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Abstract

Ensemble clustering learns more accurate consensus results
from a set of weak base clustering results. This technique
is more challenging than other clustering algorithms due to
the base clustering result set’s randomness and the inacces-
sibility of data features. Existing ensemble clustering meth-
ods rely on the Co-association (CA) matrix quality but lack
the capability to handle missing connections in base cluster-
ing. Inspired by the neighborhood high-order and topological
similarity theories, this paper proposes a topological ensem-
ble model based on high-order information. Specifically, this
paper compensates for missing connections by mining neigh-
borhood high-order connection information in the CA matrix
and learning optimal connections with adaptive weights. Af-
terward, the learned excellent connections are embedded into
topology learning to capture the topology of the base cluster-
ing. Finally, we incorporate adaptive high-order connection
representation and topology learning into a unified learning
framework. To the best of our knowledge, this is the first en-
semble clustering work based on topological similarity and
high-order connectivity relations. Extensive experiments on
multiple datasets demonstrate the effectiveness of the pro-
posed method. The source code of the proposed approach is
available at https://github.com/ltyong/awec.

Introduction
Clustering is an important type of unsupervised learning
widely used in pattern recognition (Liu et al. 2017), medical
data mining (Dai et al. 2022), object detection (Wang et al.
2020), and other fields (Chen et al. 2022). Unlike supervised
learning, which has label information to refer to, accurate la-
bels are transparent to clustering, making it more challeng-
ing. In general, clustering algorithms divide different clus-
ters by extracting the internal associations of the data fea-
ture. Many representative clustering algorithms have been
proposed, such as density peak clustering (Rodriguez and
Laio 2014), multi-view clustering (Wang et al. 2018), and
subspace clustering (Elhamifar and Vidal 2013; Liu et al.
2012). Nevertheless, the variety in data types and distribu-
tions compels researchers to devise clustering algorithms
tailored to particular datasets. Ensemble clustering has re-
ceived much attention in recent years and can contribute to
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Figure 1: The missing connection refers to two samples of
the same class in the ground truth that are clustered into dif-
ferent classes by all base clustering, and the value of the CA
matrix element representing their relationship is also 0. The
missing connection rate refers to the ratio of missing edges
to the edges of the ground truth. The missing connection
rates from three real datasets are shown on the right side.

solving this problem. Ensemble clustering first adopts any
clustering algorithm to generate a set of base clustering re-
sult labels, and then applies the consensus function to obtain
a more robust consensus result.

Existing ensemble clustering algorithms interpret the in-
trinsic relationship patterns of samples by constructing CA
matrix. The CA matrix with symmetric properties describes
the probability that samples belong to the same class. There-
fore, consensus results can be obtained by using spectral
clustering or hierarchical clustering on the CA matrix, but
this leads to extremely low accuracy. Many ensemble clus-
tering algorithms introduce various theories to improve the
CA matrix and then improve the clustering performance.
Some of these methods improve the quality of the CA ma-
trix by applying weights to the CA matrix. For example,
(Berikov and Pestunov 2017) applied weights determined by
the evaluation function, (Huang, Wang, and Lai 2017) ap-
plied the weight calculated by the entropy value, and (Xu
and Ding 2021) applied the weight with dual-granularity.
Another approach involves designing a learning framework
to enhance the quality of the CA matrix. (Jia et al. 2021) uti-
lized low-rank tensor approximation to capture a refined CA
matrix. (Zhou et al. 2023) proposed a method to enhance the
CA matrix by active learning and self-paced learning. These
methods focus on non-zero element value information in the
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CA matrix, i.e., samples with edge connections. However,
even if the element value of the CA matrix reaches the max-
imum or minimum (1 or 0, where all base clustering clus-
ters two samples into the same class or different classes), it
could still be misleading compared to the ground truth. This
is due to the limitations of the base clustering algorithm, and
it leads to the case of missing connections. Figure 1 shows
the implications of missing connections. And Example 1 il-
lustrates the challenges of missing connections.

Example 1. Compared with the ground truth, the proportion
of missing connections in the base clustering can reach up to
50% in real datasets. Existing ensemble models cannot clas-
sify missing connected samples into the same class, espe-
cially in the self-paced ensemble model (Zhou et al. 2020a),
retaining the CA matrix element value of 0 is forced to be
extended to the final CA matrix as a constraint.

To tackle the above problem, this paper proposes a high-
order topological model with adaptive weights for ensem-
ble clustering (AWEC). The main support for the proposed
method is: when two same class samples are clustered into
different clusters by all base clustering, the value of the CA
matrix element corresponding to their relationship is 0. This
shows that in the view of the base clustering, there is no con-
nection relationship between them. From the perspective of
high-order connections, these two samples lack a first-order
connection. However, they may establish a more intricate
relationship (second-order connection) when considering a
neighbor network. Hence, the introduction of high-order
connection theory helps to compensate for missing connec-
tions, and combining multi-order connection information to
learn an optimal connection matrix has the potential to im-
prove the CA matrix. Furthermore, topology learning is em-
bedded into the learning framework to further enhance the
CA matrix. Specifically, topological similarity means that if
two samples are similar, the similarity between the remain-
ing samples and these two samples should be consistent.

Finally, this learning framework obtains a topology Z,
and the ultimate consensus result is derived by applying
spectral clustering (AWEC-S) or hierarchical clustering al-
gorithm (AWEC-H). The main contributions of this paper
are summarized as follows:

• This paper introduces high-order connectivity theory, en-
abling the learning of optimal connectivity matrices in
ensemble clustering.

• Furthermore, building upon the learned optimal connec-
tion matrix, this paper utilizes topological similarity the-
ory to explore the topological structure. Notably, this is
the pioneering use of topological similarity learning in
ensemble clustering, to the best of our knowledge.

• The comparison of experimental results with 9 state-of-
the-art methods shows the superiority of the proposed
method. Finally, we discuss parameter setting and opti-
mal order selection.

Related Work
Ensemble clustering aims to derive a strong and robust con-
sensus result by combining multiple weak base clustering

results. The CA matrix is widely used in various ensemble
clustering methods as a data object representing the relation-
ship between samples. The CA matrix is proposed by (Fred
and Jain 2005), and its definition is as follows:

Aij =
1

m

m∑
k=1

I (ck (xi) , ck (xj)) ,

I (ck (xi) , ck (xj)) =

{
1, ck (xi) = ck (xj)
0, ck (xi) ̸= ck (xj)

(1)

where Aij represents the element value of the CA matrix,
ck(xi) represents the cluster of the instance xi in the k-th
base clustering result and m is the total number of base clus-
tering results. The element values of the CA matrix can rep-
resent the probability that samples belong to the same class.

In general, the first-order connectivity of the graph ex-
plains the direct relationship between vertices. The second-
order connectivity of the graph represents the neighbor
network relationship between vertices. The more similar
the neighborhood network of two vertices, the higher their
second-order similarity. On this basis, it is extended to high-
order connections, and its mathematical formula is as fol-
lows (Zhou et al. 2020b):

G
(2)
ij = (Gi)

⊤
Gj , ∀i, j ∈ [n]. G(o) = G(o−1)G. (2)

where G(2) ∈ Rn×n is the second-order connectivity ma-
trix, Gi is the i-th row of the first-order connectivity matrix
G, n represents the number of samples, and G(o) is o-order
connectivity matrix.

High-dimensional data in the real world are often deter-
mined by low-dimensional structures (Chen, Li, and You
2020), generally linear or nonlinear structures. Recent meth-
ods for mining nonlinear structures are based on topology.
Topological relationships can be propagated through highly
reliable neighbors (Huang et al. 2022a,b). Topology learning
is formulated as follows:

min
Z(v),S

1

2

m∑
v=1

n∑
i,j,k=1

Q
(v)
jk

 Z
(v)
ij√
D

(v)
jj

−
Z

(v)
ik√
D

(v)
kk

2

+

β
∥∥∥S− µ(v)Z(v)

∥∥∥2
F
+ α∥Z(v) − I∥2F

s.t. Z(v)
ij ≥ 0,

(
Z

(v)
i

)⊤
1 = 1, µ(v) ≥ 0,

m∑
v=1

µ(v) = 1,

(
S
(v)
i

)⊤
1 = 1, S

(v)
ij ≥ 0, rank (LS) = n− c,

(3)
where Q ∈ Rn×n represents the similarity graph, S is the
consensus graph, Z(v) denotes the topological relationship
matrix, and the constraint on Z(v) guarantees that the sum of
each column of Z(v) is 1. D is the degree matrix of Q, and I
is the identity matrix. Both α and β are trade-off parameters.
The rank constraint rank (LS) = n − c on the Laplacian
matrix LS ensures that S contains c connected components.
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Our Proposed Methodology
First of all, we need to characterize high-order connection
information of CA matrix. We calculate the neighborhood
first-order connectivity matrix by the following formula:

G
(1)
ij =

{
k(xi, xj), if xi and xj are linked;
0, otherwise.

(4)

where k(·, ·) is a kernel function to measure the similarity
between xi and xj (Liang et al. 2020). In contrast to other
graph learning methods, where xi denotes the i-th sample,
the proposed method uses the i-th row of the CA matrix Ai

to denote xi, excluding the data features. This ensures that
the proposed method maintains the definition of ensemble
clustering. Next, we build high-order connection matrix ac-
cording to Eq. (2). After obtaining the high-order connection
matrix, a natural idea is to combine the connection informa-
tion of each order and then minimize the learning to an op-
timal connection matrix C ∈ Rn×n, which is formulated as:
minC

∑o
i=1

∥∥C −G(i)
∥∥2
F

, where o is the maximum order
of the high-order connection matrix. However, it treats each
order’s connection information equally, ignoring its unique-
ness.

A well-crafted mathematical definition should assign
greater weights to good connection matrices while less
weights to bad ones. Therefore, we adopt adaptive weights
to achieve it. Next, we introduce the CA matrix enhancement
assumption A = C + E in the ECCMS model (Jia et al.
2023), which considers that the CA matrix in real data is
the sum of pure CA matrix and noise matrix. We embed it
into the high-order model with the following formula:

min
C,E

o∑
i=1

∥∥∥C − αiG
(i)
∥∥∥2
F
+

λ

2
∥E∥2F

s.t. A = C + E, 1 ≥ Cij ≥ 0, C = C⊤,
o∑

i=1

αi = 1, αi ≥ 0,

(5)

where E ∈ Rn×n is the noise matrix, and αi denotes the
weight of Gi. A is the original CA matrix, and the con-
straints on C preserve the symmetric properties and the
range of matrix element values. After obtaining the optimal
connection representation that absorbs the multi-order con-
nection information, we further embed it as a topologically
learned similarity graph to get the final objective function:

min
C,E,Z

o∑
i=1

∥∥∥C − αiG
(i)
∥∥∥2
F
+

λ

2
∥E∥2F+

1

2

n∑
i,j,k=1

C

(
Zij√
Djj

− Zik√
Dkk

)2

+ γ∥Z − I∥2F

s.t. A = C + E, Z⊤
i 1 = 1, Zij ≥ 0, C = C⊤

rank (Lz) = n− c, 1 ≥ Cij ≥ 0,
o∑

i=1

αi = 1, αi ≥ 0.

(6)

(a) CA Matrix (b) G(1) Matrix (c) G(2) Matrix

(d) G(3) Matrix (e) Ground Truth

Figure 2: CA matrix and multi-order connectivity matrix vi-
sualization.

where D ∈ Rn×n is the degree matrix of topology Z ∈
Rn×n, and the last term γ∥Z − I∥2F is to avoid trivial so-
lutions. The rank constraint on the Laplacian matrix Lz en-
sures that Z exactly contains c connected components.

Based on Eq. (2) and Eq. (4), we compute the CA ma-
trix and multi-order connection matrices in Control dataset,
as visualized in Figure 2. Notably, the initial CA matrix ex-
hibits more noise compared to the ground truth, while the
other connectivity matrix is cleaner.

Optimization
We apply the Alternating Direction Method of Multipliers
(ADMM) method (Boyd et al. 2011) to solve the relevant
variables in the objective function. We introduce an auxil-
iary variable J for optimization. We can get the following
augmented Lagrangian function:

L =
o∑

i=1

∥∥∥C − αiG
(i)
∥∥∥2
F
+

λ

2
∥E∥2F + γ∥Z − I∥2F+

1

2

n∑
i,j,k=1

Cj,k

(
Zij√
Djj

− Zik√
Dkk

)2

+ ⟨Y1, A− C − E⟩

+ ⟨Y2, C − J⟩+ µ

2

(
∥A− C − E∥2F + ∥C − J∥2F

)
.

(7)
where Y1 and Y2 are Lagrangian multipliers. ⟨·, ·⟩ denotes
the inner product. Next, we need to fix some variables and
then update the target variable.

Updating C To update variable C, we need to fix all other
variables and then re-write the formula as follows:

C = argminC

o∑
i=1

∥∥∥C − αiG
(i)
∥∥∥2
F
+ ⟨Y2, C − J⟩

+
1

2

n∑
i,j,k=1

Cj,k

(
Zij√
Djj

− Zik√
Dkk

)2

+
µ

2
∥C − J∥2F

+
µ

2
∥A− C − E∥2F + ⟨Y1, A− C − E⟩ .

(8)
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For Eq. (8), it is an unconstrained problem, so it can be de-
rived directly to get the following results:

C = (2oI + 2µI)
−1

(
µ

(
A− E +

Y1

µ

)
+ µ

(
J − Y2

µ

)
+ FFT + 2

o∑
i=1

αiG
(i)

)
,

(9)

where F = D− 1
2Z.

Updating J Similarly, we fix other variables and update
variable J , the sub-problem is as follows:

J = argminJ ⟨Y2, C − J⟩+ µ

2
∥C − J∥2F

s.t. 1 ≥ J ≥ 0, J = J⊤.
(10)

For Eq. (10), according to (Jia et al. 2023), its solution has
an element-wise truncation result:

J = min

max


(
C + Y2

µ

)
2

+

(
CT +

Y ⊤
2

µ

)
2

, 0

 , 1

 .

(11)

Updating E We remove other variables and retain items
related to variable E, and we can get the sub-problem of E
as follows:

E = argminE
λ

2
∥E∥2F +

µ

2
∥A− C − E∥2F+

⟨Y1, A− C − E⟩ .
(12)

Regarding Eq. (12), we directly derive it and make the
derivative 0 to get the result as follows:

E =
µ (A− C) + Y1

λ+ µ
. (13)

Updating Z The sub-problem of Z are as follows:

Z = argminZ
1

2

n∑
i,j,k=1

Cj,k

(
Zij√
Djj

− Zik√
Dkk

)2

+ γ∥Z − I∥2F
s.t. Z⊤

i 1 = 1, Zij ≥ 0, rank (Lz) = n− c.

(14)

Solving the sub-problem of Z is a bit more complicated be-
cause it involves rank constraints. According to Ky Fan’s
Theorem (Fan 1949), rank constraints rank (Lz) = n − c
can be transformed into the following form:

minTr
(
H⊤LZH

)
s.t. H ∈ Rn×c, H⊤H = I.

(15)

Next, we can re-write Eq. (14) as follows:

Z = argminZ
1

2

n∑
i,j,k=1

Cj,k

(
Zij√
Djj

− Zik√
Dkk

)2

+ γ∥Z − I∥2F + 2δTr
(
H⊤LZH

)
s.t. Z⊤

i 1 = 1, Zij ≥ 0,

(16)

where δ is a self-tuned parameter. We first optimize the vari-
able H . Since Eq. (15) is essentially a spectral problem, we
only need to calculate the c eigenvectors of LZ correspond-
ing to the c smallest eigenvalues. For the optimization of
the variable Z in Eq. (15), we adopt the solution process in
(Huang et al. 2022b), and the detailed solution process is
shown in Algorithm 1.

Updating αi With other variables fixed, the sub-problem
for variable αi is as follows:

αi = argminαi

o∑
i=1

∥∥∥C − αiG
(i)
∥∥∥2
F

s.t.
o∑

i=1

αi = 1, αi ≥ 0.

(17)

We obtain the following Lagrangian function about Eq. (17):

L(αi) =
∥∥∥C − αiG

(i)
∥∥∥2
F
+ θ

(
o∑

i=1

αi − 1

)
(18)

where θ means the Lagrange multiplier. Directly, we take the
derivative of Eq. (18) and make it equal to 0, then we can get
the following result:

αi =
2Tr

(
CG(i)

)
− θ

2Tr
(
G(i)

(
G(i)

)⊤) (19)

Updating Y1, Y2, and µ Lagrange multipliers Y1, Y2, and
µ in ADMM algorithm are updated by:

Y1 = Y1 + µ(A− C − E),

Y2 = Y2 + µ(C − J),

µ = min(ρ1µ, µmax).

(20)

where ρ1>1 is to ensure the number of convergence is lower
and µmax is the maximum value of µ (Chen, Xiao, and Zhou
2019).

The overall flow of our proposed AWEC is shown in Al-
gorithm 2. In short, the most significant difference between
the proposed method and other ensemble methods is that an
optimal connection is learned from multi-order connection
information in an adaptive weight manner, and the topology
Z is learned via denoising optimal connection matrix.

Complexity Analysis
In total, there are five variables requiring updates. First, for
the update of variable C, because it involves matrix inverse
operation and matrix multiplication, its time complexity is
O
(
n3
)
. However, since the inverse operation is a fixed item,

it can be calculated in advance to improve certain time effi-
ciency. Regarding the variables E, J , Y1, and Y2, the time
complexity is O

(
n2
)
. The time complexity of variable αi is

O
(
n3
)
. To update variable Z, variable H needs to be up-

dated first, so the total time complexity of these two parts is
O
(
n2
)
. Overall, the time complexity of iteratively updating

variables is O
(
n3
)
.
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Algorithm 1: ALM update Z

Input: a nonzero vector q , G′ =
(
I −D− 1

2CD− 1
2

)
+ γI ,

b = 2γIi − δ ∥hi − h:∥22, ρ2 = 1.5, η = 10
Output: Topology Z

1: Eq. (16) can be rewritten as minzij≥0,z⊤
i 1=1 z

⊤
i G′zi −

z⊤i b.
2: Obtain the augmented Lagrangian function.
3: while not converged do
4: Update p by p = zi − 1

η ((G
′)
⊤
zi + q).

5: Update zi by minzij≥0,z⊤
i 1=1

∥∥∥zi − p+ 1
η q +

G′p−b
η

∥∥∥2
2
,

which can be solved according to (Huang, Nie, and
Huang 2015).

6: Update η by η = ρ2η.
7: Update q by q = q + η(zi − p).
8: end while
9: Obtain the topology Z

Algorithm 2: AWEC
Input: CA matrix A, Noise penalty parameter λ, γ
Initialization: C = J = Z = I , E = 0, Y1, Y2, µ = 0.1,
µmax = 108, ρ1 = 1.2, and ϵ = 10−2.
Output: Consensus result S.

1: while not converged do
2: Update C by Eq. (9).
3: Update J by Eq. (11).
4: Update E by Eq. (13).
5: Update Z by Algorithm 1.
6: Update α by Eq. (19).
7: Update the multipliers by Eq. (20).
8: Check the convergence conditions:||A−C−E||∞ <

ϵ and ||C − J ||∞ < ϵ.
9: end while

10: Apply the average-link hierarchical agglomerative clus-
tering method (AWEC-H) and spectral clustering
(AWEC-S) to Z.

11: Obtain consensus clustering result S.

Experiments
We conduct extensive experiments on 14 real datasets from
different domains. Characteristics of these datasets are pro-
vided in Table 1. The samples of the dataset range from
100 to 11000, and the number of clusters ranges from 2
to 36. We randomly run the k-means algorithm 100 times
on each dataset (http://archive.ics.uci.edu/datasets) (Huang,
Wang, and Lai 2017; Zhou, Zheng, and Pan 2019; Yu et al.
2022) to generate the base clustering result set. We set the
ensemble size M = 20, conduct 10 repeated experiments
with different base clustering combinations, and finally re-
port the average value. All compared methods use the same
combination of base clustering. For the number of neighbors
parameter in Eq. (4), we set it to 0.5s in all datasets, where
s = n/c represents the average sample number in each cate-
gory (Zhou et al. 2020b). We use 9 state-of-the-art ensemble
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(a) NMI (b) ARI

Figure 3: Friedman Test on two metrics. The blue dots indi-
cate the average rank, and the overlapping area of the lines
indicates whether the methods differ significantly.

clustering approaches, including DREC (Zhou, Zheng, and
Pan 2019), LWEA (Huang, Wang, and Lai 2017), CESHL
(Zhou et al. 2022), SPCE (Zhou et al. 2020a), TRCE (Zhou
et al. 2021), ECCMS (Jia et al. 2023), ECPCS-HC (Huang
et al. 2021), RSEC-Z and RSEC-H (Tao et al. 2019), for
comparison. KM and KM-best is the average and the opti-
mal result of the base clustering set generated by k-means.
We use three popular metrics to evaluate clustering perfor-
mance: Normalized Mutual Information (NMI), Adjusted
Rand Index (ARI), and F1-score.

Experimental Results
Tables 2, 3, and 4 show the experimental results of all algo-
rithms on three metrics. It is clear that the proposed method
outperforms all compared methods in most datasets. Specif-
ically, the proposed method consistently outperforms the
compared methods across all datasets, as evaluated by the
ARI metric. The proposed method achieves the best results
in the NMI metric for most datasets, except for Coil20 and
Control. Regarding F1-score, the proposed method also per-
forms the best, except for Vertebral2c. Overall, the perfor-
mance of the proposed method is extremely superior. Fur-
thermore, the results of AWEC-H and AWEC-S algorithms
yield comparable outcomes across most datasets, with an av-
erage error of less than 2% across all datasets. This demon-
strates that while AWEC-H exhibits superiority, it is not con-
sistently optimal. The minor error indicates that the parti-
tioning method has limited impact on the ultimate consen-
sus result. And the closest similarity to the proposed method
is the ECCMS method, while ECCMS exceeds the pro-
posed method only with the NMI metric on Control. In other
datasets, the proposed method surpasses ECCMS, especially
in Vertebral3c. The ARI metric of the proposed method is
improved by 38% compared with ECCMS. Finally, in large-
scale dataset such as USPS, our method is the best in all
three metrics, which shows that the proposed method is ap-
plicable to large-scale datasets. The superiority can be con-
firmed by the Friedman test in Figure 3.

Parameter Study
AWEC has two main parameters: the noise regularization
parameter λ and the parameter γ. We perform a 6*6 grid
search for λ in the set {0.01, 0.02, 0.04, 0.08, 0.1, 0.2} and
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No. Dataset Instance Feature Class No. Dataset Instance Feature Class

D1 Appendicitis 106 7 2 D8 IS 2310 19 7
D2 Breast Cancer 683 9 2 D9 Led7digit 500 7 10
D3 Binalpha 1404 320 36 D10 Ionosphere 351 34 2
D4 Breast Tissue 106 9 6 D11 MF 2000 649 10
D5 Coil20 1440 1024 20 D12 Vertebral3c 310 6 3
D6 Control 600 60 6 D13 Vertebral2c 310 6 2
D7 Fertility 100 9 2 D14 USPS 11000 256 10

Table 1: Characteristics of datasets.

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

KM 0.1502 0.4352 0.2681 0.1582 0.5854 0.5404 0.0115 0.3440 0.4065 0.1845 0.3743 0.2164 0.0638 0.2155
KM-best 0.3787 0.8520 0.3032 0.2051 0.6779 0.6174 0.0633 0.5670 0.4934 0.3363 0.5045 0.3246 0.1113 0.3388

CESHL 0.3802 0.8704 0.2843 0.1167 0.6365 0.5554 0.0847 0.5251 0.4540 0.1787 0.5102 0.0834 0.1576 0.4565
ECCMS 0.3093 0.8236 0.3042 0.1143 0.6163 0.6060 0.0758 0.4783 0.4420 0.1918 0.5290 0.2229 0.2405 0.5263
SPCE 0.4177 0.8460 0.2840 0.1868 0.6752 0.6068 0.1008 0.4693 0.3880 0.2482 0.5235 0.2847 0.0669 0.4252
DREC 0.1242 0.8279 0.3049 0.1005 0.5320 0.5584 0.0688 0.5244 0.4354 0.1737 0.4939 0.3377 0.0228 0.5276
TRCE 0.4533 0.8888 0.2968 0.1730 0.6618 0.5911 0.0848 0.5202 0.4781 0.1834 0.5268 0.0934 0.0101 0.4703
LWEA 0.2770 0.8221 0.3018 0.1102 0.6268 0.5776 0.0984 0.5222 0.4371 0.2065 0.5401 0.2303 0.2076 0.5373

ECPCS-HC 0.2991 0.8644 0.2710 0.1239 0.5582 0.5524 0.1069 0.5192 0.3998 0.1611 0.4811 0.0180 N/A 0.4442
RSEC-Z 0.3910 0.5176 0.2179 0.1266 0.5366 0.5328 0.0703 0.3588 0.3652 0.1082 0.5105 0.2369 0.2231 0.4261
RSEC-H 0.4030 0.6143 0.2358 0.0900 0.4730 0.5543 0.0703 0.3757 0.3559 0.1247 0.5105 0.2710 0.1677 0.4339

AWEC-S 0.3723 0.8888 0.3148 0.2147 0.6759 0.6356 0.1025 0.5475 0.4896 0.2040 0.5844 0.6055 0.2706 0.5607
AWEC-H 0.4659 0.8894 0.3191 0.2794 0.6919 0.6326 0.1202 0.4991 0.4773 0.3635 0.5723 0.5802 0.2700 0.5584

Table 2: Clustering performance measured by ARI.

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

KM 0.1707 0.4705 0.5746 0.3546 0.7853 0.7075 0.0405 0.6001 0.5469 0.2120 0.5989 0.3862 0.1899 0.5346
KM-best 0.2415 0.7546 0.6019 0.4364 0.8208 0.7723 0.0769 0.6712 0.6154 0.3255 0.6435 0.4353 0.2553 0.5785

CESHL 0.2144 0.7783 0.5688 0.2530 0.8011 0.6827 0.0275 0.6226 0.5496 0.1337 0.6442 0.2060 0.2056 0.6085
ECCMS 0.1959 0.7230 0.6000 0.3066 0.8430 0.7762 0.0407 0.6499 0.5577 0.1599 0.6938 0.3893 0.2826 0.6643
SPCE 0.2303 0.7444 0.6085 0.3800 0.8546 0.7452 0.0579 0.5873 0.5040 0.2002 0.6609 0.3831 0.1617 0.5675
DREC 0.1091 0.7197 0.5944 0.2432 0.7432 0.6868 0.0257 0.6341 0.5400 0.1278 0.6377 0.4778 0.1463 0.6388
TRCE 0.2561 0.8124 0.5946 0.3010 0.8272 0.7284 0.0288 0.6146 0.5746 0.1389 0.6575 0.2264 0.1546 0.6162
LWEA 0.1569 0.7136 0.5831 0.2487 0.7917 0.7068 0.0283 0.6246 0.5318 0.1524 0.6661 0.3710 0.2529 0.6512

ECPCS-HC 0.1819 0.7819 0.5846 0.3098 0.7892 0.7359 0.0393 0.6428 0.5414 0.1248 0.6373 0.2207 N/A 0.6169
RSEC-Z 0.2345 0.5496 0.5585 0.2743 0.8078 0.7192 0.0359 0.5764 0.5092 0.1060 0.6706 0.3050 0.2658 0.6158
RSEC-H 0.2439 0.6230 0.5657 0.2316 0.7956 0.7179 0.0387 0.6006 0.4984 0.1150 0.6638 0.3214 0.2083 0.6153

AWEC-S 0.2182 0.8225 0.6074 0.3761 0.8506 0.7560 0.0824 0.6687 0.5866 0.1595 0.7011 0.5278 0.3112 0.6865
AWEC-H 0.2989 0.8173 0.6105 0.4344 0.8416 0.7538 0.1021 0.6459 0.5795 0.3036 0.6972 0.5054 0.3137 0.6775

Table 3: Clustering performance measured by NMI.

γ in the set {0.1, 0.5, 1, 5, 10, 50} to learn the optimal
parameter combination. Figure 4 shows the NMI results of
the proposed method in different parameter combinations. In
general, the optimal results of the proposed method are af-
fected by the parameters to a certain extent. Still, we can find
some rules by observing the parameter sensitivity maps and
reducing the parameter search range of the optimal result.
Specifically, we observe that the subset of γ corresponding

to optimal results is {5, 10, 50}. Taking both parameters into
account, an appropriate combination is γ from {5, 10, 50}
and λ from {0.08, 0.1, 0.2}.

Table 5 shows the effect of maximum order o on en-
semble performance. We find that ensemble performance
is not increased as the maximum order becomes larger.
Whether AWEC-H or AWEC-S, the optimal performance
corresponds to the maximum order is no more than 3. To
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Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

KM 0.4815 0.6021 0.2891 0.3392 0.6059 0.6264 0.3353 0.3996 0.4651 0.4823 0.4229 0.4006 0.3420 0.2495
KM-best 0.7804 0.9331 0.3228 0.3636 0.6922 0.6881 0.6635 0.6150 0.5449 0.6328 0.5480 0.6153 0.7166 0.3995

CESHL 0.7905 0.9408 0.3082 0.3218 0.6567 0.6447 0.7083 0.6015 0.5156 0.6052 0.5642 0.5207 0.6918 0.5196
ECCMS 0.7900 0.9209 0.3272 0.3205 0.6393 0.6826 0.6783 0.5702 0.5067 0.6999 0.5834 0.5592 0.7060 0.5793
SPCE 0.8300 0.9304 0.3000 0.3623 0.6894 0.6771 0.7653 0.5563 0.4278 0.6167 0.5762 0.5380 0.7166 0.4893
DREC 0.6938 0.9227 0.3255 0.3108 0.5605 0.6416 0.6682 0.5975 0.4975 0.6034 0.5487 0.5938 0.6292 0.5773
TRCE 0.8484 0.9486 0.3175 0.3582 0.6808 0.6642 0.8806 0.5971 0.5321 0.7000 0.5787 0.5608 0.7192 0.5332
LWEA 0.7336 0.9201 0.3239 0.3178 0.6476 0.6557 0.7132 0.6047 0.5022 0.6218 0.5905 0.5781 0.6727 0.5886

ECPCS-HC 0.7433 0.9382 0.2977 0.3260 0.5849 0.6462 0.7173 0.5975 0.4727 0.5964 0.5386 0.4914 N/A 0.5121
RSEC-Z 0.8234 0.8042 0.2447 0.3237 0.5647 0.6249 0.8203 0.4792 0.4441 0.6808 0.5649 0.6004 0.6356 0.4947
RSEC-H 0.8208 0.8409 0.2618 0.3116 0.5075 0.6442 0.8179 0.4944 0.4396 0.6773 0.5657 0.6162 0.6480 0.5009

AWEC-S 0.8021 0.9486 0.3347 0.3782 0.6930 0.6977 0.8694 0.6173 0.5417 0.6663 0.6270 0.7525 0.7040 0.6095
AWEC-H 0.8511 0.9490 0.3385 0.4253 0.7077 0.6951 0.8881 0.5827 0.5305 0.7310 0.6164 0.7383 0.7166 0.6059

Table 4: Clustering performance measured by F1-score.

Max. Order 1st 2nd 3rd 4th 5th

D1 AWEC-S 0.2035 0.2182 0.1926 0.1901 0.1986
AWEC-H 0.2510 0.2989 0.1824 0.2164 0.1987

D12 AWEC-S 0.4933 0.5278 0.5145 0.5004 0.5015
AWEC-H 0.4854 0.5054 0.5118 0.5112 0.5075

D13 AWEC-S 0.3097 0.3112 0.3082 0.3104 0.3089
AWEC-H 0.2988 0.3137 0.3141 0.3075 0.3067

Table 5: NMI w.r.t. maximum order o.
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Figure 4: NMI w.r.t. γ and λ.

improve time efficiency, the better choice for the maximum
order of the proposed approach is 2.

Ablation Study
Table 6 shows the ablation experimental results of AWEC.
We observe that our proposed AWEC method, when exclud-
ing the topological module and high-order learning mod-
ule, shows a significant performance degradation. This once
again demonstrates the effectiveness of AWEC in introduc-
ing topology and high-order connections.

The Influence of Ensemble Size
Figure 5 shows the effect of five ensemble sizes, M =
{10, 20, 30, 40, 50}, with different algorithms on Vertebra2c
and Led7digit. In general, ensemble performance is posi-
tively correlated with ensemble size. The proposed method
basically maintains this property. At the same time, it is clear

Metric Method D1 D5 D11

NMI
AWEC-H 0.2989 0.8416 0.6972
w/o Topo 0.1640 0.8183 0.6547

w/o High-order 0.1524 0.8146 0.6007

Table 6: NMI w.r.t. Ablation results.
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Figure 5: Algorithm performance comparison on different
ensemble sizes M.

that our proposed AWEC outperforms the compared meth-
ods across all ensemble sizes.

Conclusion
In this paper, we propose a topological ensemble model
based on high-order connections with adaptive weights. The
proposed method learns the optimal connection matrix from
multi-order connection matrices with adaptive weights, uses
the optimal connection as the input for topology learning,
and finally integrates it into a dynamic and unified learn-
ing framework. Extensive experimental results show that
the proposed method surpasses many state-of-the-art meth-
ods. However, the optimal results of the proposed method
in some datasets are affected by parameters. Therefore, im-
proving the robustness of the algorithm is what we will ex-
plore in the future.
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