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Abstract
Predictive maintenance has emerged as a critical application
in modern transportation, leveraging sensor data to forecast
potential damages proactively using machine learning. How-
ever, privacy concerns limit data sharing, making Federated
learning an appealing approach to preserve data privacy. Nev-
ertheless, challenges arise due to disparities in data distribu-
tion and temporal unavailability caused by individual usage
patterns in transportation. In this paper, we present a novel
asynchronous federated learning approach to address sys-
tem heterogeneity and facilitate machine learning for predic-
tive maintenance on transportation fleets. The approach intro-
duces a novel data disparity aware aggregation scheme and a
federated early stopping method for training. To validate the
effectiveness of our approach, we evaluate it on two indepen-
dent real-world datasets from the transportation domain: 1)
oil dilution prediction of car combustion engines and 2) re-
maining lifetime prediction of plane turbofan engines. Our
experiments show that we reliably outperform five state-of-
the-art baselines, including federated and classical machine
learning models. Moreover, we show that our approach gen-
eralises to various prediction model architectures.

Introduction
Federated Learning (FL) has emerged as a collaborative
learning paradigm that prevents privacy issues by not shar-
ing training data but only model parameters, e.g., the learned
neural network weights. A global server coordinates the
training of multiple clients, which only have access to their
local data (McMahan et al. 2017). In canonical federated
learning, client models are collected synchronously to up-
date the global model.

However, this approach does not apply to many hetero-
geneous real-world problems, in which clients may send
updates at irregular intervals or drop out during training
(Li et al. 2020). Asynchronous federated learning (AFL)
schemes that address the heterogeneity of the systems have
emerged as an alternative to classic FL (Chen, Mao, and Ma
2019). In AFL, the global server aggregates parameter up-
dates of a single client as soon as that device has completed
its local training round. However, existing AFL approaches
suffer from the following problems: (i) While existing sys-
tems aim to select the most promising nodes for training
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(Chen et al. 2021; Wu et al. 2020), they neglect the data
disparity, i.e., differences in the amount of available train-
ing data among the clients. The data disparity can introduce
a bias towards single contributors to the global model. The
few existing approaches addressing data disparity lack flex-
ibility and favour contributors with large amounts of data
(Hao, Zhao, and Zhang 2020). (ii) Existing approaches can
not handle dropouts, i.e., clients that lose the connection to
the server during training, and typically exclude these clients
from being aggregated into the global model (Zhang, Bosch,
and Olsson 2021). (iii) Due to the different data volumes and
convergence speeds, it is unclear when to stop the federated
training since existing schemes, e.g., early stopping, can not
be directly applied (Li et al. 2021).

These challenges are particularly relevant for predictive
maintenance in transportation fleets, where the clients are
individual vehicles. Due to individual travel patterns, the
vehicles produce data at different sizes and may drop out
due to connectivity problems (Yang et al. 2022). In this pa-
per, we propose a novel data disparity aware asynchronous
federated model which enables predictive maintenance for
engines in transportation fleets. We address the data dis-
parity and dropouts by proposing a Disparity Aware AFL
(DAAFL) aggregation scheme which considers the training
data sizes and update frequencies of the individual clients
throughout the aggregation weights. Moreover, we address
the training length determination by introducing a novel
AFL early stopping method, which computes a federated
validation loss. To the best of our knowledge, this is the first
study exploring an asynchronous federated stopping crite-
rion. We perform an extensive evaluation on two real-world
datasets of transportation fleets, i.e. the prediction of oil di-
lution of car engines and the prediction of the remaining life-
time of aeroplane turbofan engines. We simulate individual
dropout patterns for each client to show the performance un-
der temporal unavailability. Our experiments show that our
proposed DAAFL approach can reliably improve over ex-
isting synchronous, semi-asynchronous and asynchronous
federated learning schemes in both tasks. Furthermore, we
demonstrate that our DAAFL generalises to the established
neural model architectures for time series prediction.

Our contributions can be summarised as follows:

• We formulate a dynamic parameter aggregation rule and
a federated early stopping scheme which considers data
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disparity and temporal availability of clients and iden-
tifies an appropriate number of training iterations in a
highly heterogeneous federation.

• We implement a data disparity and temporal unavailabil-
ity aware asynchronous federated learning approach for
time series data for predictive maintenance on transporta-
tion fleets.

• We evaluate our DAAFL approach on two real-world
datasets of oil dilution and the remaining lifetime of aero-
plane engines.

Our approach is extendable to other federated learning prob-
lems based on time series.

Problem Statement
FL aims to learn a global model by training on distributed
nodes without sharing the training data (McMahan et al.
2017). We want to minimise the global objective function
f defined by

f(θG) :=
1

n

n∑
i=1

fi(θG)

where fi are local objective functions of the individual
nodes, θG ∈ Rd are the global model parameters, and
n denotes the number of participating models. In the ma-
chine learning context, the individual training losses typi-
cally serve as local objective functions fi. In synchronous
FL, the updated local model parameters yield the new global
model parameters by the aggregation scheme

θv+1
G =

1

n

n∑
i=1

θvi . (1)

Here, v is the current aggregation round, and θi denotes the
local model parameter. This scenario is synchronous, i.e., the
aggregation server has to wait for all participating devices.

In asynchronous FL, the global server aggregates local
model updates whenever a local model has completed its
training rounds. The asynchronous aggregation scheme is

θv+1
G = (1− α)θvG + αθv+1

i (2)

where we exclusively aggregate the model parameters of the
latest trained local model (Xu et al. 2023). The choice of the
aggregation weight α depends on several influencing factors
(Hao, Zhao, and Zhang 2020). First, the global data volume
is not equally distributed among the clients. Devices with
small data volumes train much faster than those with large
ones. Therefore, the large data volume devices will be strag-
glers. In a synchronous FL scheme, stragglers will scarcely
influence the global model, although containing the majority
of the training material. Second, classic synchronous learn-
ing schemes are not designed to handle sudden drop-outs of
clients. The aggregation parameter choice can compensate
for the heterogeneous availability of clients.

Another issue of FL is the choice of the total number of
local epochs. Classical early stopping methods measuring
the validation error are no option when no global dataset is
available. A trivial averaging of the local model’s validation

AFL Client 1 AFL Client 2 AFL Client 3

Local 
Model

 Update

Global Model
 Distribution

Aggregation Parameter

Model Aggregation

AFL Clients AFL
Server

Figure 1: Schematic overview of the DAAFL method for oil
dilution prediction.

error neglects the different convergence speeds of the mod-
els due to temporal unavailability or data disparity.

In this paper, we aim to enable the training of an effective
asynchronous federated model which takes different data
volumes and drop-outs into account. In particular, we aim
to find the optimal aggregation parameter rule αv+1

i for de-
vice i such that the global model’s loss is minimised:

min
θG

f(θG) with θv+1
G = (1−αv+1

i )θvG+αv+1
i θv+1

i . (3)

Moreover, we aim to develop an early stopping policy
adapted to asynchronous FL.

Data Disparity Aware AFL
This section presents our DAAFL approach to data disparity
aware asynchronous federated learning. The aim is to miti-
gate single clients providing frequent updates to the model
and dominating the shared federated model while boosting
slow models with frequent dropouts. The core concept be-
hind DAAFL involves assigning weights to client updates
based on their data volumes and past involvement in the
training process. An overview of the DAAFL methodology
is depicted in Figure 1: The clients submit their local mod-
els θv+1

i , dataset size and validation loss to the global server.
The server uses the DAAFL aggregation scheme to compute
the ensuing global model θv+1

G .
We introduce the model aggregation function and the

early stopping procedure in Section DAAFL Model Aggrega-
tion and Early Stopping. Comprehensive algorithms detail-
ing the DAAFL approach are provided in Section DAAFL
Algorithm.

DAAFL Model Aggregation and Early Stopping
We aim to develop an aggregation scheme and an early stop-
ping mechanism that prevents frequent updates from clients
with smaller data volumes from biasing the model.

Aggregation Parameter Rule We seek to establish an
aggregation parameter rule for Eq. 3, customised for each
client, which considers data disparity and prior aggrega-
tion frequency. In FedAvg, the original FL scheme (McMa-
han et al. 2017), the relative data volume is quantified as
di = pi/pG in the aggregation in Eq. 1 where denotes the
data points on client i and pG represents the total data points.
However, relying solely on data proportion as an aggrega-
tion weight proves inadequate for asynchronous FL. The
frequent updates resulting from smaller data volumes and
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the temporal availability will bias the model towards con-
sistently updating clients. Hence, incorporating update fre-
quency into the aggregation function is pivotal for effective
asynchronous training.

Our approach works as follows: First, we assess the cu-
mulative contribution of each client to the global model until
the present point. Then, we compute the equitable share of
contribution that each client ideally should possess. Next, we
determine how far the actual contribution is from the ideal
one. Lastly, we derive an aggregation parameter that recti-
fies this disparity by under- or over-weighting clients during
the current aggregation cycle. Formalising the approach: In
asynchronous FL, one client updates per aggregation round.
In aggregation round v + 1, let a client i send its parameters
to the server for computing the global model’s (v + 1)-th
version. The actual contribution of the client, including the
current aggregation round, can be expressed as the sum of
its aggregation parameters from round 1 to v + 1:

αv+1
sumi

:=
v+1∑
k=1

αk
i b

k
i . (4)

Here, bki ∈ {0, 1} indicates for aggregation round k whether
client i sent its parameters to the server, i.e., bki = 1, or
whether some other client updated, i.e., bki = 0. In an eq-
uitable scenario, all clients update uniformly, approximately
every n round. After v + 1 aggregation rounds, each client
should have contributed (v + 1)/n times. Furthermore, the
server would aggregate the clients according to their relative
data volume di. Hence, the equally balanced aggregation pa-
rameter sum α̂v+1

sumi
would be

α̂v+1
sumi

:=
di
n
(v + 1). (5)

We want to determine how to choose the aggregation param-
eter αv+1

i to close the gap between actual and ideal contribu-
tion. Therefore, we compare the real aggregation parameter
sum to the ideal one by equating Equations 4 and 5:

α̂v+1
sumi

= αv+1
sumi

.

Since client i updates in aggregation round v + 1, we have
bv+1
i = 1. Therefore, by splitting the sum in Eq. 4 we get to

αv+1
i =

di
n
(v + 1)− αv

sumi
. (6)

The resulting aggregation parameter αv+1
i can not become

negative, which can be verified by an induction proof start-
ing from α1

i ∈ {0, di

n }. However, we may receive αv+1
i > 1

if the client has a very low update frequency such that v is
high whereas αv

sumi
is very low. To receive no negative co-

efficients in the aggregation formula Eq. 3, we set

αv+1
i = min(1,

di
n
(v + 1)− αv

sumi
).

Our new aggregation formula ensures that clients who have
not been sufficiently included in the past have a more signif-
icant impact in the present.

Algorithm 1: Client Update

1: function CLIENT UPDATE(θG)
2: θi ← θG
3: while True do
4: for e← 1, E do
5: Gt ← stochastic gradient for fi at θi
6: li ← validation loss of θi
7: θi ← θi − ηGe

8: end for
9: return θi, pi, li

10: end while
11: end function

Early Stopping Mechanism We want to develop an asyn-
chronous federated early stopping method. Regular early
stopping methods for evaluating the model on a global val-
idation set do not work if all data are on the clients. The
apparent idea is to average the local validation losses. How-
ever, we have to deal with the problem of different con-
vergence speeds: Models based on small data volumes and
less temporal dropouts will sooner overfit than slow train-
ing clients. Hence, we determine the local validation loss by
each client’s contribution so far. First, we initialise l0G by
some value. Let lvG be the current federated validation loss
in aggregation round v. When a client has finished its lo-
cal training round, it computes its local validation loss lv+1

i .
Then, we compute the new federated validation loss by us-
ing the aggregation parameter established in Eq. 6:

lv+1
G = (1− αv+1

i )lvG + αv+1
i lv+1

i .

Thus, we have a composition of the validation loss repre-
senting the composition of the federated model.

DAAFL Algorithm
This section describes the algorithms to run the DAAFL ap-
proach. Algorithm 2 describes the server operations while
Algorithm 1 presents the client-side update.

In the beginning, we initialise the global and local mod-
els’ parameters with the same weights. We set the global
model’s version number to v = 0 and the aggregation pa-
rameter sum for each client to αsumi = 0. Then, we ini-
tialise the federated validation loss lG, the former valida-
tion loss lG,old and the non-improvement counter lcount. Af-
ter that, the clients start parallel training on their respec-
tive data set in Algorithm 1. We limit the number of lo-
cal epochs per round by E. The section Machine Learning
Model Implementation describes a single node’s underlying
machine learning architecture.

We then send the local weights and the local validation
loss to the server, see Algorithm 2, and compute the local
aggregation parameter αi as explained in Section DAAFL
Model Aggregation and Early Stopping. The server aggre-
gates the new weights and sends them back to the client from
which it received the update. Next, we increase the global
version number by one and update αsumi

. Finally, we cal-
culate and compare the new federated validation loss to the
previous loss. If the loss has not improved by at least ϵ for
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Algorithm 2: Server Function

1: function SERVER FUNCTION()
2: Initialise θG, pG, lG, lG,old, lcount,M, ϵ
3: v ← 0
4: αsumi ← 0 for i ∈ {1, ..., n}
5: Initialise all clients
6: while lcount < M do
7: if any client i sends its update to the server then
8: θi, pi, li ← Client Update(θG)
9: di =

pi

pG

10: αi ← min(1, di/n · (v + 1)− αsumi
)

11: θG ← (1− αi)θG + αiθi
12: v ← v + 1
13: αsumi ← αsumi + αi

14: lG ← (1− αi)lG + αili
15: if lG,old − lG < ϵ then
16: lcount ← lcount + 1
17: else
18: lcount ← 0
19: lG,old ← lG
20: end if
21: end if
22: end while
23: end function

some ϵ > 0, we increase lcount by 1. Then, if lcount does not
surpass some M > 0, we continue the training.

Evaluation Setup
This section describes the baseline approaches, the dataset
preparation, the machine learning model used by the
DAAFL, and the considered evaluation metrics. We design
the experimental setup to be as realistic as possible.

Baselines
To evaluate our solution to the problem stated in Section
Problem Statement, we compare it to several state-of-the-art
baselines. The architecture of the regression model itself is
identical in all approaches.

Classic ML. The collective model is the classic machine
learning approach, which does not preserve privacy. We train
one global model with all devices’ data at its disposal.

FedAvg. The first FL scheme is proposed in (McMahan
et al. 2017). This approach is synchronous, i.e., we select
some nodes in each round to participate in the training and
wait until all of them have completed the training process.

St-AFL. In this approach in (Zhang, Bosch, and Olsson
2021), the authors develop an asynchronous FL scheme for
steering angle prediction. They select the client by compar-
ing the local model’s version numbers to the global version
number. They only admit these clients whose updates are
neither too recent nor too stale for aggregation.

Pr-SAFL. This approach proposed by (Hao, Zhao, and
Zhang 2020) is semi-asynchronous. The authors use a pri-
ority function for the node selection, considering comput-
ing power, delay and data volumes. The selected nodes then
train synchronously while the others train asynchronously.

Dataset #Clients #Hours / #Upper /
#Cycles #Lower Cases

Oil Dilution 23 53.647 1401 / 887
Jet Engine 10 33.727 -

Table 1: Statistics of the datasets.
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(a) The distribution of oil levels in the oil dilution dataset.
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(b) The different training data volumes of the 23 vehicles.

Figure 2: Data distribution on the vehicles’ datasets.

FedSA. This semi-asynchronous approach (Chen, Mao,
and Ma 2021) divides the training into a synchronous initial
stage and an asynchronous convergence stage. The client’s
staleness steers the number of local epochs.

LR-AFL. This asynchronous scheme described in (Chen
et al. 2020) uses a surrogate objective function to ensure the
local models do not diverge too much. Moreover, the authors
adopt an adaptive learning rate which privileges devices with
large data volumes.

Dataset Preparation
Oil Dilution Dataset Oil dilution is a potential engine
damage that analysis of vehicle sensor data can avoid. Oil
dilution denotes the unwanted entrance of fuel into the en-
gine oil. In such cases, the oil level sensor readings increase
with fluid levels. The dilution can lead to the tearing of the
oil film such that the oil can not lubricate the engine appro-
priately. If discovered in time, an oil exchange can avoid en-
gine damage. Thus, our first application is to predict the oil
level of the next 24 hours, knowing the last 48 hours. Then,
we can forecast critically high or low oil levels.

Our data set for oil dilution detection was collected by lo-
gistics vehicles of the Volkswagen Group. All 23 cars have
combustion engines, and a CAN logger records the oil level
height with a sampling rate of 0.1 seconds. For the data pre-
processing, we identify the oil refills and split the oil level
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Data Input Output Optimiser Batch Learning
Set [h]/[cycles] [h]/- Size Rate

OD 48 24 Adam 32 10−3 · 0.9E
JE 80 RUL Adam 32 10−3 · 0.9E

Table 2: Model parameters.

time series accordingly since the oil refills are unpredictable
for the model. In the resulting time series, we have 53.467
hours of driving; see Table 1. The histogram in figure 2a dis-
plays the distribution of oil levels. We spot the most frequent
oil levels from 60 to 80 mm. We set an upper and a lower
threshold for the oil level to detect abnormal oil behaviour.
The upper threshold is crossed 1401 times in the data, while
the oil level only falls 887 times below the lower threshold.
As we see Figure 2b, we have a heavy data disparity among
the 23 vehicles: While vehicles 3, 10 and 15 have more than
3000 training samples, the majority of the samples have 500
to 1500 training samples. This high disparity can occur if
the vehicles’ recording or usage patterns differ. We use part
of the data as a test set such that it contains threshold cases.
The remaining data are randomly split into a validation set
(20%) and a training set (80%) for each client.

Jet Engine Dataset Our second application is to predict
aircraft engines’ remaining useful life (RUL). We use a run-
to-failure data set simulated and presented by NASA in
(Saxena et al. 2008). A thermodynamical simulation model
creates the simulation and yields four datasets which differ
in combinations of operational settings and fault modes. All
in all, the dataset covers 33.727 life cycles. We have 26 sen-
sor measurements for each life cycle, three operational set-
tings and the engine number. In the first step, we calculate
the RUL for each time cycle. Then, we split the dataset into
ten unbalanced clients. Thus, we create a federated dataset
with heavy data disparity. The task is to predict the RUL
from a data sample with a window size of 80 life cycles con-
taining the corresponding sensor measurements and opera-
tional settings. The client-wise split into test, validation and
training sets takes place randomly.

Machine Learning Model Implementation
Oil Dilution (OD) In the first application, we use a
stack of two encoder-decoder GRU networks to perform
sequence-to-sequence learning, where each GRU network
has 25 units. As a training loss metric, we choose the mean
squared error to train the model for detecting outliers, i.e. the
crossing of critical threshold values. We schedule the learn-
ing rate η as 10−3 · 0.9E where E is the current epoch’s
number. Moreover, we choose a batch size of 32 and Adam
as the optimiser for the regression model.

Jet Engine (JE) For the regression problem of predicting
the remaining useful life of aeroplane turbofan engines, we
use a stacked network of three GRU with 200, 100 and 50
units. Loss, batch size, learning rate and optimiser are anal-
ogous to the oil dilution case; see Table 2.

Dropout Simulation
Temporal unavailability is typical in automotive use cases
due to connectivity issues and different vehicle usage pat-
terns. Due to the lack of data sets containing temporal un-
availability, we simulate it here by assigning an individual
dropout behaviour to each client. The clients are unavailable
for 15 to 75 seconds, while the dropouts can occur every
few minutes. In particular, the length of dropout is constant
per client but differs among the clients. Furthermore, each
client’s time pattern when the dropout happens is individual.
That reflects that unavailability is not random but follows
specific patterns.

Evaluation Metrics
To understand the goodness of the oil level or RUL predic-
tion, we propose the following quality indicators:
Mean Absolute Percentage Error (MAPE). The mean ab-
solute percentage error of the regression prediction.

Root Mean Square Error (RSME). The square root of
the mean squared error of the regression prediction.

For the oil dilution case, we need specific evaluation met-
rics. To classify whether there is a lower or upper threshold
case in the predicted oil level time series, we compare the oil
levels to the upper and lower threshold value, respectively.
Lower Precision (L-P). The lower precision is the fraction
of true positive lower threshold cases among the samples
classified as positive.
Lower Recall (L-R). The lower recall gives the fraction of
correctly classified lower threshold cases among all lower
threshold cases.
Lower F1 Score (L-F1). The lower F1 score combines the
lower precision and lower recall using their harmonic mean.
Hence, the F1 score is the most critical metric for recognis-
ing threshold cases.
Upper F1 Score (U-F1), Upper Recall (U-R), Upper Pre-
cision (U-P): We define the metrics analogously to L-P, L-R,
and L-F1 for the upper threshold.

Evaluation
The evaluation aims to assess the ability of the proposed
DAAFL approach in asynchronous federated learning set-
tings with heavy data disparity and frequent dropouts. To
this end, we first compare the prediction performance with
state-of-the-art baselines on two distinct data sets. Following
this, we explore the versatility of DAAFL’s model architec-
ture by integrating it with established model architectures.

Performance with Data Disparity and Dropouts
Our evaluation centres on two applications: Firstly, we pre-
dict the forthcoming 24-hour oil level using the preceding
48 hours, aiming to detect oil dilution. We classify critical
oil dilution cases by predicting whether the oil level sur-
passes an upper threshold or descends below a lower one.
The second application involves forecasting jet engines’ re-
maining useful life (RUL), leveraging information from the
last 80 life cycles. We juxtapose DAAFL against the base-
lines detailed in Section Baselines according to the met-
rics explained in Section Evaluation Metrics. In addition,
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Algorithm FL Type MAPE [%] L-F1 [%] / L-P [%] / L-R [%] U-F1 [%] / U-P [%] / U-R [%]

Classic ML NF 1.41±0.16 91.51±00.26 / 097.63±00.80 / 86.13±00.80 77.23±4.46 / 99.51±0.66 / 63.34±05.79
FedAvg S 1.62±0.04 81.07±02.53 / 100.00±00.00 / 68.24±03.72 75.28±1.66 / 98.61±1.12 / 60.95±02.58
FedSA SA 1.79±0.09 89.03±00.69 / 099.83±00.24 / 80.36±01.25 77.11±2.88 / 99.74±0.57 / 62.96±03.96
Pr-SAFL SA 2.65±0.07 16.05±00.08 / 100.00±00.00 / 08.72±00.05 74.02±0.80 / 98.76±0.48 / 59.20±01.21
St-AFL A 3.34±1.75 74.68±31.22 / 091.99±25.07 / 67.60±29.71 75.83±9.33 / 88.92±9.19 / 69.12±15.22
LR-AFL A 1.59±0.04 89.01±00.40 / 099.77±00.14 / 80.36±00.72 77.46±1.16 / 98.60±1.16 / 63.83±02.04
DAAFL A 1.51±0.07 89.18±00.18 / 098.35±00.89 / 81.59±00.61 80.87±0.59 / 85.23±3.28 / 77.06±01.77

Table 3: Prediction results on the oil dilution test set. Each experiment was run 30 times. The F1 score, precision and recall are
grouped to recognise lower and upper threshold cases. The best federate results are marked in bold.

we provide the prediction performance of the Classic ML
model, i.e., the same GRU-based model in a non-federated
version. We run each experiment 30 times and provide the
metric’s mean and standard deviation for each metric. We
stop the baseline runs after 1000 local training rounds, while
the DAAFL is stopped by its early stopping mechanism.

Oil Dilution Prediction Table 3 presents the results for
the oil dilution prediction performance of the DAAFL, the
synchronous (S), semi-asynchronous (SA) and asynchro-
nous (A) baselines and the non-federate Classic ML (NF).
The best results of the FL approaches are marked in bold.
First, the mean average percentage error indicates the oil
level time series’ prediction performance. The DAAFL is su-
perior in MAPE to all baselines. Second, the three metrics,
L-F1, L-P and L-R, refer to the lower threshold regarding F1
score, precision and recall. Our approach has the best values
for L-F1 and L-R compared to the baselines. The FedAvg
and the Pr-SAFL baseline have the best L-P at the cost of
a low recall. Third, the metrics U-F1, U-P and U-R express
the results for the upper threshold case. DAAFL excels in
both U-F1 and U-R. The FedSA reaches the best U-P, albeit
with a weak U-R. Notably, all models exhibit greater profi-
ciency in detecting lower threshold cases than upper thresh-
old cases. The standard deviation remains low for DAAFL
and most baselines.

The threshold cases are challenging to detect since the
oil level remains primarily constant in the long-term view.
Consequently, all approaches struggle to identify substantial
oil level fluctuations. We observe that baselines with higher
precision than DAAFL only achieve higher precision by ne-
glecting many threshold cases, ultimately leading to poor re-
call scores. In predictive maintenance, recall is a more criti-
cal metric than precision since a false alarm is often prefer-
able to undetected damage. The observation that all mod-
els are better at detecting lower than upper threshold cases
could stem from models learning the oil level’s overarching
tendency to decrease. The DAAFL achieves slightly better
results than the Classic ML approach regarding the detec-
tion of upper threshold cases, indicating the usefulness of
DAAFL’s client weighting. This scheme can help to pri-
oritise data shares with more helpful information for the
learning process and can ultimately lead to a better over-
all performance. To dispel the notion that DAAFL’s success
hinges on favourable dropout patterns, we have performed
the same experiment for DAAFL without the dropout sim-

Algorithm FL Type MAPE [%] RSME

Classic ML NF 09.475±0.537 0.090±0.004
FedAvg S 11.202±9.282 0.102±0.062
FedSA SA 10.397±3.858 0.095±0.032
Pr-SAFL SA 11.844±1.271 0.103±0.007
St-AFL A 14.074±2.514 0.129±0.015
LR-AFL A 10.849±0.816 0.100±0.004
DAAFL A 09.577±0.580 0.088±0.003

Table 4: Prediction results on the jet engine test set. Each
experiment was run 30 times. The best federate results are
marked in bold.

ulation. The DAAFL achieves even better scores (0.05 pp.
MAPE, 0.01 pp L-F1, 0.24 pp U-F1) when all clients are
persistently available. We provide further details on this ex-
periment in the technical appendix. Variations in standard
deviation among approaches can be attributed to their spe-
cific aggregation methodologies. The aggregation that bal-
ances client contributions yields a low standard deviation,
while reliance on random elements elevates it. In conclusion,
the DAAFL performs better than the synchronous and semi-
asynchronous approaches and thus combines prediction per-
formance and the flexibility and velocity of AFL schemes.

Jet Engine Maintenance Table 4 presents the outcomes
for the remaining useful live (RUL) predictions of the jet
engines. The DAAFL achieves the best results regarding
MAPE and RSME among the federated models. Compared
to the non-federated classic machine learning approach, the
DAAFL model performs equally well regarding RMSE yet
presents a higher MAPE. The relative performance patterns
among the baselines align with those documented in Table 3:
While the FedSA and LR-AFL emerge as robust baselines,
the ST-AFL and PR-SAFL are weak in both experiments.

A possible reason the DAAFL is better than the classic
ML regarding the RSME is once more the client weighting.
The baselines can not adapt to the federated settings with
dropouts and fail to achieve scores close to the non-federated
Classic ML model.

Generalisation to Other Architectures
This section examines the performance of the DAAFL ap-
proach regarding different prediction model architectures. In
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Architecture MAPE [%] L-F1 [%] / L-P [%] / L-R [%] U-F1 [%] / U-P [%] / U-R [%]

GRU 1.51±0.07 89.18±0.18 / 98.35±0.89 / 81.59±0.61 80.87±0.59 / 85.23±3.28 / 77.06±1.77
LSTM 1.62±0.07 87.98±0.18 / 98.74±0.89 / 79.41±0.61 77.65±0.59 / 91.02±3.28 / 67.84±1.77
TCN 1.95±0.24 83.86±1.41 / 79.21±3.01 / 89.19±1.03 75.94±1.80 / 68.56±4.16 / 85.46±2.47
Feed Forward 1.99±0.14 87.57±0.05 / 97.38±0.07 / 79.55±0.09 71.14±2.84 / 93.70±2.33 / 57.55±4.34

Table 5: Oil dilution prediction performance of DAAFL with respect to the prediction model architecture. The best results are
marked in bold.

this experiment, we replace the GRU network described in
Section Machine Learning Model Implementation with an
LSTM, a temporal convolution network (TCN) and a feed-
forward (FF) model, respectively. Table 5 displays the re-
sults for the DAAFL when repeating the oil dilution exper-
iments with the three new architectures. The GRU network
achieves the optimal MAPE and F1 scores for upper and
lower threshold cases, followed by the LSTM. While the
LSTM has high precision, it comes at a relatively low re-
call. For the TCN, the high values for upper and lower recall
coincide with low precision. The feed-forward model does
not achieve high values for MAPE and the upper F1 score
but demonstrates strong precision.

Comparing the results for the different architectures to the
baseline performances in Table 3, we see that most architec-
tures obtain better F1 scores than the baselines. An excep-
tion lies in the UF1 for the feed-forward model, reflecting its
simpler architecture in contrast to the GRU employed by the
baselines. The networks’ notable recall signifies DAAFL’s
adeptness in identifying existing threshold cases across var-
ious architectures, outperforming baselines. In summary,
our DAAFL approach has a data disparity aware weighting
scheme and is dropout-robust, regardless of the model ar-
chitecture. DAAFL can be combined with many established
architectures, improving over state-of-the-art baselines.

Related Work
Introduced in 2017 by Google, Federated Learning (FL)
has evolved as a data privacy-focused distributed learning
paradigm (McMahan et al. 2017). (Yang et al. 2019) and
(Kairouz et al. 2021) give an excellent overview. FL has di-
verse applications in transportation (Li et al. 2022; Wang
et al. 2021; Koetsier et al. 2021). In particular, FL bene-
fits from the abundance of transportation sensor data, en-
abling, e.g., predictive maintenance systems (Manias and
Shami 2021; Bemani and Björsell 2022).

Asynchronous federated learning (AFL) enables the train-
ing of a federated model without requiring all clients to be
available at the same time. (Xu et al. 2023). Thus, AFL
schemes do not suffer from low round efficiency (Zhang
et al. 2021) as synchronous schemes do. The problems of
straggler mitigation and dropped-out devices occur partic-
ularly frequently in transportation such that AFL is a vi-
tal approach for transportation applications (Xu et al. 2022;
Lu et al. 2020). However, the data heterogeneity on the
clients remains a problem (Vahidian et al. 2023). Various
node selection policies have been proposed to overcome
device heterogeneity in AFL. (Chen et al. 2021) considers

local resources and communication for global aggregation.
In contrast, (Wu et al. 2020) focuses on probability-based
node selection, prioritising more reliable nodes. (Liu et al.
2021) employs reinforcement learning for node participa-
tion. Compared to node selection, aggregation weighting can
steer the clients’ impact more flexibly on the global model.
(Zhang, Bosch, and Olsson 2021) aggregates a node only if
it is neither stale nor too up-to-date by comparing the local
version numbers versus the global model. (Zhou et al. 2021)
considers the time efficiency of the clients when weighing
the participating nodes. In contrast to these approaches, our
aggregation weighting scheme considers data disparity.

Semi-synchronous approaches combine synchronous and
asynchronous strategies (Ma et al. 2021; Wu et al. 2020).
(Hao, Zhao, and Zhang 2020) introduces a priority function
which depends on computing power, communication delay,
and data volume but is biased towards clients with large data
volumes. (Chen, Mao, and Ma 2021) presents an algorithm
where the first stage equals FedAvg while the second stage
is asynchronous with individual local epochs. The disadvan-
tage of semi-asynchronous approaches is that the problems
with synchronous approaches persist.

Determining a stopping criterion for FL remains a topic
requiring attention (Kairouz et al. 2021). Most approaches
for heterogeneous clients suggest a fixed number of itera-
tions or communication rounds (Wang et al. 2022). (Jeon
et al. 2020) suggest a synchronous stopping criterion which
does not apply to asynchronous settings. Therefore, we
present an asynchronous stopping mechanism.

Conclusion
In this paper, we present DAAFL, a data disparity and tem-
poral unavailability aware asynchronous federated learning
framework. DAAFL mitigates bias seen in existing asyn-
chronous federated learning algorithms, favouring frequent
updates from clients with limited data volumes. The central
innovation is the novel aggregation parameter rule, which
balances data volume and update frequency versus aggrega-
tion weighting. Our approach improves the prediction in two
predictive maintenance use cases, surpassing five federated
learning baselines. Remarkably, DAAFL closely matches or
rivals classical centralised machine learning models.

While we address system heterogeneity for predictive
maintenance here, we will extend the approach to other set-
tings. We will explore further asynchronous federated learn-
ing aspects in future. Uncovered areas include robustness
against attacks, e.g., the potential restoration of private train-
ing data from parameter updates.
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