VQ-Font: Few-Shot Font Generation with Structure-Aware Enhancement and Quantization

Mingshuai Yao¹, Yabo Zhang¹, Xianhui Lin², Xiaoming Li¹*, Wangmeng Zuo¹,³

¹ Harbin Institute of Technology
² Institute for Intelligent Computing
³ Peng Cheng Laboratory
{ymsoyosmy,hitzhangyabo2017,xhlin129,csxmli}@gmail.com, wmzuo@hit.edu.cn

Abstract

Few-shot font generation is challenging, as it needs to capture the fine-grained stroke styles from a limited set of reference glyphs, and then transfer to other characters, which are expected to have similar styles. However, due to the diversity and complexity of Chinese font styles, the synthesized glyphs of existing methods usually exhibit visible artifacts, such as missing details and distorted strokes. In this paper, we propose a VQGAN-based framework (i.e., VQ-Font) to enhance glyph fidelity through token prior refinement and structure-aware enhancement. Specifically, we pretrain a VQGAN to encapsulate font token prior within a codebook. Subsequently, VQ-Font refines the synthesized glyphs with the codebook to eliminate the domain gap between synthesized and real-world strokes. Furthermore, our VQ-Font leverages the inherent design of Chinese characters, where structure components such as radicals and character components are combined in specific arrangements, to recalibrate fine-grained styles based on references. This process improves the matching and fusion of styles at the structure level. Both modules collaborate to enhance the fidelity of the generated fonts. Experiments on a collected font dataset show that our VQ-Font outperforms the competing methods both quantitatively and qualitatively, especially in generating challenging styles. Code is available at https://github.com/Yaomingshuai/VQ-Font.

Introduction

Font library elegantly represents text information in computer systems and has tremendous value in commercial and artistic applications (Liu et al. 2016; Liu, Chen, and Wong 2018). Manually designing such a library is highly resource-intensive and laborious, especially for logographic languages containing thousands of characters (e.g., Chinese, Japanese, and Korean). However, each glyph is typically constructed using fundamental strokes, thereby making it feasible to create a new glyph by directly adopting styles from other reference glyphs at different levels of granularity, e.g., structure and stroke.

Among these recent methods, few-shot font generation attracts significant attention, as it is effective in reducing the human labor required for designing a target font library.
To improve the fidelity of synthesized glyphs, we propose VQ-Font, a framework encompassing the structure-aware enhancement and token prior refinement. To be specific, we firstly pre-train a VQGAN model (Esser, Rombach, and Ommer 2021) on diverse and high-quality font images. This VQGAN model has the ability to generate font images aligning well with the real-world manifold. Then, we employ a Transformer (Vaswani et al. 2017) to globally model the synthesized font images and predict their corresponding indices within our pre-trained codebook, which can refine the font images by mapping into the token prior space. In addition, we propose a Structure-level Style Enhancement Module (SSEM) to explicitly incorporate Chinese character structure information. By establishing a correspondence between the structure components of the content and reference glyphs, it recalibrates the fine-grained styles derived from the references, thereby facilitating the accurate learning and matching process of glyph style transformation.

In summary, our work has three main contributions:

• We introduce a font codebook that encapsulates token prior to refine synthesized font images. By mapping the synthesized font into the discrete space defined by the codebook, our VQ-Font can effectively address the issues of missing details and distorted strokes.

• We explicitly incorporate the design criterion of Chinese characters by introducing structure-level correspondence. This promotes the model to better learn the styles of the reference glyphs at the structure level.

• Our VQ-Font outperforms these competing methods in both quantitative and qualitative evaluation. It is also capable of generating complex styles with better fidelity.

Related Work

Many-shot Font Generation

Early methods (Tian 2016, 2017; Jiang et al. 2017; Lyu et al. 2017; Chang et al. 2018; Sun, Zhang, and Yang 2018; Jiang et al. 2019; Yang et al. 2019a,b; Gao and Wu 2020; Wu, Yang, and Hsu 2020; Wen et al. 2021; Hassan, Ahmed, and Choi 2021) utilize Image-to-Image translation networks (Zhang et al. 2022) to achieve font generation by learning the mapping function between different fonts. Tian *et al.* presents zi2zi (Tian 2017) which modifies pixel2pixel (Isola et al. 2017) to make it suitable for font generation. AGEN (Lyu et al. 2017) proposes a model for synthesizing Chinese calligraphy images with specified style from standard font images. HGAN (Chang et al. 2018) proposes a Hierarchical Generative Adversarial Network consisting of a transfer network and hierarchical adversarial discriminator based on zi2zi. PEGAN (Sun, Zhang, and Yang 2018) employs cascaded refinement connections and mirror skip connections to embed a multiscale pyramid of downsampled input into the encoder feature maps. However, these methods can only transfer glyphs from one known domain to another one that has appeared in the training process, making them incapable of generalizing to new fonts.

Few-shot Font Generation

In comparison, few-shot font generation is more flexible, as it can obtain a new font library by utilizing a few reference glyphs. Current methods (Sun et al. 2017; Zhang, Zhang, and Cai 2018; Gao et al. 2019; Cha et al. 2020; Park et al. 2021a,b; Xie et al. 2021; Liu et al. 2022; Chen, Wang, and Liu 2022; Wang et al. 2023) disentangle font images into content features and style features to achieve few-shot font generation. SA-VAE (Sun et al. 2017), EMD (Zhang, Zhang, and Cai 2018), and AGISNet (Gao et al. 2019) learn global feature representation on font images, but they neglect the design criterion of characters, thereby easily resulting in local details missing. DM-Font (Cha et al. 2020), LF-Font (Park et al. 2021a) and MX-Font (Park et al. 2021b) explicitly decompose characters into components and learn component-wise feature representation to facilitate the learning of local details. XMP-Font (Liu et al. 2022) proposes a self-supervised cross-modality pre-training strategy and a cross-modality transformer-based encoder to model style representation of all scales. DG-Font (Xie et al. 2021) introduces a feature deformation skip connection to predict displacement maps from the content glyph to the target glyph and its improved version, CF-Font (Wang et al. 2023), expands the variety of content fonts and fuses multiple content features by CFM module. Besides, NTF (Fu et al. 2023) achieves few-shot font generation by modeling it as a continuous transformation process using a neural transformation field. Nevertheless, regardless of whether using global or component-wise disentanglement, an average operation is usually performed on the extracted features, which easily weakens the local information and results in the loss of fine-grained details. FS-Font (Tang et al. 2022) begins to avoid explicitly disentangling content and style features of font images. It utilizes a cross-attention mechanism to match the patch-level correspondence between content and reference glyphs, and then aggregate fine-grained styles for font generation. In this work, we mainly follow the settings of FS-Font and attempt to address the issues of missing details and distorted strokes.

Codebook for Encapsulating Token Prior

VQVAE (Van Den Oord, Vinyals et al. 2017) is an extension of the autoencoder (Hinton and Zemel 1993) that introduces the vector-quantized codebook for the first time. By converting the continuous features into discrete features within a limited space, it resolves the issue of “posterior collapse” in the autoencoder architecture. To achieve better self-reconstruction results, VQVAE2 (Razavi, Van den
Few-shot font generation transfers a content glyph I_c to a new style described by several glyphs $I_S = \{I_j\}_{j=1}^k$. It requires ensuring both the quality of synthesized glyphs and the fidelity of captured styles. In this section, we introduce a VQGAN-based framework (i.e., VQ-Font) to improve them.

Method

To learn the token prior and incorporate it into the synthesized fonts, we pre-train a VQGAN by self-reconstructing font images with diverse styles and high quality. As shown in Fig. 4, VQGAN consists of an encoder E, a learnable codebook $C = \{c_k \in \mathbb{R}^d\}_{k=1}^K$, and a decoder D. During self-reconstruction, E encodes a glyph image $I_f \in \mathbb{R}^{H \times W \times 1}$ into continuous features $Z_c \in \mathbb{R}^{K \times d}$. Then, an element-wise quantization $q(\cdot)$ is performed to replace the generated discrete code Z_q. This codebook is subsequently taken into the font decoder to generate the final image.

Figure 4: Details of our font VQGAN. The encoder E first maps the font image I_f into continuous feature space Z_c. Then, Z_q is quantized into discrete feature Z_q with font codebook C. Finally, the decoder maps Z_q back into the image space to generate result I_r. Notably, the *out-of-domain* font can be also well reconstructed using the font VQGAN through token prior refinement and structure-level style enhancement. Firstly, VQ-Font encapsulates stroke priors by VQGAN-based self-reconstruction and then refines the synthesized strokes with the encapsulated priors. Secondly, it enhances the fine-grained styles using the inherent structure of Chinese characters. We present the details of our VQ-Font in the following sections.

Self-Reconstruction for Font Token Prior

To learn the token prior and incorporate it into the synthesized fonts, we pre-train a VQGAN by self-reconstructing font images with diverse styles and high quality. As shown in Fig. 4, VQGAN consists of an encoder E, a learnable codebook $C = \{c_k \in \mathbb{R}^d\}_{k=1}^K$, and a decoder D. During self-reconstruction, E encodes a glyph image $I_f \in \mathbb{R}^{H \times W \times 1}$ into continuous features $Z_c \in \mathbb{R}^{K \times d}$. Then, an element-wise quantization $q(\cdot)$ is performed to replace...
each code in Z_c with its closest entry in codebook C:

$$Z_q = q(Z_c) = \arg \min_{c_k \in C} \|Z_c^{(i,j)} - c_k\| \in \mathbb{R}^{h \times w \times d}. \quad (1)$$

The final reconstruction result is obtained through:

$$I_f = D(Z_q) = D(q(E(I_f))) \approx I_f. \quad (2)$$

The indices sequence $s \in \{0, \ldots, |C| - 1\}^{hw}$ of Z_c in codebook C is defined as:

$$s^{(i,j)} = k \quad \text{such that} \quad Z_q^{(i,j)} = c_k. \quad (3)$$

During pre-training, the above three modules (encoder E, codebook C, and decoder D) can be optimized in an end-to-end manner. We follow VQGAN and adopt L1 loss L_1, perceptual loss L_{per} (Johnson, Alahi, and Fei-Fei 2016; Zhang et al. 2018), and adversarial loss L_{adv} (Esser, Rombach, and Ommer 2021) between the reconstructed image I_f and the input I_f. L_{code} and commitment loss L_{comm} are used to update the codebook C and encoder E, respectively:

$$L_1 = \|I_f - I_r\|_1,$$

$$L_{per} = \|\Phi(I_f) - \Phi(I_r)\|_2^2,$$

$$L_{adv} = -\log D(I_f),$$

$$L_{code} = \|s g(Z_c) - Z_q\|_2^2,$$

$$L_{comm} = \|Z_c - s g(Z_q)\|_2^2,$$

where $s g(\cdot)$ indicates the stop gradient operation. Φ denotes a pre-trained VGG16 model (Simonyan and Zisserman 2014) and \mathcal{D} represents the discriminator.

The overall training loss of VQGAN is summarized as:

$$L = L_1 + \lambda_{per} L_{per} + \lambda_{adv} L_{adv} + \lambda_{code} L_{code} + \lambda_{comm} L_{comm}. \quad (5)$$

λ_{comm} and λ_{adv} are the trade-off parameters and we set them to 0.5 and 0.8 in our experiment, respectively.

Notably, our VQGAN demonstrates remarkable generalization capabilities across out-of-domain glyphs and styles. As shown in Fig. 4, although these font styles and characters do not appear in the training process, nearly all stroke details are well reconstructed with the quantization process, showing the ability in generalizing to different font images.

Token Prior Refinement

To effectively integrate the token prior, VQ-Font leverages the well-trained codebook C and decoder D. It casts font generation task into indices prediction task. This process involves aggregating fine-grained styles from reference glyphs and predicting codebook indices of ground-truth glyph I_g.

Styles aggregation. Following FS-Font, our VQ-Font employs a cross-attention module to attentively capture fine-grained styles, where it takes a content glyph I_c as query, and k reference glyphs I_S as key and value. Specifically, we first use a content encoder E_c and a style encoder E_s to extract the feature maps from I_c and I_S, i.e., $f_c \in \mathbb{R}^{hw \times c}$ and $f_S \in \mathbb{R}^{hw \times c}$. Then, we calculate their attention weights as:

$$A_{\text{patch}} = \frac{(W^Q f_c)(W^K f_S)^T}{\sqrt{c}}, \quad (6)$$

where W^Q and W^K are learnable parameters to project the extracted features into query and key, respectively. c is set to 256. With the above weights, VQ-Font attentively captures patch-level styles from reference features f_S to obtain the aggregated features f_{cs}, which is formulated as:

$$f_{cs} = \text{Softmax}(A_{\text{patch}}) \cdot (W^V f_S). \quad (7)$$

In this way, we obtain patch-level aggregation features from the references, which may easily generate distorted strokes. Therefore, we need further fine-tuning for better quality.

Vector-Quantized font generation. To exploit the token prior in VQGAN, VQ-Font aims to quantize f_{cs} into c according to font codebook C. However, due to the discrepancy between the feature spaces of f_{cs} and the VQGAN encoded, it is infeasible to compute the indices sequence of f_{cs} by nearest neighbor lookup. Inspired by (Zhou et al. 2022), we utilize a Transformer module to predict the indices $s_{cs} \in \{0, \ldots, |C| - 1\}^{hw}$ for all patch tokens of f_{cs}. It employs 15 self-attention layers to globally model all tokens and an MLP to classify each token. Given the target glyph I_g, we optimize this module from two aspects: (i) index prediction and (ii) image regression. Intuitively, the indices of f_{cs} can be approximated to those indices obtained by encoding and quantizing ground-truth font I_g. Moreover, a glyph image I_f is projected from f_g with the VQGAN decoder and is combined with I_g to obtain reconstruction loss. To generalize the token prior to this task and preserve the effectiveness of prior knowledge, we fix the font codebook and only fine-tune the former layers of the decoder.

Structure-level Style Enhancement (SSEM)

Although leveraging the learned priors could promisingly improve the quality of synthesized glyphs, there are still inconsistent fine-grained styles between synthesized and reference glyphs, e.g., the last second row in Fig. 7. Compared to style transfer in RGB images, few-shot font generation in single-channel glyphs is more likely to acquire irrelevant patch-level styles. The main reason is that the original attention weights A_{patch} are mainly based on geometry. To enhance the fidelity of captured styles, we propose to utilize...
the inherent structure (see Fig. 2) of Chinese characters to further recalibrate the attention weights.

Based on Fig. 2, we decompose the content glyph and reference glyphs into the structure components \(\{ p_{i}^{c} \}_{i=0}^{m} \) and \(\{ p_{j}^{f} \}_{j=0}^{n} \), where \(p_{i}^{c} \) and \(p_{j}^{f} \) denote the set of patch positions. As illustrated in Fig. 5, the attention weight \(A_{\text{stru}}^{(i,j)} \) between \(p_{i}^{c} \) and \(p_{j}^{f} \) is obtained by averaging their corresponding patch-level weights:

\[
A_{\text{stru}}^{(i,j)} = \frac{1}{|p_{i}^{c}| \cdot |p_{j}^{f}|} \sum_{x \in p_{i}^{c}, y \in p_{j}^{f}} A_{\text{patch}}^{(x,y)} \tag{8}
\]

Finally, we reweight \(A_{\text{patch}} \) by adding \(A_{\text{stru}} \) to the corresponding patch positions:

\[
A_{\text{reweight}} = A_{\text{patch}} \oplus A_{\text{stru}} \tag{9}
\]

The new fusion feature \(f_{cs} \) in Eqn. (7) is reformulated as:

\[
f_{cs} = \text{Softmax}(A_{\text{reweight}}) \cdot (W^{V} f_{S}) \tag{10}
\]

In this way, our attention map can concentrate more on matching corresponding structure components, and reduce the adverse effect of other irrelevant strokes. Fig. 8 shows that after SSEM, our attention map \(A_{\text{reweight}} \) has higher attention in corresponding structure components, thereby benefiting the following style transformation.

Training Objective

We train the content encoder \(E_{c} \), style encoder \(E_{s} \), cross-attention module, and Transformer module using cross-entropy loss \(L_{\text{indice}} \) while keeping font codebook fixed. We fine-tune the first four layers of the pre-trained font decoder using VQGAN-like losses, including L1 loss \(L_{1} \), perceptual loss \(L_{\text{per}} \), and adversarial loss \(L_{\text{adv}} \).

Cross Entropy loss. We first obtain the ground-truth codebook indices \(s_{g} \) using Eqn. (3) by taking the ground-truth font image \(I_{g} \) into the pre-trained VQGAN. To further improve the prediction performance, we follow FS-Font and design a self-reconstruction branch that uses \(I_{g} \) as the reference glyph. The code indices learning is defined as:

\[
L_{\text{main indic}} = \text{CE}(\bar{s}_{cs}, s_{g}); \quad L_{\text{self indic}} = \text{CE}(\bar{s}_{cs}, s_{g}), \tag{11}
\]

where \(\bar{s}_{cs} \) represents the indices predicted by the main branch and \(\bar{s}_{cs} \) represents the indices predicted by the self-reconstruction branch.

L1 loss. To maintain pixel-level consistency between the generated font images \(I_{g} \) and the ground-truth font images \(I_{g} \), we employ L1 loss as our reconstruction loss:

\[
L_{1} = ||I_{g} - I_{g}||_1. \tag{12}
\]

Adversarial loss and Perceptual loss. To further ensure that the generated font images have high visual quality, we additionally utilize adversarial loss and perceptual loss. Moreover, in our experiments, we employ a multi-head projection discriminator (Park et al. 2021a) and use the Unicode encoding of each Chinese character as the label:

\[
\begin{align*}
L_{\text{adv}} &= - \mathbb{E}_{I_{g} \sim \text{data}} \max (0, -1 + D_{\text{adv}}(I_{g})) \\
&\quad - \mathbb{E}_{I_{g} \sim \text{data}} \max (0, -1 - D_{\text{adv}}(I_{g})) \tag{13}
\end{align*}
\]

\[
\begin{align*}
L_{\text{G adv}} &= - \mathbb{E}_{I_{g} \sim \text{data}} D_{\text{adv}}(I_{g}) \\
L_{\text{per}} &= ||\Phi(I_{g}) - \Phi(I_{g})||_2^2,
\end{align*}
\]

where \(\Phi \) denotes VGG16 same as that in Eqn. (4).

Overall objective. To sum up, the final loss function for training our VQ-Font is formulated as:

\[
\begin{align*}
L_{\text{VQ-Font}} &= \lambda_{\text{self indic}} L_{\text{indice}} + \lambda_{\text{main indic}} L_{\text{main indic}} + \lambda_{1} L_{1} \\
&\quad + \lambda_{\text{adv}} L_{\text{adv}} + \lambda_{\text{per}} L_{\text{per}}, \quad \tag{14}
\end{align*}
\]

where \(\lambda_{\text{self}}, \lambda_{\text{main}}, \lambda_{1}, \lambda_{\text{adv}} , \) and \(\lambda_{\text{per}} \) are the trade-off parameters for balancing each loss item. In our experiments, we set \(\lambda_{\text{main}} = \lambda_{1} = 2, \lambda_{\text{self}} = \lambda_{\text{per}} = 1 \) and \(\lambda_{\text{adv}} = 0.002. \)

Datasets and Evaluation Metrics

We follow previous works (Park et al. 2021a,b; Tang et al. 2022) and collect 382 fonts with various types to build our dataset. Each font contains 3499 Chinese characters and the resolution for each character is 128 × 128. We split these 3499 characters into 3 groups, i.e., 2841 seen characters, 158 reference characters, and 500 unseen characters. For each character, we follow FS-Font (Tang et al. 2022) and select 3 reference characters from the reference set that can cover most of its structure components. We use Kai font as our default content font and train our model on 371 seen fonts, leaving 10 unseen fonts that do not appear in the training stage. In this way, our training set totally consists of 371 seen fonts, each of which has 2841 seen characters (SFSC).

Our test set consists of two parts, i.e., 10 seen fonts with 500 unseen characters (SFUC) and 10 unseen fonts with 500 unseen characters (UFUC), encompassing a diverse range of font types, such as handwriting, printing, and artistic styles.

To evaluate the performance, we follow these competing methods and report the L1, RMSE, PSNR, SSIM and LPIPS (Zhang et al. 2018), covering both pixel consistency and perceptual similarity. Additionally, we also conduct a user study to further assess the visual quality of the generated results from human perception.

Implementation Details

In the pre-training phase of our font codebook, we encode the font images into 16 × 16 features. The size of our font codebook is set to 1,024. At this stage, VQGAN is trained for 2e5 iterations with a learning rate of 4e-5. The number of attention heads in the cross-attention module is set to 8. We select 3 reference characters for each Chinese character. In the subsequent token prior refinement stage, we keep the pre-trained font codebook and the later layers of the decoder fixed, while concentrating on training the remaining layers of the VQ-Font for 300k iterations. Here, the learning rate is set to 2e-4. We adopt Adam optimizer (Kingma and Ba 2014) with a batch size of 32 and rely on one A6000 GPU.
Comparison Methods

We compare the performance of our proposed VQ-Font with five state-of-the-art methods, including LF-Font (Park et al. 2021a), MX-Font (Park et al. 2021b), DG-Font (Xie et al. 2021), FS-Font (Tang et al. 2022), and CF-Font (Wang et al. 2023). To make a fair comparison, we retrain all these methods using their default settings on our dataset. More results and analyses can be found in our suppl.

Quantitative evaluation

Tab. 1 presents the comparison of our VQ-Font with other state-of-the-art methods on our dataset. The results demonstrate that our approach outperforms others in terms of both pixel-based and perception-based metrics on UFUC and SFUC datasets. Specifically, in terms of L1, we obtain 7.99% improvement over the second-best result on SFUC dataset and 6.76% on UFUC dataset, respectively. As for LPIPS, our VQ-Font outperforms the second-best result with a large margin, i.e., 13.51% improvement on SFUC dataset and 11.21% improvement on UFUC dataset. This indicates that the synthesized results of our VQ-Font have a better fidelity and also align better with human perception.

Qualitative evaluation

As shown in Fig. 6, we select various styles of fonts, including serif, artistic, and handwriting fonts, from UFUC dataset for qualitative comparison. We can observe that LF-font and MX-font struggle to capture the fine-grained styles, resulting in stroke artifacts (see red boxes). DG-Font and CF-Font also exhibit missing strokes and distorted strokes in challenging cases (e.g., 2~3 columns in Fig. 6). Besides, FS-Font tends to produce blurry font and lose stroke details (e.g., 5~6 columns in Fig. 6). In comparison, our proposed VQ-Font can effectively capture and transfer the stroke-level and structure-level styles of the reference glyphs. The integration of token prior further contributes to the higher quality of the glyphs.

User study

To further compare the visual quality of different methods, we conduct a user study. A total of 30 volunteers with computer vision backgrounds participated in evaluating the experimental results. We utilize 10 fonts with challenging strokes (e.g., 2~4 columns in Fig. 6) in UFUC and SFUC datasets respectively, and randomly generate 10 characters for each font using these methods. Here we consider two items, i.e., 1) content accuracy which classifies

Tab. 1: Quantitative comparison with state-of-the-art methods on SFUC and UFUC datasets.

<table>
<thead>
<tr>
<th>Method</th>
<th>L1</th>
<th>RMSE</th>
<th>PSNR</th>
<th>SSIM</th>
<th>LPIPS</th>
<th>User (C)%</th>
<th>User (S) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF-Font (AAAI 2021)</td>
<td>0.0921</td>
<td>0.264</td>
<td>17.818</td>
<td>0.746</td>
<td>0.157</td>
<td>70.5</td>
<td>4.0</td>
</tr>
<tr>
<td>MX-Font (ICCV 2021)</td>
<td>0.1002</td>
<td>0.278</td>
<td>17.326</td>
<td>0.725</td>
<td>0.169</td>
<td>83.4</td>
<td>2.9</td>
</tr>
<tr>
<td>DG-Font (CVPR 2021)</td>
<td>0.0747</td>
<td>0.233</td>
<td>18.901</td>
<td>0.782</td>
<td>0.127</td>
<td>80.7</td>
<td>6.7</td>
</tr>
<tr>
<td>FS-Font (CVPR 2022)</td>
<td>0.0663</td>
<td>0.217</td>
<td>19.702</td>
<td>0.805</td>
<td>0.126</td>
<td>90.3</td>
<td>12.9</td>
</tr>
<tr>
<td>CF-Font (CVPR 2023)</td>
<td>0.0667</td>
<td>0.217</td>
<td>19.559</td>
<td>0.805</td>
<td>0.111</td>
<td>86.7</td>
<td>10.6</td>
</tr>
<tr>
<td>VQ-Font (Ours)</td>
<td>0.0610</td>
<td>0.209</td>
<td>20.285</td>
<td>0.822</td>
<td>0.096</td>
<td>97.2</td>
<td>62.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>L1</th>
<th>RMSE</th>
<th>PSNR</th>
<th>SSIM</th>
<th>LPIPS</th>
<th>User (C)%</th>
<th>User (S) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF-Font (AAAI 2021)</td>
<td>0.0976</td>
<td>0.274</td>
<td>17.495</td>
<td>0.726</td>
<td>0.174</td>
<td>68.0</td>
<td>3.4</td>
</tr>
<tr>
<td>MX-Font (ICCV 2021)</td>
<td>0.1061</td>
<td>0.288</td>
<td>17.045</td>
<td>0.706</td>
<td>0.185</td>
<td>76.5</td>
<td>4.0</td>
</tr>
<tr>
<td>DG-Font (CVPR 2021)</td>
<td>0.0807</td>
<td>0.246</td>
<td>18.465</td>
<td>0.768</td>
<td>0.139</td>
<td>78.4</td>
<td>4.7</td>
</tr>
<tr>
<td>FS-Font (CVPR 2022)</td>
<td>0.0666</td>
<td>0.220</td>
<td>19.672</td>
<td>0.797</td>
<td>0.137</td>
<td>84.5</td>
<td>9.2</td>
</tr>
<tr>
<td>CF-Font (CVPR 2023)</td>
<td>0.0685</td>
<td>0.222</td>
<td>19.344</td>
<td>0.798</td>
<td>0.116</td>
<td>84.3</td>
<td>11.3</td>
</tr>
<tr>
<td>VQ-Font (Ours)</td>
<td>0.0621</td>
<td>0.210</td>
<td>20.249</td>
<td>0.812</td>
<td>0.103</td>
<td>95.6</td>
<td>67.4</td>
</tr>
</tbody>
</table>

Figure 6: Qualitative comparison with competing methods on UFUC dataset. Best view it by zooming in on the screen.
Table 2: Quantitative results of different VQ-Font variants. C and S represent codebook and SSEM, respectively.

<table>
<thead>
<tr>
<th></th>
<th>L1</th>
<th>RMSE</th>
<th>PSNR</th>
<th>SSIM</th>
<th>LPIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.0678</td>
<td>0.223</td>
<td>19.318</td>
<td>0.793</td>
<td>0.116</td>
</tr>
<tr>
<td>+C</td>
<td>0.0628</td>
<td>0.212</td>
<td>20.170</td>
<td>0.810</td>
<td>0.105</td>
</tr>
<tr>
<td>+CS</td>
<td>0.0621</td>
<td>0.210</td>
<td>20.249</td>
<td>0.812</td>
<td>0.103</td>
</tr>
</tbody>
</table>

Table 3: Comparison of fixed and fine-tuned decoders.

<table>
<thead>
<tr>
<th>Decoder</th>
<th>L1</th>
<th>RMSE</th>
<th>PSNR</th>
<th>SSIM</th>
<th>LPIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix</td>
<td>0.0648</td>
<td>0.216</td>
<td>20.069</td>
<td>0.805</td>
<td>0.121</td>
</tr>
<tr>
<td>Fine-tune</td>
<td>0.0621</td>
<td>0.210</td>
<td>20.249</td>
<td>0.812</td>
<td>0.103</td>
</tr>
</tbody>
</table>

Figure 8: Attention maps w/o and w/ SSEM.

Ablation Study

In this section, we mainly discuss the effectiveness of token prior refinement and structure-aware enhancement. We first train a baseline model by utilizing the cross-attention mechanism to learn the spatial correspondence at the patch level which is similar to FS-Font. Then, we gradually add the pre-trained font codebook and structure-level style enhancement module (SSEM) to the baseline for validation. Tab. 2 shows the quantitative results on UFUC. One can see that the pre-trained font codebook (+C) can obviously improve the SSIM and LPIPS performance, which indicates the better visual quality brought by our font codebook. When combining the codebook with the structure-level style enhancement module (+CS), our method has a further improvement, especially in PSNR. This indicates that SSEM can effectively capture the reference styles and contribute to higher fidelity.

The visual comparison in Fig. 7 demonstrates a noticeable reduction in distorted strokes and missing details when utilizing the font codebook (+C). Besides, our SSEM enhances the fidelity of the generated glyphs by aligning them more accurately with the corresponding structure components in the reference. These improved regions are highlighted within the blue box. Both the quantitative and qualitative evaluations demonstrate the improvements in fidelity and visual quality brought by our token prior refinement and structure-aware enhancement.

To further validate the effect of SSEM, we visualize the attention maps before and after the enhancement operation. As shown in Fig. 8, the leftmost column represents the content glyphs, and the visualized components are highlighted in blue. The visualization of different structure components demonstrates that our enhancement operation can eliminate the attention on irrelevant regions (see red boxes) and concentrate more on the corresponding components of the reference. This helps to capture the structure-level styles and then boosts the subsequent style transformation.

Finally, we explore the effect of fine-tuning the pre-trained font decoder in our method. We conduct another experiment by freezing all parameters of the decoder. From Tab. 3 we can see that although the pre-trained decoder has the ability to generate photo-realistic font images, by fine-tuning the decoder with the end-to-end optimization, it can well generalize to our font generation task and bridge the domain gap between our synthetic and real-world fonts.

Conclusion

In this paper, we propose VQ-Font, a new few-shot font generation framework. It refines the font images by incorporating token prior encapsulated in a pre-trained font codebook. Additionally, the Structure-level Style Enhancement Module (SSEM) leverages the structure information of Chinese characters to recalibrate fine-grained styles from the references. This enhances the alignment of structure-level styles between content and reference glyphs. By combining the token prior refinement and SSEM, the results of our VQ-Font are more realistic and have higher fidelity in comparison with other start-of-the-art methods.
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant No. U19A2073.

References

