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Abstract

Recently, semi-supervised federated learning (semi-FL) has
been proposed to handle the commonly seen real-world sce-
narios with labeled data on the server and unlabeled data on
the clients. However, existing methods face several challenges
such as communication costs, data heterogeneity, and training
pressure on client devices. To address these challenges, we
introduce the powerful diffusion models (DM) into semi-FL
and propose FedDISC, a Federated Diffusion-Inspired Semi-
supervised Co-training method. Specifically, we first extract
prototypes of the labeled server data and use these prototypes
to predict pseudo-labels of the client data. For each category,
we compute the cluster centroids and domain-specific repre-
sentations to signify the semantic and stylistic information of
their distributions. After adding noise, these representations
are sent back to the server, which uses the pre-trained DM to
generate synthetic datasets complying with the client distribu-
tions and train a global model on it. With the assistance of vast
knowledge within DM, the synthetic datasets have comparable
quality and diversity to the client images, subsequently en-
abling the training of global models that achieve performance
equivalent to or even surpassing the ceiling of supervised cen-
tralized training. FedDISC works within one communication
round, does not require any local training, and involves very
minimal information uploading, greatly enhancing its prac-
ticality. Extensive experiments on three large-scale datasets
demonstrate that FedDISC effectively addresses the semi-FL
problem on non-IID clients and outperforms the compared
SOTA methods. Sufficient visualization experiments also illus-
trate that the synthetic dataset generated by FedDISC exhibits
comparable diversity and quality to the original client dataset,
with a neglectable possibility of leaking privacy-sensitive in-
formation of the clients.

Introduction
Federated Learning (FL) (McMahan et al. 2017) is a new
paradigm of machine learning that allows multiple clients to
perform collaborative training without sharing private data.
Realistic FL scenarios, such as mobile album classification
and autonomous driving (Nguyen et al. 2022; Fantauzzo et al.
2022), often involve individual users who are unwilling or
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unable to provide reliable annotations. This often results in
the client data being unlabeled in practice. Semi-supervised
FL (Semi-FL) (Zhang et al. 2021b; Diao, Ding, and Tarokh
2021; Jeong et al. 2021) has been proposed to address this
issue. In this setting, there are multiple clients with unlabeled
data and a server with labeled data. The goal of semi-FL is to
obtain a global model that adapts to all client distributions.

Due to its allowance for unlabeled client data, semi-FL
should be the most practically valuable topic within FL. How-
ever, existing semi-FL methods are unable to be practically
deployed in real-world scenarios due to the following rea-
sons (Li et al. 2020a; Kairouz et al. 2021; Mammen 2021):
Firstly, the primary challenge lies in communication. Cur-
rently, all semi-FL methods heavily rely on multi-round com-
munication, which significantly increases the burden on the
clients. Secondly, the challenge of data heterogeneity persists
in semi-FL. When there are distribution differences between
the server and the clients, the performance of the global
model significantly decreases. The third point pertains to
the diverse devices of clients in real-world scenarios. While
many FL methods do not restrict the computing power of
the clients, one of the greatest challenges in the practical
implementation of FL methods is that most clients cannot
support model training on their devices, such as a significant
portion of mobile terminals in scenarios like mobile album
classification and autonomous driving. Hence, to address
the aforementioned challenges, it is essential to establish a
one-shot semi-FL method without any client training.

Recently, the development of diffusion models (DM) (Rad-
ford et al. 2021; Rombach et al. 2022) offers fresh opportuni-
ties. These pre-trained DMs exhibit remarkable performance.
With proper guidance, these DMs can generate data with
sufficient variety in both categories and distributions. If there
is a method to generate guidance about the personalized dis-
tributions of the clients, it becomes possible to limitlessly
generate high-quality, large-scale realistic images that com-
ply with various client distributions in semi-FL. With the
synthetic datasets, one can achieve one-shot semi-FL without
the need for any client training, even in scenarios with highly
non-IID clients. This approach simultaneously addresses the
aforementioned three challenges and significantly enhances
the practicality of semi-FL.

Furthermore, an additional pivotal advantage of applying
pre-trained DMs in semi-FL is the potential to surmount the
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”performance ceiling” of traditional FL, which involves up-
loading all client images to the server for centralized training
of the global model. This ceiling bypasses any performance
losses caused by distributed training and privacy preservation,
enabling the training of the optimal global model. In semi-
FL, this ceiling becomes even more unattainable, as the data
uploaded to the server can be labeled, introducing additional
supervised information. But even this ceiling performance is
constrained by the knowledge within the client samples. How-
ever, with the vast knowledge within the DMs, it becomes
possible to generate samples with both higher diversity and
quality than the original client data, with the great possibility
of surpassing the ceiling performance of centralized training.

Motivated by these opportunities, in this paper, we in-
troduce FedDISC, a Federated Diffusion-Inspired Semi-
supervised Co-training method, to leverage powerful founda-
tion models in one-shot semi-FL. In brief, FedDISC involves
four key steps: Firstly, following the common approach in
semi-FL, we obtain prototypes for each category at the server
and then send these prototypes to the clients. Secondly, the
clients extract the features of the unlabeled client images
and employ the received prototypes to assign pseudo-labels
to these images. Thirdly, we obtain some cluster centroids
and a domain-specific representation by clustering and av-
eraging the client features for each category. These selected
features possess the capability to capture the semantic in-
formation and the style characteristics of the personalized
client distribution, which is then transmitted to the server.
Finally, guided by the received representations, the server
utilizes the pre-trained DM to limitlessly generate various
samples complying with the specified distributions, resulting
in a high-quality synthetic dataset. With the powerful DM,
the generated samples closely resemble both the distribution
and quality of the client dataset, enabling training a global
model that achieves performance comparable to the ceiling
performance or even surpassing it in some cases.

Our experiments on DomainNet (Peng et al. 2019), Open-
Image (Kuznetsova et al. 2020), and NICO++ (Zhang
et al. 2022b) demonstrate that FedDISC can obtain a high-
performance global model that adapts to various client distri-
butions within one round communication. In some cases, it
even outperforms the ceiling of centralized training. A large
number of visualization experiments also demonstrate that
we can generate synthetic datasets that exhibit quality and
diversity comparable to the original client datasets, without
the leaking of privacy-sensitive information. In certain cases,
these synthetic datasets can even possess a more comprehen-
sive knowledge than the original client datasets.

Our contributions are summarized as follows:

• We demonstrate the excellent performance of DMs when
applied to FL, enabling us to obtain high-quality large-
scale synthetic datasets complying with the various client
distributions without any training on the clients, which
has not been explored before.

• We propose the FedDISC method. With the help of clus-
ter centroids and domain-specific representations, our
method further improves both the quality and variety of
the generated samples, resulting in a global model that

has the potential to outperform the performance ceiling of
centralized training with only one communication round.

• We conduct extensive experiments on multiple real-world
large-scale image datasets to validate the effectiveness
of FedDISC. The results demonstrate that FedDISC out-
performs compared with all the baseline methods. In
some cases, it even surpasses the performance ceiling
of traditional FL. The sufficient visualization experiments
also illustrate that our method can generate synthetic
datasets with competitive quality and diversity compared
to the original client images, without leaking the privacy-
sensitive information of the clients.

Related Works
Federated Learning
Supervised Federated Learning. FedAvg (McMahan et al.
2017) proposes the FL problem setting. However, some stud-
ies (Li et al. 2019, 2020b) notice the problem in non-IID
scenarios. To address this challenge, numerous works have
attempted to establish stronger global models (Karimireddy
et al. 2020; Li et al. 2020b; Wang et al. 2020; Reddi et al.
2020), or personalized FL that allows clients to obtain per-
sonalized parameters (Fallah, Mokhtari, and Ozdaglar 2020;
Huang et al. 2021; Caruana 1997; Dinh, Tran, and Nguyen
2020; Zhang et al. 2021a). Some works (Li et al. 2007) in-
volve aggregating distributed information from clients by up-
loading it to the server. In addition, to further reduce commu-
nication costs, some works (Zhang et al. 2022a; Heinbaugh,
Luz-Ricca, and Shao 2022; Su, Li, and Xue 2023) propose
one-shot FL, which performs one round of communication.

Semi-supervised Federated Learning. In realistic FL
scenarios, clients own a large amount of unlabeled data. In
response to this issue, FedMatch (Jeong et al. 2021) proposes
semi-FL, which is mentioned in the introduction. (Zhang
et al. 2021b) points out the importance of the gradient diver-
sity problem and proposes several strategies. (Diao, Ding,
and Tarokh 2021) supposes the additional auxiliary dataset to
handle semi-FL. In the paper, an additional challenge about
communication and client training is identified and a solution
is proposed, enhancing the practicality of semi-FL.

Foundation Models
Recently, foundation models (Radford et al. 2021; Kir-
illov et al. 2023; Rombach et al. 2022; Yu et al. 2023)
have achieved unprecedented success in computer vision.
CLIP (Radford et al. 2021) has bridged the gap between text
and vision. DMs (Sohl-Dickstein et al. 2015; Ho, Jain, and
Abbeel 2020) have provided a new generative paradigm, with
Stable Diffusion (Rombach et al. 2022) achieving remarkable
performance. A major advantage of DMs is the ability to use
various conditions to guide generation, such as a trained clas-
sifier (Dhariwal and Nichol 2021), text (Nichol et al. 2021;
Saharia et al. 2022b; Kim, Kwon, and Ye 2022; Jin et al.
2023) and images (Saharia et al. 2022a; Zhang and Agrawala
2023; Su et al. 2022b; Wang et al. 2022; Preechakul et al.
2022). There are also some works (Liu et al. 2022; Huang
et al. 2023; Du et al. 2023) studying compositional genera-
tion of DMs. From their performance in image generation,
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Figure 1: The framework of FedDISC. The overall method consists of four steps: Prototype Extraction, Pseudo Labeling, Feature
Processing, and Image Generation.

a large-scale pre-trained DM can generate realistic images
within an acceptable cost of time and computation on the
server. This is the main reason why we apply pre-trained
DMs in FL.

FL with Foundation Models
Leveraging the powerful performance of fundamental models,
some works (Su et al. 2022a; Guo et al. 2022; Yang et al.
2023) in FL have explored the application of foundation
models in federated image classification. However, to the
best of our knowledge, no work has yet utilized pre-trained
DMs, such as Stable Diffusion, in semi-FL. In this paper,
we make a novel attempt and reveal the potential of DMs
in semi-FL. Therefore, the method proposed in this paper,
which does not require client training, has great potential for
practical applications.

Method
In this section, we introduce the proposed FedDISC method
in detail. Firstly, we provide some notations and background
knowledge on DMs. Then we describe the proposed method
in detail through four steps taken by the clients and the server.

Preliminaries
Diffusion Models. The DMs study the transformation from
the Gaussian distribution to the realistic distribution by itera-
tive denoising. In this paper, since only the pre-trained DMs
are used and no training is conducted, the sampling process
of the DMs is mainly introduced here. During sampling, the
DM ϵθ samples sT from the Gaussian distribution, where T
is the predetermined maximum timestep. The DM takes sT
as the initial noise of the denoising process and uses the input
text prompt p and the input image q as conditions. After T

timesteps of denoising, sT is restored to a real image s0 with
specified semantics. For any given time step t ∈ {0, . . . , T},
the sampling process is as follows:

st−1 =
√
αt−1

(st −√
1− αtϵθ(st, t|p, q)√

αt

)
+

√
1− αt−1 − σ2

t · ϵθ(st, t|p, q) + σtεt (1)

where αt, αt−1 and σt are pre-defined parameters, εt is the
Gaussian noise randomly sampled at each timestep. It should
be noted that currently, many methods can freely control the
number of iterations of the denoising process to accelerate
sampling, but the overall process is quite similar, so these
methods won’t be elaborated here.

Notations and Objectives. We consider a semi-FL set-
ting, where we have K clients with unlabeled datasets
Dk = {xk

i }
Nk
i=1, k = 1, . . . ,K, where Nk is the number of

images on the k-th client, and a server with a labeled dataset
Ds = {xs

i , yi}
Ns
i=1, yi ∈ {1, . . . ,M}, where Ns is the num-

ber of images on the server and M is the number of categories.
The text prompts of these categories are Cj , j ∈ {1, . . . ,M}.
The objective of the whole FL framework is:

min
w∈Rd

1

K

K∑
k=1

Ex∼Dk
[ℓk(w;x)] (2)

where ℓk is the local objective function for the k-th client, w
is the parameters of the global model.

To reduce communication and computation costs and make
it suitable for real-world scenarios, such as the devices in au-
tonomous driving, we impose two constraints in this setting:
1) Clients cannot conduct model training and can only con-
duct model inference. 2) The federated training process can
only involve one round of communication.
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FedDISC
Our method has four detailed steps: prototype extraction,
pseudo labeling, feature processing, and image generation.

Prototype Extraction. Firstly, we utilize a pre-trained
CLIP image encoder Eθ to extract the features of all labeled
data on the server. We assume that the server contains all
possible categories that may appear on the clients, but each
category on the server has a relatively single style or belongs
to a limited fine-grained subclass.

After obtaining the features of the labeled images on the
server, we extract prototypes pj , j ∈ {1, . . . ,M} of all cate-
gories by calculating the average of all features with the same
category:

pj =

∑
(xs

i ,yi)∈Ds
Eθ(x

s
i ) ∗ I (yi = j)∑

(xs
i ,yi)∈Ds

I (yi = j)
(3)

where I is the indicator function. Finally, we send the ex-
tracted category prototypes pj , j ∈ {1, . . . ,M} and the pre-
trained CLIP image encoder Eθ to all the clients.

Pseudo Labeling. For client k, after receiving the encoder
Eθ and the prototypes pj from the server, the client uses
Eθ to extract features of all unlabeled images in Dk and
calculates the similarities between each feature Eθ(x

k
i ) and

all category prototypes pj , j ∈ {1, . . . ,M}.

sim(Eθ(x
k
i ),pj) =

Eθ(x
k
i )

⊤pj∥∥Eθ(xk
i )
∥∥ ∥pj∥

,xk
i ∈ Dk (4)

Based on the similarities, each image xk
i is assigned with

a pseudo-label ŷki , where ŷki = argmaxj sim(Eθ(x
k
i ),pj).

Due to the differences between Ds and Dk, there is a possi-
bility of making mistakes in pseudo labeling. In traditional
semi-FL methods, pseudo-labels are used for self-training.
Therefore, various semi-FL methods are required to improve
the quality of pseudo-labels. However, in our method, on one
hand, in feature processing, clustering can avoid uploading
representations of incorrect categories. On the other hand,
the introduction of text prompts during the generation pro-
cess can also prevent the generation of images that do not
correspond to the specified categories, which further ensures
the correct semantic information of generated images.

Feature Processing. After obtaining the unlabeled client
features and their pseudo labels {Eθ(x

k
i ), ŷ

k
i }

Nk
i=1, taking cat-

egory j as an example, we cluster the client features belong-
ing to category j and select L cluster centroids {zkj,l}Ll=1 to
upload. The objective of clustering is as follows:

argmin
zk
j,l

L∑
l=1

∑
xk
i ∈Dk

∥∥Eθ(x
k
i )− zkj,l

∥∥2 ∗ I (ŷki = j
)

(5)

Compared with randomly selecting L features for upload-
ing, the personalized distribution information and semantic
information contained in the cluster centroids are clearer.
Since only a small number of features are selected and each
feature will generate multiple images on the server, the qual-
ity of the uploaded features is crucial.

Meanwhile, we obtain the domain-specific representations
{gk

j }Mj=1 for each category on client k by averaging all the
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Figure 2: Generated images comply with different distribu-
tions on different datasets.

features belonging to category j. We weaken the individu-
ality of each image and highlight the commonality of each
category on the clients. During the conditional generation on
the server, we can generate images complying with different
client distributions by combining the cluster centroids with
different domain-specific representations.

After computing the cluster centroids and the domain-
specific representations, for privacy protection, we add noise
to all these features. The noise-adding process is as follows:

z̄kj,l =
√
αnz

k
j,l +

√
1− αnε1, ḡ

k
j =

√
αng

k
j +

√
1− αnε2

where ε1, ε2 ∼ N (0, I), n is a hyperparameter controlling
the intensity of the noise, and n ∈ {0, . . . , T}. We follow
the noise-adding process in Stable Diffusion (Rombach et al.
2022) and perform a noise-adding process with a specific
timestep to these image features. After this step, cluster cen-
troids {z̄kj,l}Ll=1, j = {1, . . . ,M} and domain-specific repre-
sentations {ḡk

j }Mj=1 are uploaded to the server.
Image Generation. After receiving z̄kj,l and ḡk

j uploaded
from the clients, for each cluster centroid z̄kj,l, the server
randomly combines z̄kj,l with the domain-specific represen-
tations which have the same pseudo-label j, the selected
domain-specific representations Gk

j,l = {ḡk0
j , . . . , ḡkR

j } is a
random subset of domain-specific representations {ḡk

j }Mj=1.
As for the generating process, following (Liu et al. 2022),

since we aim to use the cluster centroids z̄kj,l, domain-specific
representations ḡki

j , and the text prompts Cj as conditions
for generation, the conditional probability distribution of the
sample s in diffusion process can be written in the following
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OpenImage DomainNet
client0 client1 client2 client3 client4 average clipart infograph painting quickdraw sketch average

Ceiling 54.05 58.42 62.59 63.21 64.79 60.61 81.54 52.49 73.54 30.11 72.34 62.01
Fine-tune 36.67 46.81 45.43 47.17 42.1 43.64 67.57 45.47 65.28 10.42 62.14 50.17
Zero-shot 56.03 40.61 40.28 44.06 61.45 48.47 65.86 40.5 62.25 13.36 57.92 47.98
Prompt 48.61 54.03 59.07 58.42 53.49 54.72 66.42 37.45 59.62 10.73 63.92 47.63
FedAvg 41.11 44.06 46.57 47.45 37.63 43.36 49.95 30.67 51.07 1.74 38.46 34.38
SemiFL 48.15 52.78 61.05 55.23 46.16 52.67 69.55 47.16 64.54 7.02 63.32 50.32
RSCFed 28.97 38.04 40.82 33.98 36.35 35.63 71.5 45.73 61.96 11.53 65.03 51.15
FedDISC 56.11 62.49 62.53 59.16 56.77 59.42 72.54 43.47 67.42 17.71 67.25 53.68

NICO++ C NICO++ U
client0 client1 client2 client3 client4 average client0 client1 client2 client3 client4 average

Ceiling 89.19 91.9 89.51 90.47 85.1 89.23 96.35 96.42 96.88 97.01 97.26 96.78
Fine-tune 86.5 89.39 83.61 87.21 76.95 84.73 84.75 79.08 81.48 86.58 83.52 83.08
Zero-shot 78.66 85.26 80.01 80.7 72.14 79.35 89.2 89.24 87.19 85.5 88.6 87.94
Prompt 86.94 87.41 89.73 82.69 73.51 84.05 90.61 87.14 89.96 87.48 88.16 88.67
FedAvg 86.98 90.82 82.68 87.57 74.48 84.51 83.26 73.3 77.93 80.8 79.28 78.91
SemiFL 87.55 89.27 81.93 87.16 77.01 84.58 78.21 74.7 79.87 80.69 77.02 78.09
RSCFed 52.08 60.15 52.6 55.35 43.89 52.81 71.88 64.14 70.82 69.71 69.67 69.24
FedDISC 87.97 92.09 86.44 90.52 84.17 88.24 91.73 90.82 89.63 92.83 90.15 91.03

Table 1: The performances of different methods on OpenImage, DomainNet, and NICO++, where the italicized texts represent the
inaccessible supervised ceiling performance used solely as a reference, and bold texts represent the best performance excluding
the supervised ceiling performance.

form:
p(s|z̄kj,l, ḡ

ki
j , Cj) ∝ p(s|Cj)p(z̄kj,l|s, Cj)p(ḡ

ki
j |s, Cj)

Since s is initially sampled from a Gaussian distribution,
independent of the used cluster centroids and domain-specific
representations, the above formula can be rewritten as:

p(s|z̄kj,l, ḡ
ki
j , Cj) ∝ p(s|Cj)

p(s|z̄kj,l, Cj)
p(s|Cj)

p(s|ḡki
j , Cj)

p(s|Cj)
Therefore, specifically, we use the feature of category

prompt Cj with a cluster centroid z̄kc,l, a domain-specific
representation ḡki

c , and without any image feature to respec-
tively obtain three predicted noises. We accumulate these
three predicted noises in the following formula to obtain the
final predicted noise:

ϵ̂θ(st, t|z̄kj,l, ḡki
c , Cj) = ϵθ(st, t|Cj) + wf (ϵθ(st, t|z̄kj,l, Cj)

− ϵθ(st, t|Cj)) + wg(ϵθ(st, t|ḡki
j , Cj)− ϵθ(st, t|Cj))

where wf and wg are the weights of the predicted noises.
Overall, the generated images are obtained through the de-
noising process:

st−1 =
√
αt−1

(st −√
1− αtϵ̂θ(st, t|z̄kj,l, ḡ

ki
j , Cj)

√
αt

)
+
√
1− αt−1 − σ2

t · ϵ̂θ(st, t|z̄kj,l, ḡ
ki
j , Cj) + σtεt (6)

After obtaining the generated images, since both the clus-
ter centroids and domain-specific representations used for
image generation have their corresponding pseudo-labels,
the generated images are pseudo-labeled. So we can directly
fine-tune a classification model h with the generated dataset
for downstream classification tasks. The classification model
h = Fθ ◦ Eθ is a composite of the pre-trained CLIP image
encoder Eθ and a linear classifier Fθ.

Experiments

Experimental Setup

Datasets. We adopt three datasets to evaluate the perfor-
mance of FedDISC: DomainNet (Peng et al. 2019), Open-
Image (Kuznetsova et al. 2020), and NICO++ (Zhang et al.
2022b). NICO++ can be divided into the common contexts
(NICO++ C) and the unique contexts (NICO++ U). We di-
vide each dataset into six clients based on the inherent domain
division of the dataset itself. Due to space constraints, we
provide a comprehensive description of our dataset in the
supplementary materials.

Compared Methods. We mainly compare our method
with 7 methods: 1) Fine-tune: Directly fine-tuning the
model with the uploaded cluster centroids and correspond-
ing pseudo-labels. 2) Zero-shot: Using the zero-shot clas-
sification capability of pre-trained CLIP to classify client
images without any additional training. 3) FedAvg: Using
clients’ data and corresponding pseudo-labels for conduct-
ing FedAvg. In addition, we evaluate the SOTA semi-FL
methods: 4) SemiFL (Diao, Ding, and Tarokh 2021) and 5)
RSCFed (Liang et al. 2022). Note that as there is currently
no one-shot semi-FL method, the chosen semi-supervised
methods require multiple rounds of communication for com-
parison. 6) Prompts: Image generation is directly performed
without utilizing any image features as guidance and solely
relying on the text prompts. 7) Ceiling. As mentioned in the
introduction, the inaccessible performance ceiling involves
directly uploading and labeling all client images to the server
for training the aggregated model, also known as central-
ized training. And it needs to be mentioned that the FedAvg,
RSCFed, and SemiFL all need multiple iterations.
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Figure 3: Comparison between generating using clustering
centroids and the randomly selected client representations.
With the provision of clustering centroids, the introduction
of more representative semantic information leads to a signif-
icant improvement in the stability of the generated outputs.
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Figure 4: The inclusion of domain-specific representations
and their impact on the generated results. We can effectively
alter the style of the generated images by controlling the
added domain-specific representations, thereby enhancing
the diversity of generated samples.

Main Results
Table 1 shows the performance of our method and various
compared methods on four datasets. We highlight several
observations:
• In addition to the Ceiling, FedDISC achieves the best

average performance with only 1 communication round.
This demonstrates the potential of DMs in FL.

• From the results on DomainNet, we can see that FedDISC
has good performance on all clients except infograph. A
possible reason is that the Stable Diffusion still has limited
support for text in the images currently.

• On OpenImage, NICO++ C, and NICO++ U, compared
with other baselines, FedDISC exhibits a significant per-
formance improvement. That’s because Stable Diffusion
is exposed to more realistic images during pre-training.

• Despite the powerful ability of CLIP, directly using CLIP
to perform classification still cannot achieve the best per-
formance, therefore further fine-tuning is needed.

• Compared with Prompts Only, without the guidance of
client image features, generated images would be heavily
biased towards the most common distributions, demon-
strating the necessity of guidance.

• Compared with Ceiling, FedDISC does not exhibit sig-
nificant performance lag. It can even surpass in some
domains, affirming the ideas posited in the introduction.

client0 client1 client2 client3 client4
L = 3 Fine-tune 36.01 46.01 44.59 45.55 41.87
L = 3 FedDISC 56.33 61.93 58.62 56.71 58.74
L = 5 Fine-tune 36.67 46.81 45.43 47.17 42.10
L = 5 FedDISC 56.11 62.49 62.53 59.16 56.77
L = 10 Fine-tune 37.55 45.86 44.85 46.01 42.15
L = 10 FedDISC 57.16 63.84 61.12 57.91 59.13

Table 2: The influence of the number of cluster centroids.

client0 client1 client2 client3 client4

R = 3 53.41 62.15 61.31 56.87 55.49
R = 5 54.58 63.47 61.26 58.19 57.57
R = 10 56.11 62.49 62.53 59.16 56.77

Table 3: The influence of the number of generated images.

From Figure 2 and the other visualization results in the
supplementary materials, it can be seen that on DomainNet,
OpenImage, NICO++ C, and NICO++ U our method can
generate high-quality images that comply with various client
distributions while being semantically correct, collectively
underscoring the superior performance of FedDISC.

Ablation Experiments
The Number of Uploaded Cluster Centroids. We perform
experiments on OpenImage to discuss the influence of the
number of the uploaded cluster centroids L. Since this num-
ber is related to the performance of fine-tuning, we also test
the performance of fine-tuning under different L for compar-
ison. From Table 2, we can see that in most cases, uploading
a small number of cluster centroids is already sufficient to
represent the semantics of the subcategories. Increasing the
number of cluster centroids enhances the availability of client
information during the generation process, thereby further
elevating the quality of generated images.

The Number of Generated Images. We discuss the num-
ber of images generated by each cluster centroid on OpenIm-
age. From Table 3, we can find that the overall performance
of the method gradually improves as R increases. This is
reasonable as the increment of R indicates the increment in
the variety of generated data. However, generating a small
number of images is sufficient since the randomly sampled
initial noise can bring some varieties as well.

The Roles of Domain-specific Representations and
Cluster Centroids. We discuss the roles of Domain-specific
Representations (DR) and Cluster Centroids (CC) on Do-
mainNet. We compare FedDISC with cases where DR are
not used during generation, and cases where CC are not up-
loaded, but an equal number of client features are randomly
uploaded. As shown in Table 4, the removal of either DR or
CC has a significant influence on the performance.

The visualization results in Figure 3 demonstrate that with-
out the cluster centroids, the semantic information of the
generated images becomes ambiguous and may lead to gen-
erating images that do not match the given text prompts.
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DR CC client0 client1 client2 client3 client4

66.42 37.45 59.62 10.73 63.92
✓ 67.79 40.02 63.59 13.77 60.57

✓ 65.83 38.27 64.56 14.30 60.37
✓ ✓ 72.54 43.47 67.42 17.71 67.25

Table 4: The influence of different conditions.

Upload Params (M) Client Compute (Gflops)
FedAvg 30*632.08 30*1004.19
SemiFL 500*632.08 500*1004.19
RSCFed 100*632.08 100*1004.19
Ceiling 925.88 -

FedDISC 4.23 334.73

Table 5: Comparison about communication and computation.

Figure 4 shows that removing the domain-specific repre-
sentations leads to the style of the generated images being
monotonous, which reduces the diversity of the generated
images. These results are consistent with our goals of using
them mentioned in the introduction.

Discussions
The Privacy Issues. As mentioned in (Shao et al. 2023), the
transmission of features is one of the existing ways of infor-
mation sharing in FL. And considering the amount of data up-
loaded from clients, our method exhibits significantly lower
privacy leakage compared to other FL methods. Moreover, to
explore the feasibility of recovering private information from
SD using the noise-added features, we focus on validating
whether the generated images contain any privacy-sensitive
information, such as text, faces, etc. For example, in some
images with private text, we claim that the generated images
with completely different texts do not leak the user’s privacy,
even though they appear to be similar. In Figure 5, we select
four categories from OpenImage that may involve privacy-
sensitive information and show some client images and their
corresponding generated images. These results demonstrate
that FedDISC has a low risk of leaking privacy-sensitive in-
formation during generation. Due to the space limitation, we
provide further discussions in supplementary materials.

Communication and Computational Complexity. In Ta-
ble 5, to compare communication and computational com-
plexity with other compared methods, we conduct statistical
analyses on DomainNet. Among the compared methods re-
quiring iterations, the uploading and downloading of the im-
age encoder is needed in each round. Ceiling needs to upload
all client images. In contrast, FedDISC solely requires one
time of downloading image encoder and uploading image
features, incurring negligible communication.

Concerning computational complexity, since the server
is generally not constrained by device performance due to
tasks involving client scheduling and model aggregation, we
only assess computation on the clients. All computation of
Ceiling proceeds on the server and is devoid of reference

Generated ImageClient Image

Figure 5: The comparison between the raw client images and
their generated images. It can be observed that the generated
images do not leak any sensitive privacy present in the orig-
inal images, such as faces, text, etc. The generated images
exhibit only a stylistic resemblance to the original images.
Restoring original images starting from high-dimensional
features without any training is nearly impossible.

value. Among the compared methods requiring iterations,
multiple rounds of backpropagation exhibit more computing.
But FedDISC needs a single forward propagation for feature
extraction, resulting in approximately one-third of the com-
putation compared to backpropagation. The aforementioned
experiments demonstrate that FedDISC holds significant ad-
vantages in terms of communication and client computational
complexity, underscoring its practicality.

Conclusion
In this paper, we explore the task of one-shot semi-FL and
propose FedDISC, a new method that integrates pre-trained
DMs into the semi-FL framework for the first time. In a sin-
gle communication round and without any client training,
our method achieves performance comparable to the ceiling
performance and even surpasses it in some cases. The intro-
duction of domain representations and clustering centroids
further enhances the quality and stability of generation. Exten-
sive quantitative and visualization experiments demonstrate
the excellent performance of our method and underscore the
potential and prospects of DMs within the FL.
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