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Abstract

The substantial success of Vision Transformer (ViT) in com-
puter vision tasks is largely attributed to the architecture de-
sign. This underscores the necessity of efficient architecture
search for designing better ViTs automatically. As training-
based architecture search methods are computationally in-
tensive, there’s a growing interest in training-free methods
that use zero-cost proxies to score ViTs. However, existing
training-free approaches require expert knowledge to manu-
ally design specific zero-cost proxies. Moreover, these zero-
cost proxies exhibit limitations to generalize across diverse
domains. In this paper, we introduce Auto-Prox, an auto-
matic proxy discovery framework, to address the problem.
First, we build the ViT-Bench-101, which involves differ-
ent ViT candidates and their actual performance on multiple
datasets. Utilizing ViT-Bench-101, we can evaluate zero-cost
proxies based on their score-accuracy correlation. Then, we
represent zero-cost proxies with computation graphs and or-
ganize the zero-cost proxy search space with ViT statistics
and primitive operations. To discover generic zero-cost prox-
ies, we propose a joint correlation metric to evolve and mu-
tate different zero-cost proxy candidates. We introduce an
elitism-preserve strategy for search efficiency to achieve a
better trade-off between exploitation and exploration. Based
on the discovered zero-cost proxy, we conduct a ViT archi-
tecture search in a training-free manner. Extensive experi-
ments demonstrate that our method generalizes well to dif-
ferent datasets and achieves state-of-the-art results both in
ranking correlation and final accuracy. Codes can be found
at https://github.com/lilujunai/Auto-Prox-AAAI24.

Introduction
Recently, Vision Transformer (ViT) (Dosovitskiy et al.
2020a) has achieved remarkable performance in image clas-
sification (Liang et al. 2022; Jiang et al. 2021; Chen, Fan,
and Panda 2021), object detection (Wu et al. 2022), semantic
segmentation (Dong et al. 2021), and other computer vision
tasks (Li et al. 2021b; Liu et al. 2021). Despite these ad-
vancements, the manual trial-and-error method of designing
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Figure 1: Kendall (KT) & Spearman (SP) ranking correla-
tions of zero-cost proxies on AutoFormer (Left) and PiT
(Right) search space for four datasets including CIFAR-
100, Flowers, Chaoyang, and ImageNet. Results demon-
strate that our proposed Auto-Prox significantly outperforms
Synflow (Tanaka et al. 2020) and TF-TAS (Zhou et al. 2022).

ViT architectures becomes impractical given the expanding
neural architecture design spaces and intricate application
scenarios (Liu et al. 2023; Li et al. 2023b; Li and Jin 2022;
Li et al. 2023a, 2022d,c; Li 2022; Shao et al. 2023). Neural
Architecture Search (NAS) aims to address this issue by au-
tomating the design of neural network architectures. Tradi-
tional training-based architecture search methods (Xie et al.
2019; Wei et al. 2023; Hu et al. 2021; Dong et al. 2022;
Chen et al. 2022; Dong, Li, and Wei 2023; Dong et al. 2023;
Lu et al. 2024; Zimian Wei et al. 2024) involve training and
evaluating numerous candidate ViTs, which can be compu-
tationally expensive and time-consuming. Therefore, there
is a need for a more efficient architecture search of ViT.

Recent training-free NAS methods, such as NWOT (Mel-
lor et al. 2021) and TF-TAS (Zhou et al. 2022), have received
great research interest due to their meager costs. These
methods utilize hand-crafted zero-cost proxies (Tanaka et al.
2020; Chen, Gong, and Wang 2020), which are conditional
on the model’s parameters or gradients, to predict the ac-
tual accuracy ranking without the expensive training pro-
cess. However, there are still some drawbacks limiting their
broader application: (1) Dependency on expert knowledge
and extensive tuning. Lots of traditional zero-cost proxies
are transferred from different areas with extensive expert in-
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tuition and time-consuming tuning processes. In addition,
these hand-crafted zero-cost proxies can be influenced by
human biases and limited by the designer’s experience. (2)
Generality and flexibility. Hand-crafted zero-cost proxies
may perform well on the specific problem but can not gen-
eralize well to new or unseen datasets or tasks (see Fig-
ures 1). These zero-cost proxies usually have fixed formu-
las, and some do not associate with input or labels of the
target dataset. i.e., scores of the same architecture on differ-
ent datasets are the same, which does not match the facts.
Thus, two problems are naturally raised: (1) How to effi-
ciently discover the proxies without expert knowledge? (2)
How to reduce the gap between fixed zero-cost proxy and
variable tasks?

For the first problem, we propose Auto-Prox, a from-
scratch automatic proxy search framework, as an alternative
to traditional manual designs. Unlike hand-crafted zero-cost
proxies, Auto-Prox mitigates human bias and automates the
exploration of more expressive and efficient zero-cost prox-
ies. First, we establish the ViT-Bench-101 dataset, which
comprises diverse ViT architectures and their corresponding
performance on multiple datasets. ViT-Bench-101 provides
a benchmark for evaluating the score-accuracy correlations
of different zero-cost proxies. We then define the zero-cost
proxy search space, which includes ViT’s weights and gra-
dient statistics as candidate inputs, potential unary and bi-
nary mathematical operations, and computation graphs as
representations of zero-cost proxies. In our exploration of
the proxy search space, we introduce an elitism preserva-
tion strategy to enhance search efficiency. This strategy in-
volves judgment in the evolutionary search to preserve high-
performing zero-cost proxies.

For the second problem, we propose a joint correlation
metric, designed as the objective for the evolutionary proxy
search. Instead of solely optimizing the automatic proxy
based on high score-accuracy correlation within a single
dataset, this metric captures the weighted average of corre-
lations spanning multiple datasets. Based on the joint corre-
lation metric, Auto-Prox improves generalization, allowing
for discovering zero-cost proxies that perform well on new
or unseen datasets or tasks.

We conduct extensive experiments on CIFAR-100, Flow-
ers, Chaoyang (Zhu et al. 2021), and ImageNet-1K to val-
idate the superiority of our proposed method. For small
datasets, except for ImageNet-1K, we focus on distillation
accuracy instead of vanilla accuracy for ViTs, in contrast
to traditional NAS experiments. The experiments demon-
strate that our Auto-Prox can achieve better distillation accu-
racy than other zero-cost proxies when searched in the same
search spaces. Moreover, Auto-Prox obtains state-of-the-art
ranking correlation across multiple datasets, significantly
surpassing existing training-free NAS approaches (see Fig-
ure 1) without prior knowledge.

Main Contributions:
• We focus on a training-free architecture search for ViTs

across multiple datasets. We build ViT-Bench-101 and
discover the failures in the generalization of existing
training-free methods.

• We propose a from-scratch proxy search framework,
Auto-Prox, designed to eliminate the need for manual
intervention and enhance generalizability. We propose
a joint correlation metric to evolve different zero-cost
proxy candidates and an elitism-preserve strategy to im-
prove search efficiency.

• We experimentally validate that Auto-Prox achieves
state-of-the-art performance across multiple datasets and
search spaces, advancing the broader application of ViTs
in vision tasks.

Related Work

Vision Transformer (ViT) (Dosovitskiy et al. 2020a) has
shown remarkable performance in various visual recogni-
tion tasks due to its ability to capture long-range depen-
dencies. Recently, researchers have developed several au-
tomated techniques to discover more effective ViT archi-
tectures. For instance, AutoFormer (Chen et al. 2021a) uti-
lizes a one-shot NAS framework for ViT-based architec-
ture search, while BossNAS (Li et al. 2021a) incorporates
a hybrid CNN-transformer search space along with a self-
supervised training scheme. ViTAS (Su et al. 2021b) has
developed a cyclic weight-sharing mechanism for token em-
beddings of ViTs to stabilize the training of Superformer and
prevent catastrophic failures. Despite significant progress
in ViT architecture search, the aforementioned one-shot-
based methods are still computationally demanding. TF-
TAS (Zhou et al. 2022) stands as the first method to con-
duct a training-free architecture search for ViTs, assessing
ViT by merging two theoretical perspectives: synaptic diver-
sity from multi-head self-attention layers (MSA) and synap-
tic saliency from multi-layer perceptrons (MLP). However,
current training-free ViT architecture search methods strug-
gle to generalize across various domains. In this paper,
we introduce an automated approach to pinpoint excellent
proxies for ViTs across diverse datasets. Comparing with
EZNAS: Auto-Prox differs notably from EZNAS (Akhauri
et al. 2022) from the following aspects: (1) EZNAS is only
designed for CNNs, but our approach is customized for
ViTs. (2) EZNAS simply follows the search strategy from
AutoML-Zero. In contrast, we propose an elitism-preserve
strategy that significantly improves search efficiency and re-
sults (see Figure 5). (3) Our proposed Joint Correlation Met-
ric enhances ranking consistency across multiple datasets,
encompassing both small and large-scale datasets, such as
ImageNet-1K. In contrast, EZNAS’s testing is limited to
small datasets.

Methodology

In this section, we first introduce the search space of our au-
tomatic zero-cost proxy. We then delve into the details of
the joint correlation metric and the elitism-preserve strategy
during the evolutionary process. Subsequently, we give an
analysis of the searched zero-cost proxy. Finally, we illus-
trate the training-free ViT search process.
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Figure 2: Illustration of the Auto-Prox search process. First, we devise a comprehensive search space, incorporating primitive
operations, ViT statistics, and computation graphs to represent zero-cost proxies. We then randomly sample candidate zero-
cost proxies to initialize the population and evaluate their ranking consistency using the Joint Correlation Metric across four
datasets. Based on the JCM score, we pick up promising ones as parents and perform mutation to generate a new population.
Subsequently, we perform the elitism-preserve strategy to prevent the deterioration of the population.

Search Space of Automatic Zero-cost Proxy

To guarantee the effectiveness and flexibility of the zero-cost
proxy search space, we begin by revisiting the formulations
of existing zero-cost proxies. Using this foundational under-
standing, we design a search space that encompasses eight
input candidates, and 56 primitive operations. This compre-
hensive search space allows us to explore a wide range of
zero-cost proxies, uncovering potential ones that previous
hand-crafted approaches may have overlooked.

Review of Existing Zero-cost Proxies To investigate the
design of zero-cost proxies, we summarize the existing
ones in Table 1. Among these zero-cost proxies, Fisher
(Theis et al. 2018), SNIP (Lee, Ajanthan, and Torr 2018),
Plain (Mozer and Smolensky 1988), and SynFlow (Tanaka
et al. 2020) are conducted on ReLU-Conv2D-BatchNorm2D
blocks in CNNs. In contrast, TF-TAS (Zhou et al. 2022) is
based on transformer layers in ViTs. The inputs of these
zero-cost proxies derive from the following types of net-
work statistics: Activation (A), Gradient (G), and Weight
(W). Specifically, Fisher computes the sum over all gradi-
ents of the activations ∂L

∂z in the network, which can be used
for channel pruning. SNIP, employing weight θ and gradient
∂L
∂θ as inputs, computes a saliency metric at initialization us-
ing a single mini-batch of data. This metric approximates the
change in loss when a specific parameter is removed. Syn-
Flow, also using weight θ and gradient ∂R

∂θ as inputs, intro-
duces a modified version of synaptic saliency scores to pre-
vent layer collapse during parameter pruning. TF-TAS con-
siders the weights θl, θk and their gradients ∂L

∂θl
, ∂L
∂θk

from
multi-head self-attention (MSA) and multi-layer perceptron
(MLP) as inputs, respectively. ∥∥n is the Nuclear-norm.

Input Proxy Formula

A&G Fisher
∑

z∈A

(
∂L
∂z z

)2
W&G SNIP

∣∣(∂L∂θ )⊙ θ
∣∣

W&G Plain (∂L∂θ )⊙ θ

W&G SynFlow (∂R∂θ )⊙ θ,R = 1T
(∏

θi∈W |θi|
)
1

W&G TF-TAS
∑

θl

∥∥∥( ∂L
∂θl

)
∥∥∥
n
⊙ ∥θl∥n +

∑
θk

( ∂L
∂θk

)⊙ θk

Table 1: Overview of existing zero-cost proxies. A, W, and
G refer to Activation, Weight, and Gradient.

ViT Statistics as Input The input subsection in Table 1
explores the input choices for constructing zero-cost prox-
ies, in which activations (A), gradients(G), and weights(W)
are identified as the most informative and effective options.
Activation provides insight into the data distribution and in-
ternal network representations, while gradients highlight the
sensitivity of weights to the loss functions, and weights re-
flect the significance of network parameters. Building on this
observation, we register the activation, weights, and corre-
sponding gradients from each transformer layer as potential
inputs of our zero-cost proxy. For modules in the multi-head
self-attention (MSA), we collect their weights and gradi-
ents at initialization using a mini-batch of data. Regarding
multi-layer perception (MLP), we consider weights, gradi-
ents, activation, and activation gradients as possible inputs.
To differentiate between these inputs, we employ symbols
like F1 and F1g. As depicted in Figure 3, for a transformer
layer, there are a total of eight potential inputs in the zero-
cost proxy search space.
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Figure 3: ViT statistics of the zero-cost proxy search space,
including activation (A), gradient (G), and weights (W) from
MSA and MLP modules.

Primitive Operations To efficiently aggregate informa-
tion from different types of inputs, we search among dif-
ferent primitive operations to produce the final scalar out-
put. In the context of the zero-cost proxy, primitive opera-
tions are used to process ViT statistics, resulting in the zero-
cost proxy score for performance evaluation. We consider
two types of primitive operations, including unary opera-
tions (operations with only one operand) and binary opera-
tions (operations with two operands). Inspired by AutoML-
based methods (Li et al. 2022a; Real et al. 2020; Dong et al.
2023), we provide a total of 24 unary operations and four
binary operations to form the zero-cost proxy search space.
Since the intermediate variables can be scalar or matrix, the
total number of operations is 56.

Zero-cost Proxy as Computation Graph. The automatic
zero-cost proxy is represented as a computation graph, in
which the input nodes are ViT statistics, and the intermediate
nodes are primitive operations. The graph’s output yields the
proxy score used for ViT ranking. There are four main types
of computation graphs, namely Linear, Tree, Graph (DAG),
and unstructured memory-based structures (such as Automl-
zero (Real et al. 2020)). The expressiveness of the compu-
tation graph increases from Linear to unstructured memory-
based structures, but the valid structure in the search space
decreases. To balance the trade-off between expressiveness
and validity, we employ an expression tree to represent the
automatic zero-cost proxy. Based on previous works such as
SNIP (Lee, Ajanthan, and Torr 2018), and TF-TAS (Zhou
et al. 2022), most proxies typically require two types of in-
puts. Therefore, we build an expression tree with two inputs
(see Figure 2). The expression tree is applied to every trans-
former layer of ViT, with the final proxy score derived by
averaging the outputs from all transformer layers.

Evolving Automatic Proxy on Multiple Datasets
Figure 2 presents the automatic proxy search. At initializa-
tion, we randomly sample a population of N candidate zero-
cost proxies from the search space, ensuring that they are

Algorithm 1: Evolutionary Search for Auto-Prox
Input: Search space S , population P , max iteration T , sam-
ple ratio r, sampled pool R, topk k, margin m.
Output: Auto-prox with best JCM.

1: P0 := Initialize population(Pi);
2: Sample pool R := ∅;
3: for i = 1, 2, . . . , T do
4: Clear sample pool R := ∅;
5: Randomly select R ∈ P;
6: Candidates Gik := GetTopk(R, k);
7: Parent Gp

i := RandomSelect(Gik);
8: Mutate Gm

i := MUTATE(Gp
i );

9: // Elitism-Preserve Strategy.
10: if JCM(Gm

i )− JCM(Gp
i ) ≥ m then

11: Append Gm
i to P ;

12: else
13: Go to line 8;
14: end if
15: Remove the zero-cost proxy with the lowest JCM.
16: end for

valid primitively. Each of these proxies is then evaluated us-
ing the proposed Joint Correlation Metric, which serves as
the fitness measure in our evolutionary search process. In
each iteration of the evolutionary process, the top-k candi-
dates with the highest JCM scores are selected. From this
subset, a parent is randomly picked for mutation. When con-
ducting mutation, a random point in the computation graph
is chosen and mutated using new inputs or primitive oper-
ations. To guarantee the quality of mutated zero-cost prox-
ies and stave off degradation, we’ve introduced the Elitism-
Preserve Strategy. This strategy involves judgment and se-
lectively retaining only valid and promising zero-cost prox-
ies for the next generation. We repeat this process for T it-
erations to identify the target zero-cost proxy. In the follow-
ing, we introduce details of the Joint Correlation Metric and
Elitism-Preserve Strategy.

Joint Correlation Metric (JCM) Instead of measuring
ranking correlation in just one dataset, we propose the Joint
Correlation Metric (JCM), which measures the generaliza-
tion of proxies Q among multiple datasets. We use M
datasets {Di}Mi=0 and the weight {αi}Mi=0 to measure the
corresponding importance of datasets. JCM is formulated as
the weighted sum of the ranking correlation (Kendall’s Tau
τ ) as follows:

JCM(Q) =
1

M

M∑
i

αi × τ(Di,Q) (1)

where τ is the ranking correlation between the zero-cost
proxy score and actual accuracy on dataset Di.

Elitism-Preserve Strategy To prevent population deteri-
oration and premature convergence, the proposed Elitism-
Preserve Strategy involves comparing the performance of
the parent and newly generated offspring to measure the va-
lidity of the mutation. If the offspring is invalid or if its per-
formance is lower than that of the parent, the mutation is
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considered as deterioration, and therefore new offspring are
generated as a replacement. Algorithm 1 presents the de-
tailed process.

Analysis of the Searched Zero-cost Proxy
Auto-Prox needs ViT statistics as its input. To eliminate
the potential bias introduced by ViTs from a specific de-
sign space, we sampled ViT-accuracy configurations from
two distinct design spaces of ViT-Bench-101 and performed
zero-cost proxy searches on each. As a result, we discovered
two separate zero-cost proxies, AutoProxA and AutoProxP,
which are used independently to score ViTs sampled from
their corresponding search spaces. It is important to note that
Auto-Prox is an automated, from-scratch method, making it
versatile across different ViT search spaces and datasets. Be-
low, we present the formulas for the searched proxies within
the AutoFormer (AutoProxA) and PiT search spaces (Auto-
ProxP):

AutoProxA = | ∂L
∂θl

|+ 1

n+ ϵ

n∑
i=1

sigmoid

(
∂L
∂θk

)
(2)

AutoProxP = ∥sigmoid (θl)∥F − log

(
exp (∥θk∥)∑
i exp (∥θk∥)

)
(3)

where θl is the weight parameter matrix of QKV layers in
the multi-head self-attention (MSA) module, ∂L

∂θl
is the cor-

responding gradient matrix. θk is the weight parameter ma-
trix of linear layers in the MLP module. ∂L

∂θk
represents the

corresponding gradient matrix. n is the number of elements.
ϵ is the constant set as 1e-9.

∑
i means the sum of elements

in the i-th dimension. ∥∥F means the Frobenius-norm.
By analyzing the formulas, we found that high-

performing ViTs correlate positively with the following fac-
tors: (1) A larger norm of weight parameters or gradients in
QKV layers of the MSA module, which approximately indi-
cates the diversity of MSA (Dong, Cordonnier, and Loukas
2021). (2) More salient weight parameters in linear layers
of the MLP module, implying a significant impact on per-
formance. Moreover, we compare the searched proxies with
existing TF-TAS (Zhou et al. 2022), which is hand-crafted
and is included in our zero-cost proxy search space. Table 3
and Table 2 have demonstrated the superiority of Auto-Prox,
which significantly outperforms the TF-TAS method and

meanwhile enjoys more search efficiency, further emphasiz-
ing the advantages of automatic searching.

Training-free ViT Search
Once we have obtained a good zero-cost proxy through the
evolutionary search, we utilize it to perform a training-free
ViT search. Figure 4 presents the training-free ViT search
process. Specifically, we randomly explore a large number
of candidate architectures from the ViT search space. Then,
we evaluate each ViT architecture and select the best one
based on the searched zero-cost proxy (Auto-Prox) score.
Without the need for costly and time-consuming training,
the ViT search process is highly efficient.

Experiments
ViT-Bench-101
ViT-Bench-101 provides ground-truth accuracy of ViTs on
both tiny datasets and large-scale datasets. For the tiny
datasets, we employ CIFAR-100 (Krizhevsky 2009), Flow-
ers (Nilsback and Zisserman 2008), and Chaoyang (Zhu
et al. 2021), while for the large-scale datasets, we focus
on ImageNet-1K. Motivated by findings from (Li et al.
2022b), which show that ViTs achieve significant gains
on tiny datasets when distilled from an efficient CNN
teacher network, we include distillation accuracy for ViTs
on these datasets using a given teacher. Specifically, for
the smaller datasets excluding ImageNet-1K, ViT-Bench-
101 offers both distillation accuracy and vanilla accuracy
for ViTs sampled from AutoFormer and PiT search spaces.
This supports the evaluation of zero-cost proxies based on
the score-accuracy correlation in different scenarios, with or
without distillation. Regarding the ImageNet-1K dataset, we
follow the demonstration in (Chen et al. 2021a; Zhou et al.
2022), showing that the sub-nets with inherited weights from
the pre-trained AutoFormer supernet can achieve perfor-
mance comparable to the same network when retrained from
scratch. Thus, we sample ViTs from the AutoFormer search
space and collect their performance by inheriting weights
from the publicly available supernet.

Implementation Details
Evolutionary Zero-cost Proxy Search We partition the
whole ViT-Bench-101 dataset into a validation set (60%)
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Search Space Proxy CIFAR-100 Flowers Chaoyang
Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman Pearson

AutoFormer

GraSP 0.84±0.73 1.35 ±0.92 0.82 ±1.58 0.82±1.58 -7.33±0.10 -4.14±0.84 -4.42±0.38 -6.53±0.36 6.26±0.72

SynFlow 37.66±0.63 52.89±1.11 52.01±0.74 62.59±0.01 82.13±0.01 62.26±7.71 27.87±0.75 39.30±1.51 41.08±1.14

TENAS -30.03±0.28 -43.27±0.46 -42.66±0.26 -53.55±0.05 -73.79±0.11 -54.17±8.31 -27.81±0.11 -39.69±0.24 -40.79±0.18

NWOT 54.65±0.22 63.11±0.26 60.01±0.17 68.16±0.03 82.06±1.07 53.91±7.46 27.29±0.25 38.96±0.53 40.57±0.56

TF-TAS 35.89±0.26 50.84±0.58 50.51±0.46 63.90±0.04 83.28±0.09 62.80±8.58 27.14±0.35 38.52±0.68 40.57±0.40

Ours 55.67±0.74 63.87±1.04 60.56±0.93 69.19±2.03 83.65±0.93 79.52±7.15 33.76±0.46 41.76±0.66 42.63±0.45

PiT

GraSP -42.02±0.58 -58.71±0.74 -31.53±0.09 -50.66±0.07 -69.64±0.09 -40.90 ±0.57 -16.00±0.61 -22.94±1.33 -19.07±0.56

SynFlow 69.79±1.16 87.05±0.77 70.80±0.08 62.22±2.38 79.98±2.16 71.66±0.99 30.96±4.38 42.66±8.46 39.24±5.89

TENAS -2.13±0.30 -3.21±0.74 -1.68±0.17 -2.86±0.63 -4.23±1.46 -3.33±1.49 -3.34±0.03 -5.04±0.07 -3.55±0.13

NWOT -2.61±0.01 -4.13±0.01 -0.52±1.04 2.67±0.23 3.69±0.49 0.71±0.46 4.73±0.16 6.87±0.31 4.43±0.26

TF-TAS 63.83±0.06 82.20±0.04 58.37±1.84 64.48±0.08 82.91±0.06 67.23±0.79 37.99±1.54 52.92±2.54 42.68±0.62

Ours 82.07±0.33 95.12±0.09 73.25±1.30 79.25±0.94 92.94±0.33 79.53±0.14 41.67±4.45 55.09±7.50 49.17±3.94

Table 2: Ranking correlation results (%) on CIFAR-100, Flowers, and Chaoyang. Auto-Prox achieves the highest ranking
correlation with distillation accuracy on all three datasets of the ViT-Bench-101, demonstrating superior generalization.

Search Space Proxy
CIFAR-100 Flowers Chaoyang

Param(M) Dis.Acc(%) Search Cost Param(M) Dis.Acc(%) Search Cost Param(M) Dis.Acc(%) Search Cost

AutoFormer

Random 8.30 76.72 N/A 6.18 67.64 N/A 6.54 84.20 N/A
GraSP 5.77 77.53 2.62 h 5.29 66.08 2.71 h 6.12 84.81 1.52 h

SynFlow 9.52 77.83 1.91 h 8.13 68.61 1.85 h 5.82 83.87 1.77 h
TENAS 5.40 75.54 4.83 h 5.25 66.69 4.82 h 5.16 84.53 4.80 h
NWOT 8.36 76.79 3.24 h 8.87 69.18 3.24 h 5.53 84.71 3.07 h
TF-TAS 5.25 75.72 1.94 h 5.80 67.57 1.87 h 5.60 84.57 1.92 h

Ours 9.11 78.26 0.70 h 9.80 69.71 0.85 h 8.97 84.85 0.85 h

PiT

Random 5.33 75.84 N/A 4.88 65.30 N/A 5.24 82.94 N/A
GraSP 4.53 76.03 1.24 h 3.72 66.58 1.85 h 4.63 83.87 0.86 h

SynFlow 11.05 77.13 1.08 h 5.23 68.12 0.99 h 4.93 83.73 0.70 h
TENAS 6.93 76.09 5.14 h 4.26 68.03 5.14 h 6.76 83.64 5.07 h
NWOT 5.21 76.64 3.02 h 10.77 67.72 3.09 h 6.37 83.31 3.08 h
TF-TAS 16.07 77.06 1.21 h 10.30 68.21 0.95 h 4.32 84.34 0.71 h

Ours 6.22 77.26 0.51 h 6.20 68.85 0.39 h 4.49 84.53 0.31 h

Table 3: Comparing the distillation performance on three datasets of ViTs sampled from Autoformer and PiT search spaces,
Auto-Prox achieves competitive results with the lowest search cost (measured on a single NVIDIA A40 GPU).

for proxy searching and a test set (40%) for proxy evalu-
ation. There is no overlap between these two sets. In the
evolutionary search process, we employ a population size of
P = 20, and the total number of iterations T is set to 200.
To evaluate zero-cost proxy candidates, we randomly sam-
ple 100 ViT ground-truth configurations from ViT-Bench-
101 and measure the ranking consistency between its zero-
cost proxy score and actual accuracy. We then calculate the
Joint Correlation Metric based on the ranking consistencies
on multiple datasets as the fitness function. When conduct-
ing mutation, the probability of mutation for a single node in
a zero-cost proxy representation is set to 0.5. The margin m
in the Elitism-Preserve Strategy is 0.1. The zero-cost proxy
search process is conducted on a single NVIDIA A40 GPU
and occupies the memory of only one ViT.

Training-free ViT Search Based on the Auto-Prox score,
the ViT search process is efficient since gradient back-
propagation is not included. we randomly sample 400 ViTs
from AutoFormer (Chen et al. 2021a) and PiT (Zhou et al.
2022) search spaces. The parameter intervals of ViTs from
AutoFormer and PiT search spaces in our experiments are

Models Param Acc Gd.

Deit-Ti (Touvron et al. 2021) 5.7 72.2 -
TNT-Ti (Han et al. 2021) 6.1 73.9 -
ViT-Ti (Dosovitskiy et al. 2020b) 5.7 74.5 -
PVT-Tiny (Wang et al. 2021) 13.2 75.1 -
ViTAS-C (Su et al. 2021a) 5.6 74.7 32
AutoFormer-Ti (Chen et al. 2021b) 5.7 74.7 24
TF-TAS-Ti (Zhou et al. 2022) 5.9 75.3 0.5
Auto-Prox (Ours) 6.4 75.6 0.1

Table 4: ImageNet results on the AutoFormer search space.
Param, Acc, and Gd. refer to parameter(M), accuracy(%),
and GPU Days.

4 ∼ 9 M and 2 ∼ 25 M, respectively. The final accuracy
of the ViTs with the highest zero-cost proxy scores is re-
ported as the results of the ViT search process. The hyperpa-
rameters for ViT retraining and building ViT-Bench-101 are
adopted from (Li et al. 2022b).
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Method Kendall Spearman Pearson

Snip 14.61±1.55 30.62±6.03 49.45±10.68

SynFlow 14.81±2.33 27.69±7.25 44.19±10.35

NWOT 13.34±0.08 19.79±1.53 38.39±9.94

TF-TAS 14.52±1.74 29.93±6.38 48.70±11.04

Auto-Prox (ours) 25.44±0.90 37.10±1.86 51.84±10.07

Table 5: Ranking Correlation Results (%) for ImageNet-1K
dataset in ViT-Bench-101.

Figure 5: Left: Comparison of naive evolutionary search,
random search, and evolutionary search with Elitism-
Preserve Strategy, which are denoted as ’Naive’, ’Random’,
and ’EPS’. Right: Evolutionary process of ranking correla-
tions on different datasets, and the proposed JCM.

Experimental Results on Tiny Datasets
Table 3 presents a comparison of distillation results obtained
by using various zero-cost proxies on AutoFormer and PiT
search spaces. In addition, we evaluate the ranking correla-
tions of these zero-cost proxies under different experimental
settings using metrics such as Kendall’s tau (Abdi 2007),
Spearman’s rho (Stephanou and Varughese 2021), and Pear-
son’s correlation coefficient (Bowley 1928). As shown in
both Table 2 and Figure 6, Auto-Prox outperforms other
excellent zero-cost proxies. These findings demonstrate the
importance of using effective zero-cost proxies and the su-
periority of Auto-Prox in achieving higher performance in
ViT architecture search.

Experimental Results on ImageNet-1K
To validate the effectiveness and superiority of our proposed
Auto-Prox further, we evaluate its performance on the chal-
lenging ImageNet-1K dataset, comparing its ranking cor-
relation and top-1 classification accuracy with other hand-
crafted and automatically searched ViT methods. The re-
sults, as presented in Table 4, demonstrate that the optimal
ViT architecture searched by Auto-Prox outperforms both
excellent hand-crafted and other automatically searched ViT
methods, underscoring the superiority of our proposed ap-
proach. Importantly, our approach strikes a good balance be-
tween performance and search efficiency, requiring only 0.1
GPU days for ViT architecture search, making it a practical
and efficient approach for ViT architecture search. Further-
more, the ranking correlation results in Table 5 show that
our proposed Auto-Prox performs better than other zero-cost
proxies on the challenging ImageNet task, further validating
the effectiveness and generalization of our approach.

Figure 6: Correlation of distillation accuracy and Auto-
Prox scores on AutoFormer search space (top left: CIFAR-
100, top right: Flowers) and PiT search space (bottom left:
CIFAR-100, bottom right: Flowers).

Ablation Study
As shown in Figure 5 (left), we observe that the proposed
elitism-preserve strategy significantly enhances search effi-
ciency, leading to better results. The findings underscore the
importance of preserving the top-performing zero-cost prox-
ies during the evolutionary process to achieve better search
efficiency. Moreover, Figure 5 (right) reveals that optimiz-
ing the Joint Correlation Metric facilitates the discovery of
high-performing zero-cost proxies across multiple datasets.
We also conducted a zero-cost proxy search using vanilla
accuracy provided by ViT-Bench-101.

Conclusion
In this paper, we present Auto-Prox, an automated proxy dis-
covery framework designed for generality across multiple
data domains. To facilitate the evaluation of zero-cost prox-
ies, we propose the ViT-Bench-101 dataset as a standardized
benchmark. We design a search space of automatic zero-
cost proxies for ViTs and develop a joint correlation met-
ric to optimize genetic proxy candidates. Additionally, we
introduce an elitism preservation strategy to enhance search
efficiency. With the searched proxy, we conduct a ViT ar-
chitecture search in a training-free manner, achieving sig-
nificant accuracy gains. Extensive experiments validate the
efficiency and effectiveness of Auto-Prox across multiple
datasets and search spaces. We hope this elegant and practi-
cal approach will inspire more investigation into the gener-
alization of training-free ViT search methods.
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