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Abstract
Domain Generalization (DG) aims to improve the gener-
alization ability of models trained on a specific group of
source domains, enabling them to perform well on new, un-
seen target domains. Recent studies have shown that meth-
ods that converge to smooth optima can enhance the gen-
eralization performance of supervised learning tasks such
as classification. In this study, we examine the impact of
smoothness-enhancing formulations on domain adversarial
training, which combines task loss and adversarial loss ob-
jectives. Our approach leverages the fact that converging to a
smooth minimum with respect to task loss can stabilize the
task loss and lead to better performance on unseen domains.
Furthermore, we recognize that the distribution of objects in
the real world often follows a long-tailed class distribution,
resulting in a mismatch between machine learning models
and our expectations of their performance on all classes of
datasets with long-tailed class distributions. To address this
issue, we consider the domain generalization problem from
the perspective of the long-tail distribution and propose using
the maximum square loss to balance different classes which
can improve model generalizability. Our method’s effective-
ness is demonstrated through comparisons with state-of-the-
art methods on various domain generalization datasets. Code:
https://github.com/bamboosir920/SAMALTDG.

Introduction
Deep learning approaches have proven to be highly effective
in computer vision tasks, especially when the source and tar-
get data are independently and identically distributed. How-
ever, these methods often suffer from reduced performance
when applied to new target domains. To address this, do-
main generalization (DG) (Zhang et al. 2022a; Qiao, Zhao,
and Peng 2020; Balaji, Sankaranarayanan, and Chellappa
2018) techniques aim to train models using source data that
can perform well on new domains without retraining. Nu-
merous DG methods have been developed over the past
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Figure 1: Data distributions of two benchmark datasets. (a)
shows the number of different classes in “Infograph”, (b)
shows the number of different classes in “Sketch”.

decade, including those based on domain alignment (Muan-
det, Balduzzi, and Schölkopf 2013), meta-training (Li et al.
2018a), and data augmentation (Wang et al. 2022b). De-
spite the many approaches that have been proposed, a recent
study called DomainBed (Gulrajani and Lopez-Paz 2020)
found that the naive DG method via entropy regularization
(DG via ER) (Zhao et al. 2020) can perform better than
most other DG methods under fair evaluation conditions.
Nonetheless, simply minimizing empirical loss on a non-
convex loss landscape is typically insufficient to achieve ro-
bust generalization. As such, DG via ER may overfit to the
training data and converge to sharp local minima.

Various recent studies, such as sharpness-aware mini-
mization (SAM) (Foret et al. 2020), aims to improve the
model’s performance by minimizing the sharpness measure
of the loss landscape. The loss function to be minimized, Lθ,
depends on the neural network’s parameters θ (e.g., cross-
entropy loss for classification). SAM computes an adver-
sarial weight perturbation ϵ to maximize the empirical risk
Lθ, followed by minimizing the loss of the perturbed net-
work. SAM’s objective is to minimize the maximum loss
around the model parameter θ. Since the min-max optimiza-
tion problem is highly complex, SAM approximates Lθ in-
stead. Inspired by SAM, we aim to improve the model’s gen-
eralization ability by minimizing sharpness. However, recent
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analyses (Rangwani et al. 2022b) have revealed that SAM
fails to prevent tail classes from converging to saddle points
in high curvature regions, resulting in poor generalization.

We observed that most existing datasets exhibit a long-
tailed distribution, yet domain generalization methods sel-
dom consider this perspective. As demonstrated in Figure. 1,
we investigated the “Infograph” and “Sketch” domains from
the large-scale DomainNet dataset and found that both dis-
played pronounced long-tailed distributions. Recently, en-
tropy minimization techniques in semi-supervised learn-
ing (Grandvalet and Bengio 2004; Chen, Xue, and Cai
2019), which encourage clear cluster assignments, have be-
come popular. Upon analyzing the gradient of the entropy
minimization method in domain generalization (Chen, Xue,
and Cai 2019), we discovered that higher prediction proba-
bilities induce larger gradients for target samples. Adopting
the assumption from self-training that target samples with
higher prediction probabilities are more accurate leads to ar-
eas with high accuracy receiving sufficient training, while
areas with low accuracy do not. Consequently, the entropy
minimization method enables adequate training of samples
that are easy to transfer, which obstructs the training of sam-
ples that are difficult to transfer. This issue in entropy mini-
mization is known as probability imbalance: classes that are
easy to transfer have higher probabilities, resulting in much
larger gradients than classes that are difficult to transfer.

In this paper, we introduce a new loss, the maximum
squares loss (Chen, Xue, and Cai 2019), to tackle the proba-
bility imbalance problem. Since the loss of the maximum
square has a linearly increasing gradient, it can prevent
high-confident areas from producing excessive gradients.
We leverage the popular method DG via ER (Zhao et al.
2020) and minimize the sharpness measure of the classifi-
cation loss as our baseline. We also demonstrate the effec-
tiveness of our approach by conducting comprehensive ex-
periments on several benchmarks.

Related Work
Domain Generalization: Domain generalization (DG) aims
to transfer the learning task from multiple source domains
and generalize to unseen target domains (Zhou et al. 2021).
Early research in this field concentrated on the concept of
distribution alignment, akin to domain adaptation, utilizing
kernel methods (Muandet, Balduzzi, and Schölkopf 2013;
Ghifary et al. 2016) and domain-adversarial learning (Li
et al. 2018c,b) to tackle the issue. Later investigations shifted
the focus towards the extraction of domain-invariant features
across multiple source domains to establish domain invari-
ance (Wang et al. 2022b, 2021a, 2022a, 2023). A number
of strategies have employed meta-learning for the deriva-
tion of regularization strategies to address the DG problem
(Li et al. 2018a; Balaji, Sankaranarayanan, and Chellappa
2018). Yao et al. found the direct application of contrastive-
based methods, though used to resolve domain generaliza-
tion, could prove ineffective (Yao et al. 2022), suggesting
the substitution of original sample-to-sample relations with
proxy-to-sample relations.

A myriad of techniques make up the recent advancements
in domain generalization. Yang et al. put forth the proposal

of Adversarial Teacher-Student Representation Learning to
create domain-generalizable representations by exploring
and generating out-of-source data distributions (Yang et al.
2021). Xu et al. hypothesized that Fourier phase informa-
tion, which encompasses high-level semantics, is resistant to
domain shifts, leading to the introduction of a novel Fourier-
based data augmentation strategy (Xu et al. 2021). Zhao et
al. employed an entropy regularization term to calculate the
dependency between class labels and learned features (Zhao
et al. 2020). Zhang et al. suggested that domain generaliza-
tion could be resolved by matching exact feature distribu-
tions (Zhang et al. 2022b). Wang et al. adopted a multi-task
learning paradigm to learn feature embedding that general-
izes across domains simultaneously from extrinsic relation-
ship supervision and intrinsic self-supervision for images
from multi-source domains (Wang et al. 2020). Zhang et
al. offered a method to quantify and enhance transferability
with an efficient algorithm for the learning of transferable
features (Zhang et al. 2021).

Recent studies in DG have expanded into the area of Sin-
gle Domain Generalization, which concentrates on general-
ization from a lone source domain to unseen target domains
(Qiao, Zhao, and Peng 2020; Wan et al. 2022). LDMI (Wang
et al. 2021b) propose a style-complement module to en-
hance the generalization power of the model by synthesiz-
ing images from diverse distributions that are complemen-
tary to the source ones. TASD (Liu et al. 2022) present a
novel approach to address the challenging single domain
generalization problem for medical image segmentation, by
explicitly exploiting the general semantic shape priors that
are extractable from single-domain data and are generaliz-
able across domains to assist domain generalization under
the worst-case scenario. This particular line of research has
shown promise in utilizing a single domain to achieve ef-
fective generalization, a factor that is particularly relevant
when faced with limited data or the unavailability of multi-
ple source domains.

Recently, the task of Multi-Domain Long-Tailed Recog-
nition (MDLT) was formalized by Yang et al. (Yang, Wang,
and Katabi 2022). MDLT tackles the challenges associated
with label imbalance, domain shift, and varying label distri-
butions across domains. By generalizing across all domain-
class pairs, MDLT provides a more comprehensive solution
for real-world recognition problems that involve multiple
domains and long-tailed distributions. Similar to these meth-
ods, We are considering addressing the domain generaliza-
tion problem from the perspective of long-tailed distribution.

Method
Assume X and Y denote the feature and label spaces, re-
spectively. In domain generalization, the subject encom-
passes K source domains {Di}Ki=1 and L target domains
{Di}L+K

i=K+1, and the objective is to generalize the model
trained on source domain data to unseen target domains.
Here, Pi(X,Y ) denotes the joint distribution of the ith
domain. During training, there exist K datasets {Si}Ki=1

with Ni samples from the ith domain. In the testing stage,
the model’s generalization capabilities are assessed on L
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datasets sampled from the L target domains. This paper
specifically focuses on image classification domain general-
ization, where Y comprises C discrete labels {1, 2, · · · , C}.

Domain Generalization via Entropy Regularization
(DG via ER)

In this paper, we introduce the utilization of the domain gen-
eralization method in DG via ER (Zhao et al. 2020). Re-
garding the classification topic, our model comprises of a
feature extractor denoted as F with parameters θ, and a clas-
sifier called T with parameters ϕ. We can achieve optimal
values of θ and ϕ by minimizing the cross-entropy loss func-
tion over K source datasets.

min
F,T

Lcls(θ, ϕ) = −
K∑
i=1

E
(X,Y )∼Pi(X,Y )

[
log

(
QT (Y | F (X))

)]
= −

K∑
i=1

Ni∑
j=1

y
(i)
j · log

(
T
(
F
(
x
(i)
j

))
,

(1)
Here, y(i)

j refers to the one-hot vector representation of

the class label y(i)j . The symbol “·” represents the dot prod-
uct operation, while QT (Y | F (X)) indicates the predicted
label distribution that corresponds to the given domain i.

Despite being optimized solely with the classification
loss, the model is incapable of acquiring domain-invariant
features, leading to challenges in generalizing to unfamiliar
domains. However, utilizing adversarial learning can help
mitigate this problem. This involves introducing a domain
discriminator parameterized by ψ, and training it and F in a
minimax game as follows:

min
F

max
D

Ladv(θ, ψ) =
K∑
i=1

E
X∼Pi(X)

[logD(F (X))]

=
K∑
i=1

Ni∑
j=1

d
(i)
j · log

(
D

(
F
(
x
(i)
j

)))
(2)

Here, d(i)
j denotes the one-hot encoding of the domain

labels i.
While optimizing Eq. 2 may result in invariant marginal

distributions P1(F (X)) = P2(F (X)) = · · · =
PK(F (X)), it does not ensure that the conditional distri-
bution P (Y |F (X)) remains invariant across domains. As a
result, the model’s ability to generalize may suffer. To ad-
dress this issue, DG via ER (Zhao et al. 2020) proposes the
use of entropy regularization for domain generalization.

To regularize the feature distributions, DG via ER (Zhao
et al. 2020) proposes minimizing the KL divergence be-
tween the conditional distribution Pi(Y | F (X)) in the
ith domain and the conditional distribution QT (Y | X).
Here, Pi(Y | F (X)) refers to the predicted label distribu-
tion based on the learned features. By aligning any condi-
tional distribution Pi(Y | F (X)) with a common distri-
bution QT (Y | F (X)), DG via ER can obtain a domain-
invariant conditional distribution P (Y midF (X)). The op-

timization problem is as follows:

Ler = min
F,T

K∑
i=1

KL
(
Pi(Y | F (X))∥QT (Y | F (X))

)
(3)

Although DG via ER (Foret et al. 2020) can learn domain-
invariant features from the perspective of adversarial learn-
ing, it ignores the search for optimal extremal points, which
may impair its generalization ability. Inspired by the recent
popular model SAM, we consider seeking a region with low
loss values by adding a small perturbation to the models
which can further improve the generalization of the model.

Smoothing Loss Landscape
This section introduces the losses based on Sharpness Aware
Minimization (SAM) (Rangwani et al. 2022a). SAM aims to
find a smoother minimum by utilizing the following objec-
tive, which is presented formally below:

min
θ

max
||ϵ||≤ρ

Lobj(θ + ϵ) (4)

Here, Lobj denotes the objective function that needs to be
minimized, and ρ ≥ 0 is a hyperparameter that defines
the maximum norm for ϵ. As finding the exact solution for
the inner maximization is challenging, SAM maximizes the
first-order approximation:

ϵ̂(θ) ≈ argmax
||ϵ||≤ρ

Lobj(θ) + ϵT∇θLobj(θ)

= ρ∇θLobj(θ)/||∇θLobj(θ)||2
(5)

The ϵ̂(θ) is added to the weights θ. The gradient update
for θ is then computed as ∇θLobj(θ)|θ+ϵ̂(θ). The above pro-
cedure can be seen as a generic smoothness-enhancing for-
mulation for any Lobj . We now analogously introduce the
sharpness-aware source risk for finding a smooth minima:

max
||ϵ||≤ρ

Rl
S(hθ+ϵ) = max

||ϵ||≤ρ
Ex∼PS

[ l(hθ+ϵ(x), f(x))] (6)

We also now define the sharpness aware discrepancy estima-
tion objective below:

max
Φ

min
||ϵ||≤ρ

dΦ+ϵ
S (7)

As dΦS is to be maximized the sharpness aware objective will
have min

||ϵ||≤ρ
instead of max

||ϵ||≤ρ
, as it needs to find smoother

maxima. We now theoretically analyze the difference in dis-
crepancy estimation for smooth version dΦ

′′

S (Eq. 7) in com-
parison to non-smooth version dΦ

′

S . Assuming DΦ is a L-
smooth function (common assumption for non-convex opti-
mization), η is a small constant and d∗S the optimal discrep-
ancy, the theorem states.

Maximum Square Loss
To learn more diverse features, we try to leverage the Shan-
non entropy of the target sample prediction. Thus, the objec-
tive function for the source sample is :

LS (xs) = − 1

N

N∑
n=1

C∑
c=1

pn,cs log (pn,cs ) (8)
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We draw inspiration from MaxSquare (Chen, Xue, and
Cai 2019) and utilize maximum squares loss to prevent the
training process from being dominated by easily transferable
samples. To simplify matters, we focus on the binary classi-
fication scenario and present the corresponding entropy for-
mula and gradient function.

H (p | xs) = −p log p− (1− p) log(1− p),∣∣∣∣dHdp
∣∣∣∣ = | log p− log(1− p)|.

(9)

The gradient obtained from Eq. 9 is significantly larger for
high-probability points than for intermediate points. This is
the fundamental principle behind the entropy minimization
method, which guides the training of target samples based on
the assumption that the high probability area is more accu-
rate. To achieve a uniform probability distribution, we there-
fore consider the use of maximum square loss.

Lm (xs) = − 1

2N

N∑
n=1

C∑
c=1

(pn,cs )
2 (10)

In the scenario of binary classification, we can express
the maximum squares loss and its corresponding gradient
function as follows:

MS (p | xs) = −p2 − (1− p)2,∣∣∣∣dMS

dp

∣∣∣∣ = |4p− 2|.
(11)

As indicated by the above equation, the gradient of the
maximum squares loss increases linearly, resulting in a more
balanced gradient for different classes compared to the en-
tropy minimization method in the target domain. While ar-
eas with higher confidence still possess larger gradients,
their dominant effects are reduced, allowing other difficult
classes to obtain training gradients as well. By utilizing the
maximum squares loss, we can alleviate the probability im-
balance present in entropy minimization.

Overall Formulation
Combining all the loss functions together, we can get our
full objective as:

Lours = Ladv + Ler + γLm (12)

where γ controls the trade-off between the classification loss
and maximum square loss.

Experiment
In this section, we investigate the effectiveness of our pro-
posed improvements on three state-of-the-art methods, to
demonstrate the validity of our approach. Comparative ex-
periments are conducted across four datasets: PACS (Li et al.
2017), OfficeHome (Venkateswara et al. 2017), DigitDG
(Zhou et al. 2020), and DomainNet (Peng et al. 2019). In
addition, we perform ablation studies to facilitate a thorough
discourse on our methodology.

Datasets and Settings
PACS: PACS (Li et al. 2017) is proposed specially for do-
main generalization. It contains four domains, i.e., Photo

(P), Art Painting (A), Cartoon (C), and Sketch (S), and seven
categories: dog, elephant, giraffe, guitar, house, horse, and
person. We use the same training and validation split as pre-
sented in (Li et al. 2017) for a fair comparison. We randomly
split each domain into 90% for training and 10% for valida-
tion.

OfficeHome: OfficeHome (Venkateswara et al. 2017) is
an object recognition benchmark including 15,500 images
of 65 classes from four domains (Art, Clipart, Product, Real-
World). The domain shift mainly comes from image styles
and viewpoints but is much smaller than PACS. Following
(Carlucci et al. 2019), we randomly split each domain into
90% for training and 10% for validation.

DigitsDG: DigitsDG (Zhou et al. 2020) is a digit recogni-
tion benchmark consisting of four classical datasets MNIST
(Carlucci et al. 2019), MNIST-M (Ganin and Lempitsky
2015), SVHN (Netzer et al. 2011), SYN (Ganin and Lem-
pitsky 2015). The four datasets mainly differ in font style,
background and image quality. We use the original train val-
idation split in (Zhou et al. 2020) with 600 images per class
per dataset. We randomly split each domain into 90% for
training and 10% for validation.

DomainNet: DomainNet (Peng et al. 2019) is a dataset
of common objects in six different domains. All domains in-
clude 345 categories (classes) of objects such as Bracelet,
plane, bird and cello. The domains include Clipart: collec-
tion of Clipart images; Real: photos and real-world images;
sketch: sketches of specific objects; Infograph: infographic
images with a specific object; Painting: painting artistic de-
pictions of objects in the form of paintings and Quickdraw:
drawings of the worldwide players of the game. For data
sets, we adopted the default partitioning method of data sets,
with 80% as the training set and 20% as the validation set.

Implementation Details
For all benchmarks, we performed a leave-one-domain-
out evaluation. We have integrated our advancements into
three state-of-the-art algorithms for domain generalization,
namely DG via ER (Zhao et al. 2020), EISNet (Wang et al.
2020), and FACT (Xu et al. 2021). These were chosen to al-
low for a comprehensive comparative evaluation. To main-
tain authenticity and fairness in comparison, we adhered to
the parameter configurations presented in the original publi-
cations and their corresponding source code.

As an illustration, we incorporated a maximum loss into
DG via ER’s classification loss calculation, which origi-
nally used cross-entropy. Following this modification, we
utilized SAM in conjunction with the original optimizer to
update parameters based on the computed gradient of the
classification loss.

For all experiments, we employed the SGD optimizer
with a momentum and decay rate set at 0.9 and 0.0005, re-
spectively. The learning rate was kept at 0.001. For our pro-
posed enhancements, which we denote as SAM, the base
optimizer was set to SGD, with rho at 0.1, learning rate at
0.01, adaptive set to False, weight decay at 0.0005, momen-
tum at 0.9, and nesterov enabled. Concurrently, the weight
of Maximum Square Loss was represented by γ and set as 1
in the comparison experiment. For a more detailed expla-
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Algorithm PACS Officehome DigitDG DomainNet AVG

ResNet18
DG via ER 81.32 63.17 80.14 39.71 61.15
DG via ER+Ours 83.58 64.15 83.12 42.11 63.53
EISNet 81.77 63.47 80.38 38.44 60.75
EISNet+Ours 83.24 66.26 83.24 39.97 63.70
FACT 84.29 61.89 80.38 43.63 62.80
FACT+Ours 85.36 64.53 83.24 45.22 64.94

ResNet50
DG via ER 85.26 66.03 80.14 42.32 65.55
DG via ER+Ours 87.36 68.17 83.12 44.67 68.29
EISNet 85.64 66.23 80.38 44.80 65.98
EISNet+Ours 87.27 68.14 83.24 46.52 68.95
FACT 87.94 66.92 81.34 49.53 67.96
FACT+Ours 90.08 69.29 83.11 50.97 69.88

Table 1: Results(%) of our method combine other baselines.

Algorithm Art Painting Cartoon Photo Sketch AVG

ResNet18
DG via ER 81.21± 0.47 76.20±0.45 96.15±0.27 71.75±1.09 81.32
DG via ER +Ours 83.25±0.19 79.30±0.12 97.08±0.10 74.70±0.18 83.58
EISNet 81.77±1.26 76.40±0.32 94.71±0.10 74.36±0.86 81.81
EISNet+Ours 83.42±0.56 77.57±0.33 95.89±0.16 77.47±0.43 83.59
FACT 84.59±0.59 78.17±0.26 95.15±0.10 79.23±0.19 84.29
FACT+Ours 85.30±0.23 79.49±0.42 96.47±0.15 80.17±0.25 85.36

ResNet50
DG via ER 87.39±1.09 79.31±1.40 98.04±0.17 76.30±0.65 85.26
DG via ER +Ours 89.25±0.53 82.07±0.86 98.33±0.11 79.79±0.44 87.36
EISNet 86.01±0.61 81.37±0.74 97.29±0.21 77.89±0.46 85.64
EISNet+Ours 87.94±0.29 82.42±0.41 98.11±0.17 80.61±0.74 87.27
FACT 89.53±0.72 81.49±0.22 96.69±0.08 84.03±0.54 87.94
FACT+Ours 90.55±0.27 84.32±0.55 97.93±0.17 87.83±0.27 90.08

Table 2: Leave-one-domain-out results(%) on PACS.

Algorithm Art Clipart Product Realworld AVG

DG via ER 61.19±0.19 52.79±0.84 74.53±0.19 75.59±0.33 66.03
DG via ER +Ours 62.32±0.42 55.17±0.19 76.21±0.25 78.97±0.27 68.17
EISNet 62.59±0.71 53.19±0.14 73.97±0.32 75.17±0.19 66.23
EISNet+Ours 65.19±0.72 55.41±0.27 74.93±0.21 77.01±0.34 68.14
FACT 61.03±0.62 55.73±0.34 74.52±0.76 76.41±0.72 66.92
FACT+Ours 64.42±0.52 57.71±0.71 76.09±0.17 78.92±0.57 69.29

Table 3: Leave-one-domain-out results(%) on Officehome.
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Algorithm MNIST MNIST-M SVYN SYN AVG

DG via ER 96.93±0.23 63.79±0.57 71.04±0.76 88.79±0.27 80.14
DG via ER +Ours 98.13±0.11 69.43±0.33 74.09±0.31 90.81±0.17 83.12
EISNet 96.42±0.31 64.15±0.29 71.54±0.35 89.42±0.19 80.38
EISNet+Ours 97.79±0.26 70.23±0.32 73.54±0.29 91.41±0.12 83.24
FACT 97.63±0.13 65.23±0.47 72.22±1.06 90.27±0.13 81.34
FACT+Ours 98.71±0.34 68.18±0.26 74.01±0.29 91.53±0.20 83.11

Table 4: Leave-one-domain-out results(%) on Digits-DG.

nation of parameter selection, please refer to the ’Param-
eter Analysis’ section. As the backbone of our model, we
utilized ResNet18 and ResNet50 (He et al. 2016), the most
commonly used networks in the field.

Comparing Experimental Result
To verify the effectiveness of our proposed method, we
tested it on three other baselines including DG via ER
(Zhao et al. 2020), EISNet (Wang et al. 2020), and FACT
(Xu et al. 2021) in Table. 1. These experiments were car-
ried out on four distinct datasets, employing both ResNet18
and ResNet50 as the backbone networks. Due to space con-
straints, the average accuracy of each dataset is shown here.

It can be seen that when ResNet18 is used as the
backbone, the average precision of DG via ER+Ours, EIS-
Net+Ours, and FACT+Ours increases by 2.38%, 2.95%
and 2.14% respectively. When ResNet50 was used as the
backbone, the average accuracy of DG via ER+Ours, EIS-
Net+Ours, and FACT+Ours increased by 2.74%,2.97%, and
1.92% respectively. All the above comparisons not only
demonstrate the effectiveness of our proposed method but
also shows that our method is a plug-and-play method.

Settings Value AVG

SAM-Base Optimizer SGD 83.58
Adam 64.59

SAM-rho
0.01 83.58
0.1 75.53

SAM-adaptive False 83.58
True 80.14

SAM-nesterov False 81.35
True 83.58

loss-γ
0.1 81.01
0.5 82.05
1 83.58

Table 5: Parameter analysis was performed on PACS with
ResNet18.

Experimental Analysis
Ablation Experiment In the ablation experiment,
DG via ER is selected as the baseline, ResNet18 is used

Figure 2: Accuracy curve of ablation experiment.

as the backbone and leave-one-domain-out evaluation is
performed on PACS. The experimental results are shown
in Table 6. The improvement of precision considering
Smoothing Loss Landscape and Maximum Square Loss
are compared respectively. In the ablation experiment,
DG via ER did not make any improvement. To consider a
Smoothing Loss Landscape, we add SAM to DG via ER
and name it DG via ER+SAM, and the Maximum Square
Loss is considered in DG via ER+loss. For each leave-one-
domain-out evaluation, we conducted 5 experiments and
obtained the average results.

It can be seen that compared with the baseline, the av-
erage accuracy of DG via ER+SAM and DG via ER+loss
increased by 0.99% and 1.38%, respectively. In addition,
DG via ER+ours takes both of these improvements into ac-
count, thus obtaining a 2.26% accuracy improvement.

Meanwhile, the convergence curve of the model during
the leave-one-domain-out evaluation in the ablation experi-
ment can be seen in Figure 2. It can be clearly seen from Fig-
ure 2(b), and Figure 2(d) that after SAM and loss are used,
the convergence speed of the model is also improved, and
it will converge at around 30 epochs. However, the baseline
gradually converges at around 60 epochs.

In conclusion, our ablation study highlights the effective-
ness of augmenting the DG via ER algorithm with addi-
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Figure 3: Feature visualization. Left: different colors represent different domains; Right: different colors indicate different
classes.

Algorithm Art Painting Cartoon Photo Sketch AVG

DG via ER 81.21± 0.47 76.20±0.45 96.15±0.27 71.75±1.09 81.32
DG via ER+SAM 81.79±0.40 77.52±0.29 96.92±0.08 72.99±0.35 82.31
DG via ER+loss 82.40±0.03 78.40±0.29 96.47±0.07 73.53±0.64 82.70
DG via ER+Ours 83.25±0.19 79.30±0.12 97.08±0.10 74.70±0.18 83.58

Table 6: Leave-one-domain-out results(%) on PACS. Ablation studies on the changes of Ours with ResNet18.

tional components such as SAM, loss, and our proposed
method (Ours). The best overall performance is achieved by
the DG via ER + Ours algorithm, with an average accuracy
of 83.58. Future work could explore other possible enhance-
ments to further improve the performance of the DG algo-
rithm.

We use ResNet18 as the backbone to conduct the leave-
one-domain-out evaluation in PACS to complete parameter
analysis experiments of different weight factors to examine
their impacts. We report the average accuracy of 5 trials in
Table 5. In fact, for SAM, as long as the parameters are ef-
fective in helping the optimizer converge, our improvements
should have some effect. For the weight factor γ of Max-
imum Square Loss, when the value of γ exceeds 0.5, the
effect of domain generalization can be improved.

Feature Visualization To better understand the distribu-
tion of the learned features, we exploit t-SNE (Van der
Maaten and Hinton 2008) to analyze the feature space
learned by DeepAll, DG via ER, and DG via ER +Ours,
respectively. DeepAll is a simple classification using
ResNet18. We conduct this study on PACS; specifically,
we take the Art Painting as the target, and others as the
source. As shown in Figure 3, in the original feature space,
the differences between domains outweigh the differences
between categories. DeepAll has been able to distinguish
different categories in the original feature space by simple
classification, but the edges of the clusters are not obvious.
Both Ours and DG via ER are capable of minimizing the

distance between the distributions of the domains. Further-
more, the comparison between Ours (Classes, Domains) and
DG via ER (Classes, Domains) can show that our method
can distinguish data better.

Conclusion
In this paper, we investigate the effect of smoothness-
enhancing formulations on domain adversarial training,
which combines task loss and adversarial loss objectives.
Our approach is based on the idea that converging to a
smooth minimum concerning task loss can stabilize the task
loss and result in better performance on unseen domains.
Moreover, we acknowledge that the distribution of objects
in the real world often follows a power law, leading to a gap
between machine learning models and our expectations of
their performance on datasets with long-tailed class distri-
butions. To handle this challenge, we approach the domain
generalization problem from the angle of the long-tail dis-
tribution and suggest using the maximum square loss to bal-
ance different classes. We demonstrate the effectiveness of
our method by comparing it with state-of-the-art methods on
various domain generalization datasets.
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