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Abstract

Transfer learning (TL) has shown great potential to improve
Reinforcement Learning (RL) efficiency by leveraging prior
knowledge in new tasks. However, much of the existing TL
research focuses on transferring knowledge between tasks
that share the same state-action spaces. Further, transfer from
multiple source tasks that have different state-action spaces
is more challenging and needs to be solved urgently to im-
prove the generalization and practicality of the method in
real-world scenarios. This paper proposes TURRET (Transfer
Using gRaph neuRal nETworks), to utilize the generalization
capabilities of Graph Neural Networks (GNNs) to facilitate
efficient and effective multi-source policy transfer learning in
the state-action mismatch setting. TURRET learns a semantic
representation by accounting for the intrinsic property of the
agent through GNNs, which leads to a unified state embed-
ding space for all tasks. As a result, TURRET achieves more
efficient transfer with strong generalization ability between
different tasks and can be easily combined with existing Deep
RL algorithms. Experimental results show that TURRET sig-
nificantly outperforms other TL methods on multiple con-
tinuous action control tasks, successfully transferring across
robots with different state-action spaces.

Introduction
Deep Reinforcement Learning (DRL) has obtained impres-
sive successes in various domains such as video games
(Mnih et al. 2015; Silver et al. 2016) and robotics con-
trol (Lillicrap et al. 2016). However, DRL still faces the
sample inefficiency problem, requiring considerable envi-
ronmental interactions. Transfer Learning (TL) has emerged
as a promising technique to significantly reduce DRL sam-
ple complexity by leveraging prior knowledge (Taylor and
Stone 2009; Zhu, Lin, and Zhou 2020; Yang et al. 2020a,
2021). Policy transfer is one major class of RL transfer
methods, that focuses on leveraging pre-trained policies on
source tasks to accelerate learning in a target task (Rusu et al.
2016; Schmitt et al. 2018; Parisotto, Ba, and Salakhutdinov
2016; Yang et al. 2020a,b; Tao et al. 2021). However, these
methods assume source tasks share the same state-action
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space as the target task, which severely limits generaliza-
tion to more realistic scenarios where state-action space mis-
match usually exists, which we call it cross-domain setting.

Recently, several approaches have explored cross-domain
TL from the following directions. Some works align states
in a common feature space to combat the mismatch using a
state encoder. To train the state encoder, Gupta et al. (2017)
require to collect paired data of two tasks using pre-trained
policies based on time alignment. However, it is expensive
and infeasible in real-world problems that the two agents
will perform at roughly the same rate. Later, Wan et al.
(2020) train the state encoder using mutual information to
ensure a high correlation between the state embeddings and
current states. However, they ignore capturing the dynamic
information of the environment which ultimately leads to
insufficient transfer performance. Some other works learn
both the state and action mappings for transfer. For exam-
ple, Chen et al. (2019) capture the semantics of actions us-
ing the effects on the environment, which is only applica-
ble in discrete-action scenarios. Later, Zhang et al. (2021)
align the environment dynamics using a cycle consistency
constraint. However, this method directly reuses the pre-
trained source policy on the target task through the map-
ping in a zero-short transfer manner, which may not achieve
optimal performance. Furthermore, all these above methods
do not support transferring from multiple source tasks. Re-
cently, CAT (You et al. 2022) has initially done this, but it
fails to handle when the number of source policies changes
due to its limitation of learning the one-to-one mapping be-
tween each source task and the target task. Since previous
works didn’t solve this problem properly, we argue a suit-
able method that can handle the multi-source cross-domain
TL problem and is suitable for varying numbers of source
tasks is urgently needed to improve the generalizability and
practicality. Moreover, all the above methods use a multi-
layer perception (MLP) based structure, which is not capa-
ble of capturing sufficient information for state-action align-
ment. This may even hinder the transfer performance on tar-
get tasks with large state-action spaces. Please refer to the
appendix 1 for more information on related work.

To address these challenges, we propose a novel trans-
fer approach called TURRET (Transfer Using gRaph neuRal

1https://github.com/tianpeiyang/TURRET code
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Figure 1: A motivating example of TURRET

nETworks). Figure 1 shows a motivating example of trans-
ferring policies across different robots with different sizes
and morphologies, where TURRET learns a unified embed-
ding space for all the tasks using Graph Neural Networks
(GNNs) and then adaptively accelerates the learning process
of the target task with large state-action spaces or completely
different morphologies by transferring knowledge from mul-
tiple source policies. The key insights of this paper are the
two mechanisms proposed: a Structured Policy Network,
which can improve the training and transfer performance
by taking into account the morphological information, and
a adaptive policy transfer, which can determine when and
which source policies should be transferred to the target task.
In summary, our contributions are as follows: 1) TURRET
adopts an attention mechanism in the structured policy net-
work to capture different relationships of neighboring nodes
to learn a more semantic node representation, maintaining
sufficient information during the aggregation process and
leading to a common state embedding space for all tasks. 2)
TURRET measures the distance of states in the unified em-
bedding space to measure the similarity at each state from
multiple cross-domain source policies. In this way, TUR-
RET achieves adaptive and delicate transfer. 3) TURRET can
be easily combined with existing DRL algorithms. since no
additional optimization objectives are required in the train-
ing process. Experimental results show that TURRET signif-
icantly outperforms the state-of-the-art methods on continu-
ous control tasks.

Preliminaries
Reinforcement Learning RL problems are typically for-
malized as Markov decision processes (MDPs). An MDP
can be described as a tuple M = ⟨S,A,R, T , γ⟩, where
S and A are the sets of states and actions, respectively;
T : S × A × S 7→ [0, 1] is the transition probability dis-
tribution over states; R : S × A × S 7→ R is the reward
function which gives returns on the agent’s performance;
and γ is the discount factor for future rewards. A policy
π : S × A 7→ [0, 1] is defined as a state-conditioned prob-
ability distribution over actions and the goal of the agent is
to find an optimal policy π∗ maximizing the expected dis-

counted return R =
∑T
i=t γ

i−tri.
Policy Gradient Algorithms Policy gradient methods are

widely used to directly optimize the policy π parameterized
by θ. One of the most effective policy gradient methods is
Proximal Policy Optimization (PPO) (Schulman et al. 2017),
which can avoid the large deviation of the results caused by
the use of importance sampling. PPO attempts to learn a new
policy πθ and make sure that the difference between πθ and
the rollout policy πθold is small, which is achieved by intro-
ducing a constraint:

LθPPO = −Eτ
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
where rt(θ) =

πθ(at|st)
πθold (at|st)

is the ratio of the action probabil-

ities under the rollout policy and current policy, and Ât is
the estimated advantage. The value network Vψ is updated
with temporal difference learning: LψPPO = −Eτ [(Vψ(st) −
V targ
t )2]. The overall PPO minimization objective is:

LPPO(θ, ψ) = LθPPO + LψPPO

Cross-Domain Transfer In cross-domain transfer,
the state-action spaces of different tasks are differ-
ent, i.e., MS = ⟨SS,AS,RS, TS, γS⟩ and MT =
⟨ST,AT,RT, TT, γT⟩. Formally, the problem of multi-source
cross-domain TL is defined as follows: it includes a series
of source MDPs ΠM = {M1,M2, · · · ,Mn}, where Mi

represents the i-th source MDP, and a target MDP MT. The
MDPs share some high-level commonalities (e.g., reptile
robots may have qualitatively similar gaits). The goal is to
accelerate the learning process on the target task by selec-
tively transferring the most beneficial knowledge from ΠM.

Transferability Measurement Some works explicitly
calculate the similarity between MDPs, which is used to
measure the transferability between different tasks (Hu,
Gao, and An 2015b,a). However, these methods usually re-
quire a known world model and have a high computational
complexity, which cannot be applied to more complex con-
tinuous control tasks. In contrast, other works implicitly use
the average performance on the target task to measure the
transferability of each source policy (Fernández and Veloso
2006; Li and Zhang 2018; You et al. 2022). However, us-
ing average performance cannot handle the situation where
only a part of the information in different source policies is
useful. Previous works have supported this point that each
source task should be more beneficial in a certain part of the
state space (Yang et al. 2020a) or a single state (Rajendran
et al. 2017). Nevertheless, all the above works are still con-
strained by the assumption of the same state-action space.

Graph Neural Networks (GNNs) Traditional methods
that use MLP as the policy model cannot handle the cross-
domain transfer problem because it can only accept the input
and output with the same dimension across tasks. In contrast,
under the constraints of different state-action spaces, GNNs
have been a natural choice for modeling policies due to their
capacity to handle graphs of varying sizes.

A graph is denoted as a tuple G = (V,E), where V is
a set of nodes and edges E = {(u, v)|u, v ∈ V }. Each
node and edge have the corresponding representation in a
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labeled graph, and a GNN is a function that takes a la-
beled graph as input and outputs a graph with new labels but
shares the same topology. A general framework of GNNs
is the message-passing neural network (MPNN) (Gilmer
et al. 2017), which treats the aggregation process as a K-
step message-passing process. An MPNN framework con-
sists of the message functions Mk and update functions Uk,
which are used to compute the hidden state hk+1

v and mes-
sage mk+1

v for each node v, where k ∈ {0, . . . ,K − 1}.
At each step k, the message function aggregates the hid-
den states and edge features e to compute messages, which
are then passed into the update function to compute hidden
states for the next step.

NerveNet, Snowflake, and CAT The ability of GNNs to
process graphs of arbitrary sizes has been successfully ap-
plied to RL in continuous control tasks. One notable work is
NerveNet (Wang et al. 2018), which models the morphology
of the robot as a graph and uses a GNN following the basic
framework of MPNN as the policy network. For example, a
Centipede agent has four different node types: root, torso,
hip, and ankle. The torso nodes share the same instance of
the input function, and each torso sends the same message
to the righthip and lefthip. However, in order to generalize
to different agents with varied node and edge types, Ner-
veNet merges all other nodes except root as joint in the spe-
cific implementation. Different nodes are usually correlated
with varying degrees, but due to this operation and the char-
acteristics of MPNN, NerveNet loses the ability to capture
this correlation, resulting in information loss during the ag-
gregation process. Furthermore, as the number of nodes in-
creases, this phenomenon is exacerbated due to the multi-
hop communication in GNNs, thus leading to diminished
performance on tasks with large state-action spaces.

Recently, Blake et al. (2021) regard the above phe-
nomenon as caused by the overfitting problem. Therefore,
Snowflake freezes network parameters during training, thus
facilitating training GNNs on larger graphs for locomotion
control in RL. Unfortunately, Snowflake requires extra hu-
man effort to determine which parameters to freeze, which
would be infeasible in complicated tasks.

More recently, You et al. (2022) firstly propose CAT
to solve the multi-source cross-domain transfer problem,
which is the same setting as in this paper. CAT learns a one-
to-one mapping between each source task and the target task
to extract useful knowledge from multiple source policy net-
works. However, CAT lacks generalization to more realistic
scenarios when the number of source tasks changes. More-
over, the transferability measurement used in CAT is not del-
icate enough to handle the situation where each source pol-
icy performs better in only a part of the state space.

Methodology
This section first introduces the whole structure of TURRET
and then describes each component of TURRET in detail.

Framework Overview
Figure 2 illustrates the overall framework of TURRET, which
contains two main components: (a) structured policy net-
work and (b) adaptive policy transfer. TURRET facilitates

efficient knowledge transfer not only across robots with high
similarities in the number of joints and morphological in-
formation but also across robots with significantly distinct
structures or numbers of joints.

Structured Policy Network As shown in the previous
section, previous GNN-based methods are incapable of dis-
tinguishing different contributions of neighbor nodes to the
central node, resulting in considerable information loss dur-
ing the aggregation process, and undesired performance in
tasks with large state-action spaces. The key insight of the
structure policy network is to alleviate the information loss
problem during the aggregation process. To combat this, we
adopt an attention mechanism to learn a more semantic node
representation, which is described in the following section.
Then, we concatenate node representations and feed them
into a readout network Fread, thus leading to a common state
embedding space (see Figure 2 (a)). The subsequent transfer
mechanism is described consequently.

Adaptive Policy Transfer The key insight of this part is
that the transferability of each source policy could be re-
flected by the distance of embeddings in the unified embed-
ding space, which is obtained by our proposed GNN-based
structured policy network. Using the obtained distance to
calculate the weighting factors of each source policy at each
state (Figure 2 (b)), i.e., the similarity metric, we can adap-
tively and delicately extract knowledge from multiple source
policies, which is described in detail consequently.

Structured Policy Network
In this section, to handle the mismatch of state spaces
of all the tasks, we propose a structured policy network
based on GNNs. Further, we assign different weighting fac-
tors to neighboring nodes to reduce information loss dur-
ing the aggregation process. Given a set of N source tasks
{χ1, χ2, · · · , χn} that have arbitrary state-action spaces, the
structured policy network is used to learn the policy on each
source task, which contains four main models: input model
Fin, propagation model P , readout model Fread, and output
model Fout. We collectively refer to the first three models as
representation model G.

Input Model: st is the agent observation vector obtained
from the environment, which contains observations xv of
each node v corresponding to each joint (Wang et al. 2018).
Then, the initial node representation h0v at propagation step
0 is obtained by placing the node vector into an input net-
work: h0v = Fin(xv), where Fin is an MLP and we keep the
fixed-size input for other node observations of different sizes
by padding zeros to the vectors.

Propagation Model: As described before, the informa-
tion loss phenomenon during the aggregation process results
in diminished performance on tasks with large state-action
spaces, which we’ll also show in the empirical section. This
phenomenon will be alleviated by considering the different
contributions of different neighbor nodes to the central node.
To capture different relative weights between nodes, we in-
troduce the attention mechanism (Veličković et al. 2018) (we
use multi-head attention in practice):

αk+1
vu = Softmax(ð(aT[Wk+1hkv ||Wk+1hku])),
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Figure 2: TURRET contains two main components. First, the structured policy network architecture is shown in the brown box,
which handles the mismatch of state spaces of all the tasks. Second, the adaptive policy transfer architecture is shown in the
blue call-out box, which adaptively and delicately extracts knowledge from multiple source policies. Each task has separate
Fin, P, Fread, Fout, and the readout model Fread maps the states to a unified embedding space, which is used to measure distance
and generate weighting factors.

where ð(·) is the LeakyReLu activation function, Wk a
weight matrix and a a vector of learnable parameters. The
attention coefficient αkvu measures the relationship between
the node v and its neighbor node u. Then the node update
function is as follows:

hk+1
v = σ(

∑
u∈N (v)

αk+1
vu Wk+1hku).

The attention mechanism can not only generalize to different
tasks but also capture the important relationships between
nodes, which reduces information loss during the aggrega-
tion process and improves the training and transfer perfor-
mance relative to other GNN-based methods on large dimen-
sional control tasks.

Readout Model: Inspired by adaptive readout functions
proposed by (Buterez et al. 2022), TURRET adopts set trans-
former readouts to learn an overall state representation.
Specifically, once the propagation model obtains the final
node representations, the node vectors are first collected into
a matrix H ∈ RM×D, where M is the maximal number of
nodes in source and target tasks and D is the dimension of
node representations. For graphs with less than M nodes,
we set the padded values to zero to ensure that current states
can be fed into the readout models of source tasks. Then the
matrix H is fed into the set transformer readout function as
input and state embeddings are generated using an attention-
based encoder-decoder module (described in appendix):

Semb = Fread(H) =
1

K

K∑
k=1

[DECODER(ENCODER(H))]k

where [·]k refers to computation specific to head k. To
this point, all the tasks obtain their state representations in a
common space, which contains more structural information
across tasks and adapts to varying types or numbers of tasks.

Output Model: Previous GNN-based methods predict
the actions of each node with the final node representations
as input, which only supports zero-shot transfer and is not
conducive to the design of the transfer process. Instead, we
take state representations into an output network and predict
the action distribution for all nodes:

µv∈V = Fout(Semb)

where µv∈V is the mean of the Gaussian distribution and
the standard deviation is a trainable vector. We choose PPO
(Schulman et al. 2017) to train all learnable parameters in an
end-to-end manner.

Adaptive Policy Transfer
This section describes how to adaptively extract the most
relevant knowledge from multiple source structured policies
to accelerate the learning process for cross-domain transfer.

Instead of outputting the action of each joint separately,
we combine node representations to learn a global state rep-
resentation through the readout model, which can reflect se-
mantic environmental information. To this end, the distance
of states in the embedding space with sufficient semantic in-
formation can be seen as a suitable metric to reflect the trans-
ferability of each source policy at the current state. More
specifically, we first obtain the state representation semb of
the current state st through the representation modelG in the
target task. At the same time, st is fed into G of each source
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task to obtain {semb1 , semb2 , . . . , sembn}, corresponding to
{χ1, χ2, · · · , χn}. The distance between state embeddings
in the common space is calculated to generate weights of
each source policy as follows:

ωi = Softmax((||semb − sembi ||22)−1), i ∈ {1, 2, . . . , n}
For example, the current state st in an octopod robot is fed
intoG1 of a quadruped andG2 of a hexapod robot, obtaining
semb1 , semb2 and ω1, ω2 (see Figure 2(a)). Through the com-
mon embedding space, we can not only handle the mismatch
of different state spaces but also achieve adaptive transfer
at each state with sufficient interpretability. With the gener-
ated weights, TURRET adopts the transfer method of lateral
connections between the source and target networks (Liu,
Peng, and Schwing 2019; Wan, Gangwani, and Peng 2020;
You et al. 2022). Specifically, we denote the pre-activation
outputs of the j-th hidden layers of the i-th source policy
network as {zji , 1 ≤ i ≤ N, 1 ≤ j ≤ Nπ}. The policy
and value networks have the same number of hidden layers
Nπ in our setting and we only discuss policy networks here.
Then, TURRET combines the representations zj in the tar-
get network with those from source networks at each state
following weighting factors ωi as:

zjπ = pzj + (1− p)
N∑
i=1

ωiz
j
i

where p is an increasing factor over time to control the de-
gree of independence of the target network (detailed in ap-
pendix). At the beginning of the training process, the agent
needs more assistance from source policies. As the agent
gains more knowledge, it relies more on itself, which is con-
trolled by a higher value of p. In this way, TURRET adap-
tively extracts knowledge from multiple source policies and
avoids negative transfer, achieving more efficient transfer.

Experiments
In this section, we present four types of transfer learning
experiments that cover a wide range of environments to ver-
ify the effectiveness of TURRET from various perspectives.
The first type is leveraging a set of small source task models
to accelerate a larger target task, i.e., size transfer. The sec-
ond type considers source and target tasks where robots have
entirely different controls and constructions, i.e., morphol-
ogy transfer. These first two types of experiments evaluate
the effectiveness of multi-source cross-domain TL methods.
The third type converts trajectories in the source and tar-
get tasks into a 3-dimensional space to perform qualitative
and quantitative analysis, which shows how TURRET works.
Fourth, we present a set of ablation studies to evaluate differ-
ent components of TURRET. More experiments on the struc-
tured policy network training on large agents and the setting
of more than two source tasks can be found in appendix. For
convenience and computational complexity, we typically set
the number of source tasks N to 2. We run 5 random seeds
for each algorithm in an experiment, and each seed runs for
10 million environment interactions (i.e., timesteps). More
details of network structures and parameter settings can be
found in appendix.

Environments: We test our method on a set of continuous
control tasks in MuJoCo (Todorov, Erez, and Tassa 2012). In
addition to commonly used tasks such as Walker, Ant, and
Humanoid, we also use a set of Centipede-n tasks, each of
which has a robot with n/2 torso bodies and n legs (Wang
et al. 2018). A more detailed description is in appendix.

Baselines: we consider the following six baselines:

• PPO (Schulman et al. 2017), a mainstream RL method
that learns from scratch in the target task;

• CAT (You et al. 2022), which adaptively extracts knowl-
edge from multiple cross-domain source policies;

• NerveNet (Wang et al. 2018), which models the morphol-
ogy information into GNNs to represent the policy;

• Snowflake (Blake et al. 2021), which extends NerveNet
to high-dimensional continuous control environments;

• NerveNet/Snowflake+fine-tune, which directly uses the
old weights trained on source models for initialization
and then continues to train in the target task.

• SWAT (Hong, Yoon, and Kim 2022), which adopts a
transformer structure in multi-task training.

Size Transfer
In size transfer, we consider Centipede-4 and Centipede-6 as
our source tasks. For the target tasks, we choose Centipede-
{12, 16, 20}, which are very difficult to train from scratch.

Figure 3 (a)-(c) depicts the performance of TURRET and
other baseline methods across three experimental scenar-
ios. NerveNet exhibits inferior performance due to grap-
pling with the intricacies of dealing with a large number
of joints. While CAT demonstrates competitive results in
the Centipede-12 task, it progressively falls behind TUR-
RET as the number of joints increases. This trend highlights
the limitations of MLP-based policies in addressing struc-
tural disparities in robots with varying joint counts. Further-
more, NerveNet/Snowflake+fine-tune has a slight jumpstart
and marginal performance improvement compared to their
vanilla forms. Significantly, prior GNN-based approaches
falter in transferring knowledge to agents with particularly
large differences in the number of joints, which is exactly
what our approach seeks to overcome. Similarly, SWAT’s in-
efficient simultaneous aggregation of joint information ham-
pers its performance, compounded by its lack of adaptive
transfer capability. Conversely, TURRET consistently outper-
forms all baselines across all test environments. This can
be attributed to TURRET’s adeptness at considering diverse
neighbor contributions, thus capturing node semantics and
being able to measure state distances in a unified embedding
space, enabling adaptive knowledge extraction from multi-
ple source policies, which is also validated in the following
experiments.

Morphology Transfer
In morphology transfer, we consider three combinations of
TL experiments: {Hopper & Centipede-4 → Walker2d},
{HalfCheetah & Ant → Centipede-8} and {HalfCheetah &
Ant → Humanoid}.
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TURRET                 CAT                   SWAT               Snowflake                Snowflake+fine-tune                 NerveNet               NerveNet+fine-tune              PPO 

(a) Centipede {4,6}    Centipede-12

(d) {Hopper, Centipede-4}    Walker2d (e) {Halfcheetah, Ant}    Centipede-8 (f) {Halfcheetah, Ant}    Humanoid

(b) Centipede {4,6}    Centipede-16 (c) Centipede {4,6}    Centipede-20

Figure 3: Performance of TURRET and other baselines on different sizes and morphologies of continuous control tasks. We plot
the number of timesteps of environment interaction on the x-axis and the average episodic returns on the y-axis (the curves and
shadow areas represent the mean and standard deviation over 5 trials, respectively).

We show the training curves of all the methods in Figure 3
(d)-(f). As the results show, CAT achieves comparable per-
formance to TURRET in Centipede-8, because both source
tasks have relatively similar morphologies to the target task
and can provide enough knowledge to accelerate the target
task learning. However, CAT performs worse than TURRET
in the other two tasks because the two source tasks differ
widely from the target task thus difficult to capture com-
monalities using MLP-based methods. Finally, TURRET sig-
nificantly improves learning efficiency compared to all base-
lines in Humanoid, which has large state-action spaces and is
hard to learn from scratch. All the results indicate that TUR-
RET facilitates effective cross-domain transfer across tasks
with completely different morphologies, matching or out-
performing all baselines tested.

Visual Analysis
This section considers a post-hoc analysis to better under-
stand why TURRET facilitates effective cross-domain trans-
fer. We first collect trajectories from policies learned with
PPO and TURRET in different tasks. Second, we project the
source and target trajectories into a 3-dimensional space us-
ing t-SNE. Third, we calculate the Euclidean distance D be-
tween the corresponding states of two trajectories, which can
reflect the similarity between two tasks, i.e., a lower value of
D may mean a more helpful transfer as the projected source
and target policies are more similar.

Figure 4 visualizes this analysis of size transfer and mor-
phology transfer. From Figures 4 (a) and (c), we can see
that the source and target policies learned by MLP-based
PPO differ significantly when projected into 3 dimensions,

which may make transfer difficult. In contrast, Figures 4 (b)
and (d) show the difference between source and target poli-
cies learned using TURRET, where there is a higher overlap
and distance reduction, relative to the PPO trajectories. This
phenomenon indicates that TURRET narrows the distance be-
tween states with similar semantics in the embedding space,
thus facilitating effective transfer. Similarly, the trajectories
in the morphology transfer setting (i.e., Figures 4 (e) and (g)
vs. (f) and (h)) also show that our structured source policy
covers more of the target task policy than the MLP-based
source policy. We can see that the trajectories of our struc-
tured policies are more similar in the project space in all
examples, indicating that TURRET produces structured poli-
cies that capture semantic commonalities of two tasks and
learns representations more useful than PPO.

Ablation Studies
In this section, we analyze the contribution of different parts
of TURRET to better verify the effectiveness of our trans-
fer method. We remove the attention mechanism in TURRET
to verify it is useful to aggregate information by adopting
different weighting factors to neighbor nodes without infor-
mation loss on tasks with large state-action spaces. We also
replace our similarity metric in TURRET with the average
performance of each source policy on the target task as a
weighting measurement, which is used to verify the effec-
tiveness of our adaptive transfer method. The ablation stud-
ies are designed as follows under experiments on Centipede-
{4,6} → 16:

• TURRET w/o attention: Using MPNN without the atten-
tion mechanism during the aggregation process.
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(a) 4-16 (MLP): 33.58 (b) 4-16 (TURRET): 20.51 (c) 4-20 (MLP): 54.69 (d) 4-20 (TURRET): 20.62

(e) H-W (MLP): 18.46 (f) H-W (TURRET): 16.98 (g) H-H (MLP): 21.17 (h) H-H (TURRET): 18.96

Figure 4: Our visual analysis results on MuJoCo: Centipede-4 → Centipede-{16,20}, Hopper → Walker2d, and HalfCheetah →
Humanoid. The blue and red dots represent the optimal trajectories on the source and target tasks, respectively. For example, “H-
H (TURRET) :18.96” represents the distribution of trajectories sampled by our structured policy in the source task HalfCheetah
and that in the target task Humanoid, and the average Euclidean distance D between two trajectories is 18.96.
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Figure 5: Ablation studies in Centipede-{4,6} → 16 on the
contribution of attention mechanism and similarity metric.

• TURRET w/o distance: Using the average performance as
weighting factors to extract knowledge.

Figure 5 shows the results of our ablation studies. As we
can see, TURRET has a significant performance improve-
ment compared to TURRET w/o attention, which confirms
the effectiveness of our attention mechanism. Besides, TUR-
RET w/o distance performs worse than TURRET. This in-
dicates that using the average performance as a weighting
factor cannot handle the situation where only a part of the
information in different source policies is useful. Therefore,
a delicate transferability metric should be facilitated to im-
prove the transfer performance. All the above results confirm
that TURRET achieves more efficient transfer than previous
cross-domain transfer methods.

Discussion
This paper focuses on effectively capturing the common-
alities in different state-action spaces to discover a feature
space that can enhance transferability. This pursuit, how-
ever, reveals two intrinsic limitations, which can be allevi-

ated by incorporating additional techniques in TURRET in
future work. First, this paper assumes that different tasks
have a similar goal, and thus task similarity could be re-
flected in state similarity. In some cases, different tasks have
different goals, e.g., opening the door or pushing the button.
In this situation, TURRET could integrate the state similar-
ity and the performance of each source policy to determine
which source policy is more suitable. Second, this paper as-
sumes a very clean state composition, where each feature
represents the joint of a robot. In practice, states may con-
tain noisy or irrelevant information. Representation learning
could be combined with TURRET to discard irrelevant fea-
tures via uncertainty measurement or adversarial learning to
solve this problem.

Conclusion and Future Work
In this work, we propose TURRET, a GNN-based framework
to achieve adaptive multi-source cross-domain TL. TURRET
contains two main components: a meticulously structured
policy network and adaptive knowledge transfer. By adopt-
ing the attention mechanism, we capture different relative
weights between nodes, enabling the acquisition of a uni-
fied state embedding space through set transformer readouts.
Based on the similarity metric, TURRET can adaptively and
delicately extract knowledge at the state level. We also per-
form a visual analysis to verify the effectiveness of captur-
ing morphological commonalities across tasks. In this paper,
we adopt the attention mechanism in GNNs. Future work
could consider designing a specific message-passing mech-
anism that can fully reflect the robot’s morphology informa-
tion. Another direction is to apply TURRET to more compli-
cated scenarios by employing a more comprehensive simi-
larity measurement to handle the goal mismatch in different
tasks. Furthermore, existing methods always require struc-
tured information about the robot in advance when dealing
with node vectors; thus, how to extract this information au-
tomatically is worth further study.
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