fac-
torization based Multi-view clustering.
(4) Spec-Pair (Kumar, Rai, and Daume 2011): Pairwise co-
regularization multi-view Spectral clustering. The eigenvec-
tors of different views have pairwise similarity in Spec-Pair.
(5) Spec-Cent (Kumar, Rai, and Daume 2011): Centroid
based co-regularization multi-view Spectral clustering. The
eigenvectors of different views tend towards a common con-
sensus in Spec-Cent.

Dataset Size Class View Dimension
3Sources 169 6 3 3068/3631/3560

BBC 685 5 4 4659/4633/
4665/4684

WebKB 1051 2 2 1840/3000
NUS WIDE 11280 10 3 500/73/128

Table 1: Statistic of Datasets

(6) RMKMC (Cai, Nie, and Huang 2013): Robust Multi-
view K-Means Clustering.
(7) MVASM (Han et al. 2020): Multi-View clustering with
Adaptive Sparse Memberships and weight allocation.
(8) EMKMC (Yang et al. 2023): Efficient Multi-view K-
Means Clustering method with multiple anchor graphs.
(9) GMC (Wang, Yang, and Liu 2019): Graph-based Multi-
view Clustering.
(10) CGL (Li et al. 2022): Consensus Graph Learning for
multi-view clustering.
(11) FMK: Fuzzy Multi-view K-means. Its objective is pre-
sented in Eq. (3)
(12) DFMK: Discriminatively Fuzzy Multi-view K-means.
Its objective is presented in Eq. (4).

Datasets
Experiments are conducted on 3sources, BBC, WebKB and
NUS WIDE datasets. Table 1 summarizes four datasets, and
their details are presented as follows.
(1) 3Sources (Greene and Cunningham 2009): It consists
of 416 news stories of 6 topical labels, which are collected
from 3 sources, i.e., BBC, Reuters, and The Guardian. Each
source can be seen as one view of a story. In our experi-
ments, we select 169 stories reported in all the 3 sources.
The dimensions of three views are 3068, 3631 and 3560, re-
spectively.
(2) BBC (Greene and Cunningham 2006): It consists of
2225 documents belonging to 5 classes, which are collected
from BBC news. Four views are obtained by segmentation of
the documents. The dimensions of 4 views are 4659, 4633,
4665 and 4684, respectively. Not all the documents have 4
views. In our experiments, we select 685 documents with 4
complete views.
(3) WebKB (Craven et al. 2000): It consists of webpages
collected from computer science departments of university,
which contains 8,280 documents in 7 categories. In our ex-
periments, we select 1,051 documents in the top two most
popular categories. Each document has 2 views, and their
dimensions are 1840 and 3000, respectively.
(4) NUS WIDE (Chua et al. 2009): It consists of 269648
real-world web images. In our experiments, we select 11280
images of mammal, belonging to 10 classes. Each image has
3 views, including 500D bag of words based on SIFT de-
scriptions, 73D edge direction histogram and 128D wavelet
texture feature.

Clustering Performance Analysis
In the comparison experiments, for RMKMC, MVASM,
EMKMC, GMC, FMK, DFMK and DFMKLS, the cluster-
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Method\Index Accuracy F-score NMI Precision
BSV 0.6183 0.6040 0.6186 0.6608

Concat 0.6251 0.6145 0.6448 0.6748
MultiNMF 0.5148 0.4236 0.4721 0.3846
Spec-Pair 0.5346 0.4370 0.4332 0.4854
Spec-Cent 0.5308 0.4434 0.4395 0.4972
RMKMC 0.4320 0.3466 0.3204 0.3414
MVASM 0.5621 0.4555 0.3121 0.3420
EMKMC 0.5858 0.5324 0.4702 0.6266

GMC 0.6923 0.6047 0.6216 0.4844
CGL 0.6393 0.6166 0.6995 0.7127
FMK 0.7396 0.6866 0.6818 0.6912

DFMK 0.7396 0.7091 0.7066 0.6800
DFMKLS 0.8107 0.7483 0.7096 0.7598

Table 2: Cluster Validity Index on 3Sources dataset

Method\Index Accuracy F-score NMI Precision
BSV 0.5856 0.4948 0.4676 0.4659

Concat 0.6674 0.6057 0.6082 0.5973
MultiNMF 0.4804 0.3817 0.3335 0.2869
Spec-Pair 0.3056 0.3276 0.0379 0.2312
Spec-Cent 0.3092 0.3314 0.0381 0.2316
RMKMC 0.6015 0.4833 0.4357 0.4839
MVASM 0.3314 0.3757 0.0197 0.2339
EMKMC 0.6584 0.5673 0.5020 0.6111

GMC 0.6934 0.6333 0.5628 0.5012
CGL 0.8068 0.7390 0.6972 0.7373
FMK 0.5547 0.5477 0.5148 0.4864

DFMK 0.6496 0.6627 0.5784 0.5708
DFMKLS 0.8672 0.8159 0.7341 0.8054

Table 3: Cluster Validity Index on BBC dataset

ing results can be obtained directly. For MultiNMF, Spec-
Pair, Spec-Cent and CGL, new features are firstly extracted
and then K-means is performed on these features. We per-
form K-means 20 times and report the average value of Ac-
curacy, F-score, NMI and Precision. The parameters of the
compared methods are set as the recommendations of the
original papers. For DFMKLS, the trade-off parameter α is
set as 0.01, and the neighbor parameter K is set as 10. Pa-
rameter setting will be analyzed in the following section.
From Table 2, Table 3 and Table 4, it can be seen that, on
3Sources, BBC and WebKB datasets, DFMKLS all obtains
the best clustering performance, no matter which cluster va-
lidity index is adopted. From Table 5, it can be found that,
on NUS WIDE dataset, our DFMKLS has the highest ac-
curacy, F score and precision. Besides, on all the datasets,
DFMK almost performs better than FMK by introducing the
discriminant information. By combining the global informa-
tion and the local information, DFMKLS improves the clus-
tering performance of DFMK further.

Parameter Analysis
To find the optimal parameters for DFMKLS, we let the pa-
rameters α and K vary in a wide range, and evaluate the
performances of DFMKLS with different parameters. Ex-

Method\Index Accuracy F-score NMI Precision
BSV 0.8754 0.8539 0.3882 0.7666

Concat 0.8844 0.8777 0.5546 0.8432
MultiNMF 0.8647 0.8454 0.3465 0.7515
Spec-Pair 0.9134 0.8891 0.5322 0.8242
Spec-Cent 0.9134 0.8891 0.5322 0.8242
RMKMC 0.9515 0.9319 0.6618 0.9039
MVASM 0.9439 0.9160 0.6785 0.9564
EMKMC 0.9305 0.9061 0.5588 0.8671

GMC 0.7764 0.7867 0.0017 0.6596
CGL 0.5271 0.5688 0.0040 0.6589
FMK 0.8687 0.8434 0.3122 0.7682

DFMK 0.9467 0.9210 0.6591 0.9492
DFMKLS 0.9610 0.9416 0.7276 0.9638

Table 4: Cluster Validity Index on WebKB dataset

Method\Index Accuracy F-score NMI Precision
BSV 0.2194 0.1693 0.0791 0.1716

Concat 0.2217 0.1571 0.0812 0.1696
MultiNMF N/A N/A N/A N/A
Spec-Pair 0.2172 0.2491 0.0102 0.1423
Spec-Cent 0.2171 0.2490 0.0099 0.1423
RMKMC 0.2191 0.1548 0.0720 0.1740
MVASM 0.2098 0.1521 0.0699 0.1704
EMKMC 0.1664 0.1342 0.0404 0.1552

GMC 0.2214 0.2444 0.0402 0.1452
CGL 0.2290 0.1590 0.0890 0.1789
FMK 0.2252 0.1899 0.0764 0.1675

DFMK 0.2331 0.1807 0.0905 0.1770
DFMKLS 0.2453 0.1886 0.0966 0.1817

Table 5: Cluster Validity Index on NUS WIDE dataset

periments are performed on 3Sources, BBC, WebKB and
NUS WIDE datasets. For two parameters, we fix one param-
eter and change the other one. Specifically, K is fixed as 10
and α is selected from the set {10−4, 10−3, . . . , 103, 104}.
Then, α is fixed as 0.01, and K is selected from the set
{2, 4, . . . , 18, 20}. Fig.1 and Fig.2 show the values of four
cluster validity indexes under different α and K, respec-
tively. From Fig.1, we can see that, too big α leads to the
dramatic decrease of clustering validity indexex, especially
for NMI. It indicates that, in DFMKLS model, the local
structure preserving term cannot occupy too high propor-
tion, the model should focus more on the objective of dis-
criminatively fuzzy multi-view K-means. On all the datasets,
DFMKLS almost performs best with α = 0.01. From Fig.2,
we can see that, on 3sources and BBC datasets, DFMKLS
has poor performances with too big or too small K and per-
forms well with K ∈ [8, 18]. K has small effect on the
clustering results on WebKB and NUS WIDE datasets. On
all the datasets, DFMKLS obtains relatively good clustering
performance with K = 10. According to the result of pa-
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rameter analysis, in our experiments, the parameter α is set
as 0.01, and K is set as 10.
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Figure 1: Cluster Validity Index of DFMKLS versus param-
eter α
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Figure 2: Cluster Validity Index of DFMKLS versus param-
eter K

Convergence Analysis
We evaluate the convergence of DFMKLS algorithm on
four multi-view datasets. The value of objective function
of DFMKLS is recorded in each iteration and displayed in
Fig.3. From the figure, we can find that, on all the datasets,
the objective value declines rapidly in the beginning of the
iteration. After no more than 100 iterations, the curves of the

objective value become smooth and steady, and then the al-
gorithm converges. Besides, for larger datasets, i.e., WebKB
and NUS WIDE, DFMKLS needs more iterations to reach
convergence.
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Figure 3: The value of objective function of DFMKLS ver-
sus iteration

Conclusion
This paper develops a novel multi-view K-means clustering
method called DFMKLS. DFMKLS takes into account the
compactness of each cluster and the separability of differ-
ent clusters simultaneously, where the within-cluster scatter
is minimized and the between-cluster scatter is maximized.
In DFMKLS, a data point does not strictly belong to one
cluster. The probability that it belongs to each cluster is cal-
culated and it is assigned to the cluster with the maximum
probability. DFMKLS also preserves the local structure of
the data to improve the clustering performance. We conduct
experiments on four public multi-view datasets and compare
DFMKLS with state-of-the-art multi-view clustering meth-
ods. Experimental results demonstrate the effectiveness of
DFMKLS. In addition, the optimal parameters for DFMKLS
are established by parameter analysis experiments, and the
convergence of the algorithm is also proved in experiments.
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