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Abstract

Multimodal learning with incomplete input data (missing
modality) is practical and challenging. In this work, we
conduct an in-depth analysis of this challenge and find
that modality dominance has a significant negative im-
pact on the model training, greatly degrading the missing
modality performance. Motivated by Grad-CAM, we intro-
duce a novel indicator, gradients, to monitor and reduce
modality dominance which widely exists in the missing-
modality scenario. In aid of this indicator, we present a novel
Gradient-guided Modality Decoupling (GMD) method to de-
couple the dependency on dominating modalities. Specif-
ically, GMD removes the conflicted gradient components
from different modalities to achieve this decoupling, sig-
nificantly improving the performance. In addition, to flexi-
bly handle modal-incomplete data, we design a parameter-
efficient Dynamic Sharing (DS) framework which can adap-
tively switch on/off the network parameters based on whether
one modality is available. We conduct extensive experiments
on three popular multimodal benchmarks, including BraTS
2018 for medical segmentation, CMU-MOSI, and CMU-
MOSEI for sentiment analysis. The results show that our
method can significantly outperform the competitors, show-
ing the effectiveness of the proposed solutions. Our code
is released here: https://github.com/HaoWang420/Gradient-
guided-Modality-Decoupling.

Introduction
Multimodal learning (Ma et al. 2022; Tsai et al. 2019a), in
contrary to traditional tasks performed on a single modal-
ity, aims to utilize multiple sources of information from dis-
tinct modalities. Various multimodal frameworks have been
proposed to fully exploit complementary information across
multiple modalities. In the real world, it is not always easy
or feasible to obtain the data of all the modalities, leading
to practical research to address this missing-modality prob-
lem. In particular, in the medical domain, missing modality
is a vital problem. As a matter of routine, healthcare clinics
and facilities may lack the necessary infrastructure to ob-
tain valuable data of all the modalities, leading to a short-
age of critical diagnostic information. Therefore, improv-
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Unimodal Multimodal
(missing 3) (missing 1)

Method Flair T2 T1 Flair,T2,T1 ∆ (M.-U.)

U. base. 58.3 56.3 71.0 - -
ACN 67.7 67.9 71.2 67.9 -3.3
SMU-N. 71.8 67.2 69.5 67.9 -3.9
RFNet 69.2 71.0 66.0 75.2 +4.1
Ours 74.1 75.4 73.2 79.0 +4.6

Table 1: Two scenarios, unimodal (missing 3 modalities) and
multimodal (misssing 1 modality) evaluated on BraTS 2018
TC task with DSC (↑) score. Existing methods either ex-
hibit lower multimodal than unimodal performance (ACN,
SMU-Net) or have worse unimodal performance than base-
line (T1 of RFNet), indicating unresolved modality domi-
nance. In contrast, our method addresses this problem and
achieves the best performance.

ing the robustness of multimodal algorithms against modal-
incomplete data is crucial for applying deep learning in var-
ious multimodal tasks. Additionally, humans, unlike multi-
modal systems, possess a remarkable capability of recogniz-
ing concepts, objects, and sentiments even when presented
with only partial modalities or missing senses. For example,
a person can still effectively understand the emotional state
of another by listening to their tone of voice, even with-
out visual access to their facial expressions. This inherent
robustness against missing modalities in human perception
serves as part of the motivation for us to improve the robust-
ness of multimodal models.

Existing methods for handling missing-modality prob-
lems can be roughly classified into three categories: (1)
distillation and co-training between multiple networks;
(2) reconstruction-based modal-completion; (3) missing-
modality robust architecture. For distillation or co-training
approaches (Xing et al. 2022; Wang et al. 2021; Poklukar
et al. 2022), Although they marginally improve the missing-
modality robustness, their methods are highly dependent on
the choice of similarity measurements and require modal-
incomplete input to be filled with masking values (Wang
et al. 2021; Tsai et al. 2019a), which may cause unexpected
behavior in the models, leading to degraded performance
(Shen and Gao 2019). Reconstruction-based methods (Khat-
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tar et al. 2019; Shi et al. 2019; Sutter, Daunhawer, and Vogt
2021; Zhao, Li, and Jin 2021; Lian et al. 2022) unavoid-
ably bring high computational costs and excessively rely
on the quality of reconstructed samples. In contrast to the
reconstruction-based method, Ma et al. (Ma et al. 2022)
proposed an architecture based on Transformer models to
improve missing-modality robustness via special attention
masks and dynamic fusion strategies. Their method is lim-
ited to transformer-based architectures. Despite the success
of these methods, they do not intrinsically investigate the re-
lationship among various modalities.

Under the missing-modality setting, we find that the
modality dominance problem (Wu et al. 2022; Wang, Tran,
and Feiszli 2020; Huang et al. 2022; Peng et al. 2022),
which means multimodal models tend to rely on only the
dominating modality while under-fitting the other modali-
ties, can particularly degrade the performance. First, it leads
to under-optimization of unimodal ones, e.g. T1 of RFNet
(Ding, Yu, and Yang 2021) works worse than baseline in Ta-
ble 1. Second, modality dominance suppresses the capabil-
ity of modalities in multimodal settings. For example, ACN
and SMU-Net have weaker multimodal performance than
the unimodal one in Table 1. This indicates the models are
overly dependent on specific modalities and unable to prop-
erly integrate information from other modalities. Both cases
significantly affect robustness to missing modalities.

To reduce modality dominance and improve the missing-
modality robustness, we propose a novel gradient-guided ap-
proach, which investigates the relations of different modal-
ities by analyzing their gradients. Motivated by Grad-CAM
(Selvaraju et al. 2017), where gradients can quantify the con-
tributions of different components in a model, in the mul-
timodal learning context, we propose that gradients of dif-
ferent modalities can also indicate their relative significance
and dependency relationships. With the aid of gradients, we
achieve new insights into modality dominance, which can be
interpreted as gradient conflicts. Specifically, we find modal-
ity dominance occurs when gradients from different modal-
ities possess varied norms and opposing directions that can-
cel each other out. This finding inspires us to address the
missing modality problem by adjusting and balancing the
gradients to ensure that all modalities are well represented
during training, thereby preventing any single modality from
dominating the others. Unlike OGM-GE (Peng et al. 2022),
which modulates the gradients by their contribution to the
objective while ignoring inter-modality relation, our method
focuses on addressing the conflicts between modalities and
improving the robustness of multimodal models.

In this work, we propose a Gradient-guided Modality De-
coupling (GMD) method to balance modalities by analyz-
ing the gradients. Specifically, GMD decouples the entan-
gled gradients of different modalities by cancelling the con-
flicting gradients and keeping the modality-specific gradi-
ents, aiming to reduce modality dominance. Furthermore,
we design a Dynamic Sharing (DS) technique that flexi-
bly reduces the impact of absent modalities. Presented with
modal-incomplete input, DS does not require input to be
completed by filling 0s like many methods (Wang et al.
2021; Azad, Khosravi, and Merhof 2021) did. Instead, it can

adaptively switch off the network parameters corresponding
to the missing modalities, avoiding introducing misleading
0 fillers to the network.

Our contribution can be summarized as follows:
• We conduct an in-depth analysis of the missing modality

problem and find that modality dominance substantially
limits performance. This finding inspires us to address
this missing modality problem by balancing the modal-
ities. We adopt gradients as the effective indicators to
measure the importance of modalities, leading to the so-
lution of resolving modality dominance by balancing the
gradients.

• We propose a Gradient-guided Modality Decoupling
(GMD) method, which resolves modality dominance by
removing conflicted gradient components. It significantly
improves the robustness against the missing modality
problem.

• Unlike many existing methods, which add masking val-
ues (e.g., 0s) in the image or feature space to impute
missing modalities, we present a simple yet parameter-
efficient Dynamic Sharing (DS) architecture, which can
adaptively switch off the network parameters related to
the missing modalities.

• We conduct extensive experiments on the medical seg-
mentation dataset BraTS 2018, two sentiment analysis
datasets, CMU-MOSI and CMU-MOSEI. Our method
achieves state-of-the-art performance on these datasets,
demonstrating the great effectiveness of our approach.

Related Work
Multimodal learning In multimodal learning, different
modalities, e.g., texts, images (Zhang et al. 2023), videos
(Zadeh et al. 2016, 2018), Magnetic Resonance Image
(MRI) modalities (Dinsdale et al. 2021) or other sources
of information (Lu et al. 2022; Zhang et al. 2022), are of-
ten considered to be complementary to each other. Fusion
has been widely studied as one of the most critical topics in
multimodal learning. Nagrani et al. explored fusion strate-
gies and proposed the attention bottleneck for fusing various
modalities (Nagrani et al. 2021).

Transfer knowledge for missing modality robustness
Recent studies (Zhou et al. 2021b; Shen and Gao 2019;
Wang et al. 2021; Azad, Khosravi, and Merhof 2021) have
introduced Knowledge Distillation (Gou et al. 2021; Xing
et al. 2022) or co-training (Nigam and Ghani 2000) for im-
proving missing-modality robustness. Despite the compu-
tational and memory cost of additional networks in their
method, the choice of similarity measurements significantly
impacts the final performance (Azad, Khosravi, and Mer-
hof 2021). Moreover, their methods still require missing-
modality data to be completed with masking values, which
may cause unexpected behavior in the models (Shen and
Gao 2019).

Reconstruction-based modality completion To effec-
tively complete the absent modalities, some (Khattar et al.
2019; Zhao, Li, and Jin 2021; Zhang et al. 2019; Lian et al.
2022) propose to introduce reconstruction-based methods,
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e.g., Variational Auto-Encoders (VAEs) (Shi et al. 2019)
or Generative Adversarial Networks (GANs) (Zhou et al.
2021a). MVAE (Khattar et al. 2019) adopts a Product-of-
Expert (PoE) inference network to learn a joint-modality
representation. MMVAE (Shi et al. 2019) partially addressed
the over-confident problem of MVAE with a computation-
ally expensive gradient estimator. MoPoE (Sutter, Daun-
hawer, and Vogt 2021) provides a generalized multimodal
ELBO by combining MVAE and MMVAE. Intuitively, re-
construction can improve robustness by completing the
missing modalities. However, the final performance heavily
depends on the reconstruction quality.

Modality dominance Recent works on multimodal learn-
ing (Wu et al. 2022; Wang, Tran, and Feiszli 2020; Peng
et al. 2022; Huang et al. 2022) empirically studied the vast
existence of modality dominance, which indicates the model
solely relies on one critical modality, yet other modalities
remain under-optimized. OGM-GE (Peng et al. 2022) ap-
proaches the modality dominance problem from the opti-
mization perspective (Yu et al. 2020), which modulates the
gradients by their contribution to the objective. However,
OGM-GE ignores the inter-modality relation and is lim-
ited to bi-modal problems. In our work, we reformulate the
modality dominance incurred by the dependency of models
on dominating modalities into gradient conflicts. From the
optimization perspective, we propose a method to resolve
the modality dominance with the guidance of gradient.

Method
Overall Architecture
Figure 1 presents an overview of our architecture. Let
{X,Y } represents a sample from a multimodal dataset
where X = {x1, x2, . . . , xm} with m modalities and
Y is the corresponding label. In our framework, the data
from various modalities are first mapped to a common fea-
ture space via modality encoders {f1, f2, ..., fm}. A shared
backbone T (·; θ) parameterized by θ is used to process fea-
tures separately to obtain the unimodal representation hi for
each modality.

hi = T (fi(xi); θ) (1)
At the end of the shared backbone, the mapped represen-
tations are fused via flexible operator F(·). For modal-
incomplete cases, the hidden states corresponding to the ab-
sent modalities will be discarded. The hidden states H ⊆
{h1, h2, ..., hm} are then fused.

Hf = F(H) (2)

The final loss function L(·) and the corresponding gradi-
ent w.r.t. the shared parameters θ are computed between the
fused representations and the target label.

G(H) = ∇θL(F(H), Y ) (3)

The GMD method is applied to the gradients of two varied
modal-incomplete representations H1 and H2 (e.g., the gra-
dient of x1, x2 and x2, x3) to decouple the conflicts among
them. As a result, the calibrated gradients of shared param-
eters can be combined and reduced without conflicts. The

final gradient is then back-propagated through the shared
backbone and individual modality encoders.

Ĝ(H1), Ĝ(H2) = GMD(G(H1),G(H2)) (4)

Modality Dominance in Missing Modality
Multimodal models tend to be dominated by some vital
modalities while others remain under-optimized (Wu et al.
2022). On the one hand, modality dominance leads to under-
optimization of unimodal ones, e.g. T1 of RFNet (Ding, Yu,
and Yang 2021) performs worse than baseline in Table 1.
On the other hand, modality dominance suppresses the ca-
pability of modalities in multimodal settings. As shown in
Table 1, methods like ACN and SMU-Net perform worse
with multiple modalities than with individual modalities,
indicating overly dependency on specific modalities. Both
cases have a significant impact on the robustness of miss-
ing modalities. Decoupling the multimodal model’s depen-
dency on dominating modalities is the key to addressing the
missing-modality problem.

Gradient-guided Modality Decoupling
As discussed above, the modalities are coupled during train-
ing, leading to under-optimized modalities. In the context
of multimodal learning, determining the level of modality
dominance can be challenging due to the joint optimization
of modalities. When faced with missing modalities, a com-
monly used strategy is to improve the robustness of the mul-
timodal model by training with modal-incomplete input, i.e.,
dropping some modalities during training. Similarly, we pro-
pose using the modal-incomplete input to explore the cou-
pling of various modalities.

Modal-incomplete gradient component When optimiz-
ing the multimodal framework with modal-incomplete sub-
set Cj , i.e. some modalities are missing, the correspond-
ing gradient G(Cj) can be viewed as the modal-incomplete
component in the gradient space. Specially, when only
one modality xm is presented, G({xm}) is then consid-
ered the unimodal gradient component for modality xm.
This enables effective analysis of multimodal interactions
and provides insights into the role of modalities in the
learning process. For instance, by comparing G({x1}) and
G({x2, x3, ..., xm}), we can study the dominance and con-
flicts between modality x1 and the rest of the modalities
{x2, x3, ..., xm}. As we investigate the modal-incomplete
gradient components, we find that the modality dominance
problem can be interpreted by “gradient conflicts”. For no-
tational simplicity, we let Gj denote the gradient component
for modal-incomplete case Cj .

Gradient conflicts As shown in Figure 2 (a), by project-
ing the combined gradient to the direction of each modal-
incomplete gradient component, we find that the effective
update on different directions could be extremely imbal-
anced and biased towards the stronger case. To quantify this
gradient conflict, we first compute the cosine similarity be-
tween two gradients, Gj and Gk, If Sjk is positive, Gj and Gk

share a common optimization direction, and both missing-
modality cases can be well-optimized without gradient con-
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Stage 1: DS (Forward Propagation) Stage 2: GMD (Back Propagation)

Figure 1: Overall architecture including Dynamic Sharing (DS) and Gradient-guided Modality Decoupling (GMD). Multimodal
data is first mapped to a common feature space through modality encoders {f1, f2, ..., fm}. Then the outputs of these encoders
are fed to a shared architecture: T . Then the outputs {h1, h2, ..., hm} go through a flexible fusion operator (e.g., average pooling)
to obtain modal-incomplete representations {H1, H2, ...,Hz}. GMD decouples the conflicted gradients, and the calibrated
gradients are back-propagated to reduce modality dominance.

(a) (b) (c)

Figure 2: (a) demonstrates one gradient dominating another.
The combined gradient G only has a small projected compo-
nent at the direction of Gk, highlighted in green; (b) shows
the conflicting components to be removed, marked as ✗;
(c) visualizes the calibrated gradients. The corrected gradi-
ents are now of a similar scale and direction. Both modal-
incomplete cases can be effectively updated without conflict
during optimization.

flicts. Otherwise, a negative Sjk represents a significant di-
rection difference (i.e., gradient conflicts) between Gj and
Gk. The optimization is at risk of being misled, leading to an
inferior optimization.

Sjk =
Gj · Gk

||Gj ||||Gk||
(5)

Gradient conflicts lead to modality dominance Gradi-
ent conflicts indicate different modalities coupled with each
other during training with modal-incomplete cases, leading
to degraded performance. In particular, if there is one modal-
incomplete input with a large gradient norm, it will dominate

Angles (degree)
0 50 100 150

Ours
Original

0.0%

1.0%

2.0%

3.0%

4.0%

Figure 3: Gradients from modalities vary significantly in
norm (std: 4 × 104). Previous works ignore gradient con-
flicts, leading to bias towards dominant gradients (red). Our
GMD removes conflicting gradients and reduces angle dif-
ferences, achieving more balanced optimization (blue).

the optimization process.

||PGj

Gk
|| = ||Gk · Gj ||

||Gk||
= ||Sjk||||Gj || ≫ ||Gk||

(6)

We theoretically verify that a gradient with a significant
norm dominates the final gradient Greduced. With the as-
sumption that Sjk < 0 and ||Gj || ≫ ||Gk|| (a commonly
exist phenomenon as shown in Figure 3), the projection of
Gj onto the normal plane of Gk satisfies: Therefore, the final
reduced gradient between Sj and Sk in a vanilla optimiza-
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tion process becomes:

Greduced = Gj + Gk

= (Gj − PGj

Gk
) + (PGj

Gk
+ Gk)

≈ (Gj − PGj

Gk
) + PGj

Gk

= Gj

(7)

Thus, the reduced gradient for the final optimization process
is at risk of being dominated by Gj , leading to the coupling
of modalities.

Solution To reduce modality dominance caused by con-
flicting gradients, we propose a Gradient-guided Modality
Decoupling (GMD) method to alter the gradients and elimi-
nate the conflicting components when the gradient conflicts
happen. Specifically, when the cosine similarity Sjk is neg-
ative, we remove the projection of Gk onto Gj , denoted as
PGk

Gj
, from Gk, leaving only the component orthogonal to

Gj . The same procedure is applied to Gj .

G̃j = Gj − PGj

Gk
, G̃k = Gk − PGk

Gj
(8)

This essentially entails eliminating the competing gradient
components among modalities, which reduces the harmful
gradient interference between gradients of different modal-
incomplete cases. As shown in Figure 2 (c), the corrected
gradients can now be combined more efficiently without
negative interplay. To extend to a multimodal framework
with more than two missing-modality cases, we perform the
same process on any pair of cases with conflicting compo-
nents, i.e., negative cosine similarity. Our de-conflict process
can be viewed as adaptively adjusting weights on conflicting
gradients, preventing one from dominating the other,

G̃ = (1− Gk · Gj

||Gj ||2
)Gj + (1− Gk · Gj

||Gk||2
)Gk (9)

As shown in Figure 2 (c), the reduced gradient G̃ has pro-
jections on the original plane of Gj and Gk with a similar
norm. Therefore, the missing-modality case Sj and Sk can
both be effectively updated without bias. As shown in Fig-
ure 3, GMD adjusts the gradients and reduces the angle be-
tween most gradients to be within 90◦, which effectively re-
solves gradient conflicts and alleviates the modality domi-
nance problem.

Dynamic Sharing (DS)
The existing multimodal models (Wang et al. 2021; Azad,
Khosravi, and Merhof 2021) fuse different modalities’
features or input data before producing the final predic-
tion. Fusion operators, e.g., concatenation, require modal-
incomplete input to be completed by masking values (Dorent
et al. 2019) or reconstructed values (Zhou et al. 2021b,a),
which may introduce noises to fusion operators, causing un-
expected behavior of models.

The observation presented leads us to propose the Dy-
namic Sharing (DS) framework, as depicted in Figure 1.
This framework has three main components: modality-
specific encoders, a shared backbone, and a feature fusion

mechanism. Each modality, represented by Xm, is initially
processed by its modality-specific encoder fθm to a hidden
representation, Hm ∈ Rh, with a dimension of h. Hm is
then separately fed into the shared backbone fθs , to obtain
modality-specific features, Om. Finally, different modality-
specific features are combined by a flexible feature fusion
operator independent of the number of inputs, such as av-
erage pooling, to produce the final representation. With the
aid of modality-specific components and flexible feature fu-
sion, we can adaptively process the modal-incomplete data
without being affected by corrupted modality. Complemen-
tary information among modalities could be utilized through
shared parameters implicitly (Chang et al. 2019).

Correlation between GMD and DS The GMD combined
with the DS framework collectively offers a comprehen-
sive solution throughout the network optimization process.
Specifically, DS and GMD target the missing modality issue
in the forward and backward passes, respectively. DS allows
clean propagation of only the available modalities, avoiding
misleading fusion when modalities are missing. This pre-
vents “corrupted” gradients from ever being calculated in
the first place. Meanwhile, GMD acts as a safety net during
backpropagation, which provides a robust decoupling mech-
anism to resolve the conflicts in the gradients. The result is
a harmonious interplay between DS and GMD. This joint
effort at both the input and output of the network training
process allows DS and GMD to effectively and efficiently
enhance the missing modality robustness.

Complexity Analysis
As described above, the proposed GMD approach utilizes
missing modality cases during training to resolve modality
dominance. When all modal-incomplete cases are consid-
ered in each iteration, it requires fusing O(2M ) combina-
tions of modalities for a dataset with M modalities. To im-
prove the efficiency, instead of fusing all possible modality
combinations, we sample a subset of k combinations at each
training iteration. k is set to balance efficiency and cover-
age (e.g. k=5). This allows approximating GMD with much
fewer fused representations and backward gradient compu-
tation. Our experiments show that reducing the GMD com-
binations from O(2m) to O(km) greatly improves scala-
bility. In addition, the approximated GMD achieves similar
performance to the full version, demonstrating its effective-
ness.

Experiments
Datasets
Brain tumor segmentation (BraTS) Multimodal Brain
Tumor Segmentation Challenge (BraTS 2018) (Menze et al.
2015) dataset is comprised of 285 multi-contrast MRI scans
with four MRI modalities: (1) native (T1), (2) post-contrast
T1-weighted (T1CE),(3) T2-weighted (T2), and (4) T2 Fluid
Attenuated Inversion Recovery (Flair).

Multimodal sentiment analysis (MSA) The CMU-MOSI
dataset (Zadeh et al. 2016) is a popular benchmark for Mul-
timodal Sentiment Analysis (MSA). The dataset is a col-
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Task Methods Fl. T2 T1c T1 T2,Fl. T1c,Fl. T1c,T2 T1,Fl. T1,T2 T1,T1c ∼T1 ∼T1c ∼T2 ∼Fl. Full Avg.

WT

Baseline 81.4 70.1 78.3 79.6 75.4 83.7 74.0 84.4 73.0 81.9 84.7 84.6 85.4 83.3 86.8 81.6
U-HeMIS 79.9 79.2 58.5 54.3 86.0 83.3 81.0 83.9 80.8 63.8 87.0 87.0 85.1 82.1 87.6 77.9
HVED 82.1 80.9 62.4 52.4 87.5 85.5 82.7 84.3 82.2 66.8 88.6 88.0 86.2 83.3 88.8 79.2
ACN 87.3 85.6 80.5 79.3 87.8 88.3 86.4 87.5 85.5 80.1 88.3 88.4 89.0 86.9 89.2 86.1
RFNet 87.3 86.1 76.8 77.2 81.8 89.9 87.7 81.1 87.7 81.1 90.7 90.6 90.7 88.3 91.1 86.5
SMU-Net 87.5 85.7 80.3 78.6 87.9 88.4 86.1 87.3 85.6 80.3 88.2 88.3 88.2 86.5 88.9 85.8
OGM-GE 72.4 61.4 71.2 30.7 77.5 78.7 73.7 67.2 57.6 58.5 81.3 71.4 71.6 64.4 74.7 66.6
Ours 89.3 87.0 80.8 80.3 90.7 90.6 88.5 90.2 88.2 83.3 91.3 91.0 90.8 89.0 91.3 87.9

TC

Baseline 58.3 56.3 80.0 71.0 61.8 74.1 71.1 68.9 65.6 79.5 71.6 67.9 76.2 74.9 75.4 70.2
U-HeMIS 49.8 50.5 58.5 37.9 58.7 67.6 69.1 56.7 53.4 64.0 72.2 61.5 70.7 70.7 73.4 60.5
HVED 50.4 54.1 66.7 37.2 59.7 72.9 73.7 55.3 57.2 69.7 75.6 61.5 74.2 75.3 76.4 63.5
ACN 67.7 67.9 84.2 71.2 71.6 83.4 84.4 71.3 73.3 84.6 82.9 67.9 84.3 84.7 85.2 77.3
RFNet 69.2 71.0 81.5 66.0 74.1 84.7 83.5 73.1 73.1 83.4 85.0 75.2 85.1 83.5 85.2 78.0
SMU-Net 71.8 67.2 84.1 69.5 71.2 84.1 85.0 71.2 73.5 84.4 82.5 67.9 84.2 84.4 87.3 77.7
OGM-GE 53.7 45.3 62.3 29.9 58.0 64.7 62.4 50.9 42.3 57.4 64.9 49.4 60.4 55.9 59.2 53.5
Ours 74.1 75.4 82.4 73.2 77.8 83.9 83.9 77.1 78.3 83.4 84.7 79.0 84.8 84.7 84.9 80.4

ET

Baseline 35.4 42.2 81.1 37.6 44.6 63.2 66.4 39.7 44.9 70.9 65.0 49.3 58.2 64.6 61.6 55.0
U-HeMIS 24.9 23.3 60.8 12.4 28.0 68.0 68.6 29.0 28.3 65.3 69.7 33.4 69.9 69.7 70.8 48.3
HVED 24.8 30.8 65.5 13.7 34.6 70.3 70.2 24.2 30.7 67.0 71.2 34.1 71.1 71.1 71.7 50.4
ACN 42.8 43.0 78.1 41.5 46.0 77.5 75.7 43.7 47.4 75.2 76.0 42.1 76.2 76.1 77.1 61.4
RFNet 38.2 46.3 74.9 37.3 49.3 76.7 75.9 41.0 45.7 78.0 77.1 49.9 76.8 76.8 78.0 61.7
SMU-Net 46.1 43.1 78.3 42.8 46.0 77.3 75.7 44.0 47.7 77.3 75.4 43.1 76.2 76.2 79.3 62.3
OGM-GE 29.5 24.5 73.9 12.0 28.5 51.9 53.4 28.3 20.7 46.8 45.0 26.1 48.8 40.9 43.1 38.2
Ours 47.4 57.0 84.5 42.2 59.0 85.1 84.7 51.1 57.9 84.4 84.5 59.2 84.6 84.2 84.0 69.7

Table 2: Experimental results on BraTS 2018 dataset measured by DSC(↑). Flair, T2, T1CE and T1 are 4 MRI modalities. ∼
(·) indicates the modality is absent. Our proposed method achieves the best average performance on all segmentation tasks under
various modal-incomplete cases and full-modal scenarios. Our method significantly improves model robustness, especially on
the most challenging task ET.

lection of YouTube monologues where speakers express
their opinions on various topics. The CMU-MOSEI dataset
(Zadeh et al. 2018) is an enhanced version of CMU-MOSI
with a more extensive collection of utterances and improved
variety in samples, speakers, and topics.

Methods # of Missing Modality

DS GMD 3 2 1 0 Avg.

49.1 54.9 59.3 61.6 56.2
✓ 46.9 61.8 66.6 70.8 61.5
✓ ✓ 54.8 69.1 76.8 82.1 70.7

Table 3: Ablation studies on our proposed approaches. The
performance is measured by DICE (↑) on the BraTS dataset.
Both DS and GMD significantly contribute to the robustness
of our framework.

Implementation Details
We evaluate the performance of all presented models fol-
lowing conventional setting (Tsai et al. 2019b), where train-
ing modalities are all available. After training, models are
tested against all missing-modality scenarios, i.e. missing
1, 2, ...,m − 1 modalities. For evaluations on the BraTS
dataset, the Dice similarity coefficient (DSC ↑) is used.
For experiments conducted on MSA, we follow the set-
tings adopted in GMC (Poklukar et al. 2022) and report the
mean accuracy (Acc) and F1 score (F1) missing-modality
and full-modality scenarios. Experiments are conducted on

4×RTX3090 with 24 GB memory. The reported results are
averaged over 5 runs.

Missing modality baseline Training each modality with
a dedicated network is an intuitive way to demonstrate the
capability of individual modalities on various tasks. In ad-
dition, since no interaction between modalities is involved,
an ensemble of unimodal networks provides a multimodal
fusion baseline for multimodal performance.

Performance on BraTS and MSA
Performance on BraTS Compared to existing methods,
our method is least impacted by missing-modal data over-
all. In addition, our method achieves superior performance
on the most challenging ET task, with a solid improve-
ment of 5.3% over the previous method SMU-Net. With
modal-complete data, our method achieves comparable per-
formance to the existing method, which proves that our ap-
proach can improve the missing-modality robustness with-
out sacrificing the full-modal performance.

Analysis of modality dominance The results obtained on
BraTS 2018, shown in Table 2, validate our analysis and
findings regarding the modality dominance problem. In Ta-
ble 2, most existing approaches exhibit degraded perfor-
mance multimodal performance compared to their unimodal
performance. Moreover, in some cases, the unimodal per-
formance is not fully optimized compared to the baseline. In
contrast, our proposed method achieves the best unimodal
performance for 3 out of 4 modalities and the highest mul-
timodal performance. This demonstrates that our gradient-
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Available Modalities

Meth. l a v a,v l,a l,v Full Avg. ↑

M
O

SI

CPM. 77.3 54.3 55.8 53.7 75.6 74.8 70.6 66.0
GMC 75.8 57.6 55.6 58.1 73.5 73.2 77.6 67.3
MMIN 84.0 54.6 55.2 59.5 83.7 84.3 84.1 72.2
GCN. 82.5 51.7 57.3 60.2 84.1 82.2 82.2 71.5
Basel. 84.9 51.4 54.4 58.4 81.7 81.9 80.8 70.5
Ours 84.9 56.9 56.7 60.2 85.4 85.2 86.0 73.6

M
O

SE
I

CPM. 77.7 65.8 59.1 55.0 79.3 78.9 79.1 70.7
GMC 76.7 65.0 63.8 66.8 75.0 75.6 80.0 71.8
MMIN 85.8 69.2 65.4 70.1 85.6 85.6 85.5 78.2
GCN. 86.4 67.1 66.5 66.5 85.9 86.4 86.4 77.9
Basel. 86.1 71.4 68.8 72.2 84.5 84.5 82.3 78.6
Ours 86.4 72.3 70.4 72.6 86.7 87.1 87.1 80.4

Table 4: Experimental results on CMU-MOSEI and CMU-
MOSI dataset, measured by prediction accuracy (Acc) (↑).
l, a,v represents language, audio and video modalities, re-
spectively. Among the compared methods, our proposed ap-
proach achieves the best overall performance.

Modal-incomplete cases used in training

Task missing 1 missing 2 missing 3 all cases

WT 82.9 86.8 85.8 88.2
TC 75.9 80.1 80.5 80.5
ET 65.3 68.3 60.4 70.0

Average 74.7 78.4 75.6 79.5

Table 5: Missing modality performance of GMD using a
subset of modal-incomplete cases on BraTS dataset mea-
sured by DSC (↑). With only cases of missing 1, 2, or 3
modalities used during training, GMD can still achieve com-
parable performance to the full version.

guided modality decoupling approach effectively addresses
the modality dominance problem by properly balancing and
optimizing all modalities simultaneously.

Performance on MSA GMC employs a strong baseline
Multimodal Transformer (Tsai et al. 2019a) for better multi-
modal performance. However, our method achieves compa-
rable multimodal performance to GMC without additional
multimodal branch. Moreover, our approach improves on
top of the baseline method by utilizing complementary in-
formation among different modalities, achieving the best av-
erage performance of all scenarios.

Ablation Study
Analysis on GMD As demonstrated in equation (9), the
de-conflict process of GMD can be interpreted as adap-
tively assigning weights to gradients. As shown in Fig-
ure 4, the weights given by GMD vary in different modal-
incomplete cases. For the dominating modality (T1CE), its
gradient is dynamically adjusted and suppressed (relative
to other cases) to allow cases with only weak modalities
to be well-optimized. The adaptive adjustment of gradient
weights proves that GMD can decouple the modality domi-
nance by identifying and resolving conflicts between gradi-
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Figure 4: Visualization of weights given by GMD on differ-
ent modal-incomplete cases, smoothed with a window size
of 100 steps. For cases with T1CE, the dominant modality,
presented, its gradient (purple line) is relatively suppressed
to allow for optimization of cases with only weak modalities
(red and blue line).

ents.

Analysis on DS framework Dynamic Sharing (DS)
framework, compared to the vanilla multimodal framework,
the flexibility is greatly improved. For modal-incomplete
cases, DS does not require the imputation of missing modal-
ities. Instead, only the layers related to presented modalities
are used. Thus, the framework is not affected by masking
values contrary to the existing method. As a result of shared
parameters, the performance of DS on multimodal input is
significantly improved compared to the missing-modality
baseline, as shown in Table 3.

Efficiency of GMD Table 5 demonstrates how the choice
of modal-incomplete cases used for GMD affects the per-
formance. Missing 1 modality cases can not fully guarantee
strong unimodal performance, as a single modality may still
dominate the others. On the other hand, missing 3 modalities
sacrifices the multimodal fusion capability. In contrast, the
missing 2 cases induce balanced gradient conflicts between
modalities, exposing the core issues of dominance while re-
taining sufficient uni- and multi-modal representations.

Conclusion
In this paper, we identify the modality dominance problem
in the context of missing modality that leads to degraded
performance on modal-incomplete data. Based on theoreti-
cal analysis and experiments, we reformulate the modality
dominance problem into gradient conflicts during optimiza-
tion. We present GMD–a gradient-guided modality decou-
pling method to address modality dependency and achieve
robustness to the missing-modality problem. In addition, to
flexibly deal with modal-complete, we propose a parameter-
efficient Dynamic Sharing (DS) architecture. Experiments
across multiple multimodal datasets demonstrate the supe-
rior robustness of our method.
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