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Abstract

Curriculum adversarial training empirically finds that gradu-
ally increasing the hardness of adversarial examples can fur-
ther improve the adversarial robustness of the trained model
compared to conventional adversarial training. However, the-
oretical understanding of this strategy remains limited. In an
attempt to bridge this gap, we analyze the adversarial train-
ing process from an online perspective. Specifically, we treat
adversarial examples in different iterations as samples from
different adversarial distributions. We then introduce the time
series prediction framework and deduce novel generalization
error bounds. Our theoretical results not only demonstrate
the effectiveness of the conventional adversarial training al-
gorithm but also explain why curriculum adversarial training
methods can further improve adversarial generalization. We
conduct comprehensive experiments to support our theory.

1 Introduction
Although deep neural networks are very effective in classify-
ing natural inputs, Szegedy et al. (2014) show that an adver-
sary is often able to perturb the input with an imperceptible
change so that the model produces an incorrect output. This
phenomenon has received particular attention in the context
of deep neural networks, and there is now a sizable body of
work devoting to improving the adversarial robustness of the
trained neural network models (Kurakin, Goodfellow, and
Bengio 2017; Carlini and Wagner 2017; Madry et al. 2018;
Zhang et al. 2019; Rebuffi et al. 2021; Gowal et al. 2021;
Pang et al. 2022; Shi and Liu 2023). Adversarial robustness
refers to the invariance of a model to small perturbations of
its input (Salman et al. 2020).

Adversarial training is one of the most popular and ef-
fective defense techniques used to train an adversarially ro-
bust model. The objective of adversarial training is to solve a
min-max problem (Madry et al. 2018). In practice, adversar-
ial training first generates adversarial examples based on the
model under investigation, then uses these examples to train
a new model that is robust against these attacks. Therefore,
the quality of the generated adversarial examples directly
affects the adversarial generalization of the model (Zhang
et al. 2020). Interestingly, a series of works (Cai, Liu, and
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Song 2018; Wang et al. 2019; Zhang et al. 2020; Kinfu
and Vidal 2022), called curriculum adversarial training, have
demonstrated that gradually increasing the hardness of ad-
versarial examples can help to improve the performance of
the trained model. These methods have a similar min-max
optimization framework with conventional adversarial train-
ing, and control the hardness of the generated adversarial ex-
amples in different ways. Empirically, the advantages of cur-
riculum adversarial training to improve the robustness and to
alleviate the trade-off between clean accuracy and adversar-
ial accuracy have been verified in prior works (Zhang et al.
2020; Cheng et al. 2022). However, the theoretical motiva-
tion of curriculum adversarial training remains unclear.

Remarkable theoretical advances (Chen and Liu 2023;
Khim and Loh 2018; Attias, Kontorovich, and Mansour
2019; Montasser, Hanneke, and Srebro 2019; Yin, Ram-
chandran, and Bartlett 2019; Gao and Wang 2021; Xiao
et al. 2022a,c; Xing, Song, and Cheng 2021a; Xu and Liu
2022) have been achieved in adversarial training. Despite
this fact, these existing theories focus solely on the fully
trained model while ignoring the intermediate objects, such
as the adversarial examples generated in each iteration of the
training process. Thus, we cannot directly use these existing
theoretical results to explain the effectiveness of curriculum
adversarial training.

In this paper, we delve deeper into the adversarial train-
ing process from an online perspective and propose a novel
generalization error bound through the lens of Rademacher
complexity. We further introduce the time series prediction
framework to propose an improved error bound. Our theo-
retical results show that the expected adversarial error can
be upper-bounded by the average of the optimization objec-
tives of each intermediate iteration, which provides theoret-
ical support for the effectiveness of the two-player iterative
training algorithm. Moreover, the error bound contains the
distance between the generated adversarial examples of dif-
ferent iterations. We further investigate this term and con-
vert it into an optimizable form that can explain the efficacy
of curriculum adversarial training. This paper makes a first
step toward a deeper understanding of curriculum adversar-
ial training. Extensive numerical experiments on CIFAR-10
and CIFAR-100 (Krizhevsky, Hinton et al. 2009) datasets
verify our theoretical bounds and the explanation we pro-
vide regarding curriculum adversarial training.
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2 Related Work
Adversarial Training. After (Szegedy et al. 2014) shows
that DNNs are fragile to adversarial attacks, a large amount
of works have proposed various attack methods (Madry
et al. 2018; Kurakin, Goodfellow, and Bengio 2017; Car-
lini and Wagner 2017) and defense methods (Wang et al.
2023; Goodfellow, Shlens, and Szegedy 2015; Zhang et al.
2019; Li, Xin, and Liu 2022; Gowal et al. 2021; Li and
Liu 2023). Adversarial training (Goodfellow, Shlens, and
Szegedy 2015) is one of the popular and effective methods
that improves adversarial robustness by adding adversarial
examples to the training dataset.

From the theoretical perspective, some works focus on the
sample complexity (Zhou and Liu 2023; Cullina, Bhagoji,
and Mittal 2018) and the generalization of adversarial train-
ing. A series of works theoretically analyzes the general-
ization error bound through the lens of the VC dimension
(Attias, Kontorovich, and Mansour 2019; Montasser, Han-
neke, and Srebro 2019) and the Rademacher complexity
(Khim and Loh 2018; Yin, Ramchandran, and Bartlett 2019;
Xiao et al. 2022a; Mustafa, Lei, and Kloft 2022; Gao and
Wang 2021). Another line of work studies the generalization
performance from the perspective of algorithmic stability
(Xing, Song, and Cheng 2021a; Xiao et al. 2022b,c) and fea-
ture purification (Allen-Zhu and Li 2021). (Ma, Wang, and
Liu 2022) investigates the trade-off between robustness and
fairness. Wang and Liu (2022); Zou and Liu (2023) study
adversarial robustness under self-supervised learning. How-
ever, the impact of the intermediate adversarial examples
and hypotheses generated in each iteration of the training
process on generalization performance remains unknown.

Experimentally, the properties of adversarial examples
have been shown to play important roles in adversarial train-
ing. Cai, Liu, and Song (2018) use the strategy of curricu-
lum learning (Bengio et al. 2009) to improve adversarial
robustness. Their findings show that gradually increasing
the hardness of adversarial examples is beneficial for ad-
versarial robustness. Subsequently, a number of works have
proposed different hardness measures of adversarial exam-
ples. For example, Wang et al. (2019) use the first-order sta-
tionary condition as the hardness measure, Kinfu and Vi-
dal (2022) use the perturbation radius to control the hard-
ness, and Zhang et al. (2020) search for the least adversarial
examples that minimize the loss from among those adver-
sarial examples that are confidently misclassified. Notably,
however, the aforementioned theoretical works cannot theo-
retically explain the effectiveness of curriculum adversarial
training. This paper accordingly takes some steps towards a
deeper understanding of this strategy.

Online Learning and Time Series Prediction. Rakhlin,
Sridharan, and Tewari (2010) develop a theory of on-
line learning by defining several complexity measures and
demonstrating their connection to online learning. Using
the tools of online learning theory, Rakhlin, Sridharan, and
Tewari (2015) consider the problem of sequential prediction.
Kuznetsov and Mohri (2014) first present the generalization
bounds for time series prediction with a non-stationary mix-
ing stochastic process. Kuznetsov and Mohri (2015, 2016,
2020) then subsequently prove the generalization bounds

for time series prediction in the general setting of a non-
stationary non-mixing stochastic process. This paper pro-
vides a new online perspective on adversarial training.

3 Preliminaries
3.1 Standard Statistical Learning Framework
We first consider a standard training framework. Let Z =
X × Y be a measurable instance space, where X and Y de-
note the feature and label spaces, respectively. The feature
space X is a subset of a d-dimensional space, X ⊆ Rd. The
label space is {0, 1} in binary classification, {1, · · · , c} in
multiclass classification, and some measurable subset of R
in regression. We assume that the learner is provided with
n training samples Z := {zi}ni=1 = {(xi, yi)}ni=1, drawn
independent and identically distributed (i.i.d.) according to
a fixed but unknown distribution P . We use P̂ to denote the
empirical distribution. A hypothesis class H is defined as a
set of functions h : X → Y . We use ℓ : Y ×Y → R+ to de-
note the loss function and ϵP (h) := E

(x,y)∼P
[ℓ(h(x), y)] to

indicate the expected standard error of any hypothesis h un-
der any distribution P over Z . In this paper, we assume that
the hypothesis h ∈ H is R-Lipschitz, and the loss function
ℓ is ρ-Lipschitz and bounded by M ≥ 0. These assump-
tions are widely adopted in prior theoretical works (Yin,
Ramchandran, and Bartlett 2019; Awasthi, Frank, and Mohri
2020; Gao and Wang 2021). The detailed formulas of these
assumptions can be found in the Appendix. In a standard
learning framework, the learner aims to select a hypothesis
h ∈ H that yields the minimal expected standard error.

3.2 Adversarial Training
Unfortunately, the hypothesis selected by the standard train-
ing process is vulnerable. Given a hypothesis h and a natu-
ral example (x, y), we can generate the corresponding ad-
versarial example (xadv, y) by adversarially perturbing x
in a small neighborhood Bδ(x) of x, as follows: xadv =
argmaxx′∈Bδ(x)

ℓ(h(x′), y). In this paper, we focus on lp
adversarial perturbation Bδ(x) := {x′ ∈ X : ∥x − x′∥p ≤
δ, p ≥ 1}, which is an lp-ball around x of radius δ ≥ 0
and has been widely studied in existing work. For a vec-
tor x ∈ Rd, we define the lp-norm of x as ∥x∥p :=(∑d

i=1 |x(i)|p
)1/p

for p ∈ [1,∞), where x(i) is the i-th ele-
ment of x; for p = ∞, we define ∥x∥∞ := max

1≤i≤d
|x(i)|. Fol-

lowing (Tu, Zhang, and Tao 2019), we denote Th : Z → Z
as a measurable function that transports a natural example to
an adversarial example according to h. We then obtain the
distribution of adversarial examples by pushing forward the
original distribution P into a new distribution P adv(h) :=
Th#P using the transport function Th. Next, we provide the
formal definition of expected adversarial error to measure
the performance of a hypothesis in the presence of adver-
saries.

Definition 3.1. (Expected Adversarial Error). The ex-
pected adversarial error of a hypothesis h ∈ H over the
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distribution P against the lp perturbation of radius δ is:

ϵadvP (h) := E
(x,y)∼P

[
max

x′∈Bδ(x)
ℓ(h(x′), y)

]
.

Through the lens of pushforward distribution P adv(h), we
can degrade the expected adversarial error into expected
standard error without the adversarial maximization:

ϵadvP (h) = ϵPadv(h)(h) = E
(x′,y)∼Padv(h)

[ℓ (h(x′), y)] .

The goal of adversarial training is to select a hypothe-
sis h ∈ H that achieves a small expected adversarial error.
However, the distribution P is unknown to the learner, and
in practice, we train the model by minimizing the empirical
adversarial error.

Definition 3.2. (Empirical Adversarial Error). Given the
observed samples {xi}ni=1, the empirical adversarial error of
a hypothesis h ∈ H against the lp perturbation of radius δ
is:

ϵ̂advP (h) = ϵ̂Padv(h)(h) =
1

n

n∑
i=1

max
x′
i∈Bδ(xi)

ℓ (h(x′
i), yi) .

The optimization problem of adversarial training can then
be written as a natural saddle point (min-max) formulation:
minh∈H

1
n

∑n
i=1 maxx′

i∈Bδ(xi) ℓ (h(x
′
i), yi)) . To solve this

min-max problem, adversarial training iteratively optimizes
the inner maximization and the outer minimization in a
nested loop. Let T be the total number of iterations of the
outer minimization. There are two steps in each iteration
of the outer loop. Specifically, for the t-th iteration where
t ∈ {0, 1, · · · , T − 1}, these steps are as follows:

1) Fix the hypothesis ht, after which an attacker (such as
PGD (Madry et al. 2018)) aims to find the adversar-
ial examples {xadv

i }ni=1 that maximize the empirical er-
ror: xadv

i = argmaxx′
i∈Bδ(xi) ℓ(ht(x

′
i), yi). We assume

that the attacker is effective and the adversarial examples
achieve the inner maximum. Since P adv(ht) is the dis-
tribution of the adversarial examples, for any h ∈ H, the
following holds:

ϵ̂Padv(ht)(ht)− ϵ̂Padv(h)(ht) ≥ 0. (1)

2) Based on the adversarial examples obtained in step 1),
the learner calculates the gradient of the error ϵ̂advP (ht)
and updates the hypothesis ht to ht+1 via gradient de-
scent. For any t ∈ {0, · · · , T − 1}, the following bound
holds:

ϵ̂Padv(ht)(ht)− ϵ̂Padv(ht)(ht+1) ≥ 0. (2)

The adversarial training process iterates between step 1)
and step 2). We present the relationship between these inter-
mediate terms in Figure 1. Note that the intermediate adver-
sarial examples considered in this paper refer to the output
examples of the attacker in each iteration.

Figure 1: Illustration of the adversarial training process. We
use h0 to denote the randomly initialized hypothesis and hT

to denote the output hypothesis of the last iteration.

3.3 Wasserstein Distance
Wasserstein distance (Wainwright 2019), also known as the
earth mover’s distance, is a widely used metric to measure
the distance between two distributions. We provide the defi-
nition of Wasserstein distance below.
Definition 3.3. (Wasserstein Distance). Let (Z, d) be a
metric space. For q ≥ 1, the Wasserstein q-distance between
two probability distributions P and Q over Z with finite q-
moments is:

Wq(P,Q) :=

(
inf

γ∈Γ(P,Q)
E(z,z′)∼γd(z, z

′)q
)1/q

, (3)

where Γ(P,Q) is the set of all couplings of P and Q. A
coupling γ is a joint probability distribution over Z × Z
whose marginals are P and Q on the first and second factors,
respectively. We define d(z, z′) := ∥x− x′∥p + |y − y′|.

4 Theoretical Analysis for Adversarial
Training

Adversarial training iteratively solves the inner maximiza-
tion and the outer minimization problems. At each itera-
tion t, the learner minimizes the empirical error over dis-
tribution P adv(ht) which depends on the current hypoth-
esis ht. Therefore, different iterations have different opti-
mization objectives. The existing error bounds presented
in (Khim and Loh 2018; Yin, Ramchandran, and Bartlett
2019; Gao and Wang 2021) disregard these intermediate
adversarial examples and intermediate adversarial errors.
In this section, we delve deeper into the adversarial train-
ing process and propose an error bound that involves each
optimization objective of the corresponding iteration. Our
theoretical results can be divided into three parts: (i). We
first consider the error difference for each iteration, i.e.,
ϵPadv(hT )(hT )−ϵ̂Padv(ht)(ht+1). We derive an upper bound
of the error difference through the lens of Rademacher com-
plexity. The error difference corresponding to each iteration
can then be summed over to facilitate the derivation of a gen-
eralization error bound that is applicable to the entire train-
ing process. However, this bound is somewhat loose, since
we bound each error difference of the corresponding itera-
tion separately. (ii). We then adopt tools from the time series
prediction and online learning literature to derive a tighter
bound for adversarial training. This bound thinks of T itera-
tions as a whole and makes use of all nT examples together.
(iii). We further convert the generalization error bound into
an optimizable formula. Notably, our theoretical results can
explain the effectiveness of existing curriculum adversarial
training methods. The proofs can be found in the Appendix.
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4.1 Error Bound of Each Iteration
In this subsection, we analyze the error difference, i.e.,
ϵPadv(hT )(hT ) − ϵ̂Padv(ht)(ht+1). The trick is to split it
into two parts and bound them separately. We first use the
Wasserstein distance to bound the error difference of a clas-
sifier between a pair of distributions in the following propo-
sition.
Proposition 4.1. Consider two arbitrary distributions P
and Q over Z . Then, for any hypothesis h ∈ H and loss
function ℓ, the following bound holds:

|ϵP (h)− ϵQ(h)| ≤ ρ
√
R2 + 1Wq(P,Q). (4)

Based on Proposition 4.1, we connect the empirical errors
of the fully trained model and the intermediate model in the
following Proposition.
Proposition 4.2. For an arbitrary iteration t ∈ {0, · · · , T−
1} in the adversarial training process as described in sec-
tion 3.2, the following bound holds:

ϵ̂Padv(hT )(hT )− ϵ̂Padv(ht)(ht+1)

≤
T−1∑
t′=t

ρ
√

R2 + 1Wq

(
P̂ adv(ht′), P̂

adv(ht′+1)
)
.

(5)

Since we focus on the expected adversarial error of the
trained model, we then introduce Rademacher complexity
(Wainwright 2019) to bound the generalization error.
Definition 4.3. (Rademacher Complexity) Let F be a
set of real-valued functions defined over Z . For any fixed
collection of points Z := (z1, · · · , zn), the empirical
Rademacher complexity of F is given by:

R̂Z(F) =
2

n
E
σ

[
sup
f∈F

n∑
i=1

σif(zi)

]
. (6)

The expectation is taken over σ = (σ1, · · · , σn), where σis,
i ∈ {1, · · · , n}, are independent uniform random variables
taking values in {−1,+1}.

Rademacher complexity is used to measure the complex-
ity of a hypothesis set. Let ℓ̃ ◦ H be a class of real-valued
functions defined over the feature space Z , i.e.:

ℓ̃ ◦ H := {(x, y) → max
x′∈Bδ(x)

ℓ(h(x′), y) : h ∈ H}. (7)

We can use the Rademacher complexity to connect the pop-
ulation and empirical error (Bartlett and Mendelson 2002)
as follows.
Proposition 4.4. Let ℓ̃ ◦ H be the function class in Eq. (7).
Then, for any α ≥ 0, with probability of at least 1− α over
samples Z of size n, the following holds for any hT ∈ H:

ϵadvP (hT )− ϵ̂advP (hT ) ≤ R̂Z(ℓ̃ ◦ H) + 3M

√
log 2

α

2n
. (8)

By combining Proposition 4.2 with Proposition 4.4, we
can derive the error difference bound for each iteration. We
then sum up all the error differences over all iterations to get
the following Theorem.

Theorem 4.5. Consider the adversarial training process as
described in section 3.2. For any α ≥ 0, with probability of
at least 1− α over samples Z, the following bound holds:

ϵadvP (hT ) ≤
1

T

T−1∑
t=0

ϵ̂Padv(ht)(ht+1) +O

(
1

T

T∑
t=1

t∆t−1,t

)

+ R̂Z(ℓ̃ ◦ H) +O

√ log 2
α

2n

 ,

(9)
where ∆t−1,t = Wq(P̂

adv(ht−1), P̂
adv(ht)).

Remark 4.6. According to this theorem, the expected adver-
sarial error of the output hypothesis of the adversarial train-
ing algorithm is upper-bounded by three parts: (i). The aver-
age empirical adversarial error of the hypothesis in each it-
eration. Note that the hypothesis ht+1 is trained to minimize
the empirical error on distribution P adv(ht). The first part
is thus the optimization objectives of each iteration. Unlike
existing work, our bound involves every intermediate itera-
tion and accordingly shows that the conventional adversarial
training algorithm can indeed help to improve the robust-
ness of the hypothesis from a dynamic training perspective.
(ii). A summation of the Wasserstein distance between adja-
cent adversarial distributions. (iii). Rademacher complexity
of the hypothesis class and a term converging to 0 as the
sample size n increases to infinity.

4.2 An Online Perspective for Adversarial
Training

In the last subsection, we derive an error bound by separately
considering the error difference of each iteration. From the

last term in the bound (9), i.e.,
√

log 2
α

2n , we know that the
bound does not make use of all nT training samples, and
the convergence rate is O(n−1/2). The question is, can we
derive a tighter bound involving terms with convergence rate
Õ((nT )−1/2)?

To answer this question, we adopt tools from online learn-
ing and time series prediction. We will first introduce some
definitions and lemmas. In time series prediction theory, we
can view adversarial training from an online perspective,
and the training (adversarial) samples in all iterations can
be seen as a realization of a stochastic process. Similar to
the VC dimension and Rademacher complexity in standard
supervised learning, there are some sequential complexities
used to measure the structural complexity of a class func-
tion in an online learning scenario, such as the Littlestone
dimension, expected sequential covering number, sequen-
tial metric entropy, and sequential Rademacher complexity
(Rakhlin, Sridharan, and Tewari 2010). In this paper, we
adopt the following definition of a complete binary tree and
sequential Rademacher complexity.
Definition 4.7. (Complete Binary Tree (Shalev-Shwartz
and Ben-David 2014)). A Z-valued complete binary tree Z
is a sequence (Z0, · · · ,ZT−1) of T mappings Zt : {±1}t →
Z, t ∈ {0, · · · , T − 1}. A path in the tree is denoted by
σ = (σ0, · · · , σT−2) ∈ {±1}T−1. For simplicity, we use
Zt(σ) to represent Zt(σ0, · · · , σt−1).
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Definition 4.8. (Sequential Rademacher Complexity
(Rakhlin, Sridharan, and Tewari 2010)). Let λ =
(λ0, · · · , λT−1) be an arbitrary sequence of real num-
bers forming a probability distribution. The sequential
Rademacher complexity Rseq

T (F) of a function class F is
defined as follows:

Rseq
T (F) = sup

Z
E
σ

[
sup
f∈F

T−1∑
t=0

σtλtf(Zt(σ))

]
, (10)

where the supremum is taken over all Z-valued complete
binary trees of depth T , and the expectation is taken over a
sequence of uniform random variables σ = {σ0, · · · , σT−1}
taking values in {−1,+1}.

The sequential Rademacher complexity has been well
studied in the online learning literature. In the below, we
introduce an example of neural networks.
Example 4.9 (Neural Networks (Rakhlin, Sridharan,
and Tewari 2015)). Let H be R-Lipschitz L-Layer fully
connected neural networks with 1-Lipschitz transformation
function. The sequential Rademacher complexity can be
bounded as:

Rseq
T (H) ≤ O

(
R

√
(log T )3(L−1)

T

)
. (11)

Since the distributions of each sample are different in the
context of time series prediction, we need a metric to mea-
sure the discrepancy between the target distribution and the
distributions of the intermediate samples. We adopt the fol-
lowing notion of discrepancy used in (Kuznetsov and Mohri
2020).
Definition 4.10. (Discrepancy (Kuznetsov and Mohri
2020)). For a stochastic process {zt}t∈{0,··· ,T−1} and an ar-
bitrary sequence λ = (λ0, · · · , λT−1) of real numbers form-
ing a probability distribution, the discrepancy discT (λ) with
respect to a hypothesis class F is defined as:

discT (λ) := sup
f∈F

(
E
zT
[f(zT )|zT−1

0 ]−
T−1∑
t=0

λtE
zt
[f(zt)|zt−1

0 ]

)
,

(12)
where zt0 = {z0, · · · , zt} is a sequence of samples.

In the following Proposition, we bound the discrepancy in
the setting of adversarial training as described in section 3.2.
Specifically, F is the family of loss functions associated to
H: F = {(x, y) → ℓ(h(x), y) : h ∈ H} and zt follows the
distribution P adv(ht).
Proposition 4.11. Let λ = ( 1

T , · · · ,
1
T ) be a uniform se-

quence. For the adversarial training process defined in sec-
tion 3.2, the discrepancy can be bounded as follows:

discT (λ) ≤
1

T
ρ
√
R2 + 1

T∑
t=1

tWq

(
P̂ adv(ht−1), P̂

adv(ht)
)
.

(13)
Based on these introduced concepts, we now present an

important generalization error bound for forecasting time se-
ries. The detailed results can be found in (Kuznetsov and
Mohri 2020).

Theorem 4.12 (Bounds for Time Series Prediction
(Kuznetsov and Mohri 2020)). Let {zt}t∈{0,··· ,T−1} be a
stochastic process, and let λ = (λ0, · · · , λT−1) be a se-
quence of real numbers forming a probability distribution.
Then, for any α ≥ 0, with probability of at least 1 − α, the
following inequality holds for all f ∈ F :

E[f(zT )|zT−1
0 ] ≤

T−1∑
t=0

λtf(zt) + discT (λ) + ∥λ∥2

+ 6M
√

4π log TRseq
T (F) +M∥λ∥2

√
8 log

1

α
.

(14)

However, if we directly apply this theorem in an off-the-
shelf way, then we would obtain a generalization bound in-
volving terms with dependence only on T but no depen-
dence on n, in the form O(T− 1

2 ), which means the term does
not vanish to 0 even with an infinite dataset size n. In order to
derive a generalization error bound with term Õ((nT )−

1
2 ),

we apply Theorem 4.12 from a sample-level perspective and
then derive the following result of our generalization bounds
for adversarial training.

Theorem 4.13. (Generalization Error Bound for Adver-
sarial Training). Let H be R-Lipschitz L-Layer fully con-
nected neural networks with 1-Lipschitz transformation
function. For any α ≥ 0, with probability of at least 1 − α,
we can bound the adversarial error of the output hypothesis
hT of adversarial training algorithm as follows:

ϵadv(hT ) ≤
1

T

T−1∑
t=0

ϵ̂Padv(ht)(ht+1) +O

(
1

T

T∑
t=1

t∆t−1,t

)

+O

(
M
√

−8 logα

nT
+

1√
nT

+MρR

√
(log nT )3L+1

nT

)
,

(15)
where ∆t−1,t = Wq

(
P̂ adv(ht−1), P̂

adv(ht)
)

.

Remark 4.14. Although this bound focuses on fully con-
nected neural networks, the theorem can be easily extended
to any other hypothesis class by replacing the sequential
Rademacher complexity of the corresponding hypothesis
class.

Comparison with Eq. (9). A salient improvement of the
bound in Eq. (15) compared with the bound in Eq. (9) is that
the asymptotic term has the convergence rate Õ((nT )−

1
2 ).

This term characterizes the overall sample size nT used by
the algorithm as the iterations progress; i.e., the algorithm
updates the model on n adversarial examples in each itera-
tion, and there are T iterations during training.

Comparison with Previous Work. Xiao et al. (2022b)
and Xing, Song, and Cheng (2021a) derive generalization
error bounds through stability analysis. Their bounds focus
on ϵadvP (hT ) − ϵ̂advP (hT ). (Mustafa, Lei, and Kloft 2022)
uses Rademacher complexity to bound the generalization er-
ror of any model, i.e., ϵadvP (h) − ϵ̂advP (h) for any h ∈ H.
Xing, Song, and Cheng (2021b) study the generalization
performance of adversarial training from a statistical esti-
mation perspective. They prove that the adversarial error of
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the trained model converges to the minimal adversarial error,
i.e., ϵadvP (hT ) → minh∈H ϵadvP (h), with probability tending
to 1. However, these bounds do not analyze the intermediate
objects and the adversarial examples. Our bounds in (9) and
(15) fill this gap.

4.3 Analysis of the Generated Adversarial
Examples

The effect of adversarial examples on the robustness of the
trained model is widely studied in previous work (Madry
et al. 2018). Recently, based on the idea of curriculum learn-
ing (Bengio et al. 2009), some authors claim that training
with mild adversarial examples in the early stage of training
is beneficial to the model (Zhang et al. 2020). These works
control the strength of adversarial examples in various ways,
such as by constraining the number of iterative steps (Cai,
Liu, and Song 2018) and the convergence quality of adver-
sarial examples (Wang et al. 2019). All of these methods can
be regarded as different forms of controlling the perturbation
radius. We now use our theoretical results in Theorem 4.5
and Theorem 4.13 to explain the effectiveness of this strat-
egy.

In both Eq. (9) and Eq. (15), the Wasserstein distance be-
tween adversarial distributions of adjacent iterations plays
an important role. In this subsection, we do not consider
the constant coefficient and denote the Wasserstein distance
term in Eq. (15) as follows:

J :=
1

T

T∑
t=1

tWq

(
P̂ adv
δt−1

(ht−1), P̂
adv
δt (ht)

)
,

where P̂ adv
δt

(ht) denotes the distribution of adversarial ex-
amples under the constraint set Bδt . The next question is,
how can we schedule δt to minimize J? Note that δT is fixed
to be the perturbation radius δtest of the test stage. The vi-
sualization of the radius constraint can be found in the Ap-
pendix.

To better understand the term J , we convert it into
an optimizable form. In curriculum adversarial training,
the overall trend of Wq(P̂

adv
δt

(ht), P̂ ) is non-decreasing
as t increases, which has been experimentally veri-
fied (see Figure 2). Since the Wasserstein distance is
proven to satisfy the triangle inequality in information
theory literature (Clement and Desch 2008), we use
the original distribution P̂ to connect the adjacent ad-
versarial distributions, as follows: Wq(P̂

adv
δt

(ht), P̂ ) −
Wq(P̂

adv
δt−1

(ht−1), P̂ ) ≤ Wq(P̂
adv
δt

(ht), P̂
adv
δt−1

(ht−1)) ≤
Wq(P̂

adv
δt

(ht), P̂ ) + Wq(P̂
adv
δt−1

(ht−1), P̂ ). Using a co-
efficient term kt, we further rewrite the inequality
as Wq(P̂

adv
δt

(ht), P̂
adv
δt−1

(ht−1)) = Wq(P̂
adv
δt

(ht), P̂ ) +

kt−1Wq(P̂
adv
δt−1

(ht−1), P̂ ), where kt−1 ∈ [−1,+1] re-
flects the volatility of the adversarial distributions and
the model. kt tends to +1 when the distance between
the adversarial distributions of adjacent iterations is rel-
atively large, which means that the model fluctuates. In
contrast, kt tends to −1 when the adversarial distribu-
tions and the model tend to converge. We visualize the tri-

angle inequalities with different values of kt in the Ap-
pendix. By substituting this into J , we can rewrite J

as: J = Wq

(
P̂ adv
δT

(hT ), P̂
)
+ 1

T k0Wq

(
P̂ adv
δ0

(h0), P̂
)
+

1
T

∑T−1
t=1 ((t+ 1)kt + t)Wq

(
P̂ adv
δt

(ht), P̂
)
.

To minimize the term J , we can adaptively control each
Wasserstein distance according to the value of kt. We ob-
serve in the experiments that the adversarial examples are
generated very close to the border of the perturbation set,
i.e. ∥x−xadv∥p ≈ δ. According to the definition of Wasser-
stein distance, the following formula holds for any h ∈ H:
Wq

(
P̂ adv
δt

(h), P̂
)
≈ δt (Lemma 2 of (Tu, Zhang, and Tao

2019)). So the term J can be further converted as:

J ≈ δT +
1

T

T−1∑
t=1

((t+ 1)kt + t)δt +
1

T
k0δ0. (16)

Since J is associated with δt, we can control the radius δt
to minimize J in Eq. (16):
1) when kt > − t

t+1 , which means (t + 1)kt + t > 0, re-
ducing the radius δt reduces J . As verified in later experi-
ments, kt is large during the early stage; hence, constrain-
ing the radius at the beginning improves the robustness of
the trained model.

2) when kt < − t
t+1 , which means (t + 1)kt + t < 0, in-

creasing the radius δt reduces J . A small kt indicates that
the model is nearly convergent with radius δt, which im-
plies that, after the model tends to converge, we should
increase the radius δt.

In the works of curriculum adversarial training (Cai, Liu,
and Song 2018; Wang et al. 2019; Kinfu and Vidal 2022),
the researchers find that gradually increasing the hardness
of the adversarial examples is beneficial to the training. Our
theory provides a theoretical explanation for the efficacy of
this strategy.

5 Experiments
From the theoretical results in Section 4.3, we can observe
that the terms Wq , kt and J play important roles in adver-
sarial training. In this section, we use the CIFAR-10 and
CIFAR-100 (Krizhevsky, Hinton et al. 2009) datasets to
track the changes in these terms during the training process
and verify our theoretical results. Our code is attached to the
supplementary material.

5.1 Setup
Baselines. The baselines used in the experiments are as fol-
lows: conventional adversarial training with PGD attacker
(Madry) (Madry et al. 2018) and Friendly Adversarial Train-
ing (FAT) (Zhang et al. 2020). FAT is a typical curriculum
adversarial training method that achieves better performance
than Madry. The details of this method can be found in the
Appendix. We compare the term J between these methods
and account for the effectiveness of curriculum adversarial
training methods using our theory.

Networks. Following (Zhang et al. 2020), we use ResNet-
18 (He et al. 2016) and Wide ResNet (WRN-34-10)
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Figure 2: Changes in the term W1(P̂
adv(ht), P̂ ) for the (curriculum) adversarial training methods during the training process.

Figure 3: The values of term J for the three methods at
the end of the training process. Since the values for differ-
ent groups (different networks and datasets) have different
ranges, we normalize the values for each group by dividing
by the maximum value in the group.

(Zagoruyko and Komodakis 2016) for both CIFAR-10 and
CIFAR-100 (Krizhevsky, Hinton et al. 2009) datasets.

Parameters. For all baselines, we run projected gradient
descent (PGD) as our adversary, with a step size of 0.007.
The maximum step of PGD is 20, and the maximum ra-
dius of the l∞-norm bounded perturbation is δ = 0.031.
Following Zhang et al. (2020), the models are trained using
stochastic gradient descent (SGD) with momentum of 0.9
for 120 epochs. The initial learning rate is 0.1, reduced to
0.01, 0.001, and 0.0005 at epoch 60, 90, and 110, respec-
tively. The batch size is 128. For parameters unique to each
method, we use the default values in their papers.

Calculation of Wasserstein Distance. The Wasserstein
distance is defined in Definition 3.3. Since the optimal
transport solution is difficult to find, researchers often use
Kantorovich-Rubinstein duality to approximately calculate
the Wasserstein distance between two distributions (Ar-
jovsky, Chintala, and Bottou 2017). However, this method
is both time-consuming and unstable (Gulrajani et al. 2017).
Fortunately, we can calculate the Wasserstein distance di-
rectly, since the mapping Th defined in Section 3.2 is indeed
the optimal transport between distributions P̂ and P̂ adv(h).
Hence, we obtain W1(P̂

adv(h), P̂ ) = 1
n

∑n
i=1 ∥xadv

i −xi∥,
where xadv

i is the adversarial example of xi according to h.

5.2 Results and Analysis

The term kt reflects the volatility of the training process.
Due to space limitations, we present the changes in the term
kt during the training process in the Appendix. As can be
seen from the figures, the kt values of all three methods de-
crease gradually in most cases. As analyzed in Section 4.3,
when kt is large at the beginning of the training process, we
can control the radius δt to reduce J . On the other hand,
when kt decreases at the end of the training process, in-
creasing the radius δt will reduce J . In practice, the curricu-
lum adversarial training method FAT gradually moves the
adversarial examples further away from the natural exam-
ples, making them more difficult to learn. To visualize this
strategy, we track the changes in W1(P̂

adv(ht), P̂ ) during
training in Figure 2, since Wq

(
P̂ adv
δt

(h), P̂
)

approximates
δt (Lemma 2 of Tu, Zhang, and Tao (2019)). As the figure
shows, FAT keeps the Wasserstein distance relatively small
in the early stage of the training process, which is consistent
with our analysis at the end of Section 4.3.

We compare the values of the term J at the end of the
training process for the methods in Figure 3. Compared to
the Madry, FAT achieves smaller J , no matter which dataset
and neural network we use. According to our theoretical re-
sults in Theorem 4.5 and Theorem 4.13, a smaller J im-
proves generalization performance. Our theoretical analysis
thus explains the efficacy of curriculum adversarial train-
ing methods, which gradually increases the hardness of the
adversarial examples. More experiments of SVHN (Netzer
et al. 2011) and Tiny-ImageNet (Le and Yang 2015) datasets
can be found in the Appendix, which consistently verify our
theory.

6 Conclusion

In this work, we study the generalization performance of ad-
versarial training from an online perspective. We first pro-
pose a generalization error bound via Rademacher complex-
ity, then introduce the time series prediction framework to
derive an improved error bound. Our theoretical results fur-
ther explain why curriculum adversarial training methods
can improve generalization performance. Extensive exper-
iments verify our theoretical findings.
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