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Abstract

While coresets have been growing in terms of their applica-
tion, barring few exceptions, they have mostly been limited
to unsupervised settings. We consider supervised classifica-
tion problems, and non-decomposable evaluation measures
in such settings. We show that stratified uniform sampling
based coresets have excellent empirical performance that are
backed by theoretical guarantees too. We focus on the F1
score and Matthews Correlation Coefficient, two widely used
non-decomposable objective functions that are nontrivial to
optimize for, and show that uniform coresets attain a lower
bound for coreset size, and have good empirical performance,
comparable with “smarter” coreset construction strategies.

Introduction
In typical classification tasks, multiple objective functions are
often at stake— one is the (surrogate) classification objective
being optimized, and the other is the real measure of perfor-
mance. This “real measure” is non-differentiable and, more
importantly, often a non-decomposable function over the set
of input points, i.e., it cannot be written as a sum over the
input points. Popular examples include F1 score, Matthews
Correlation Coefficient (MCC), area under the curve (AUC-
ROC) measures, and various variants of combinations of
precision and recall measures e.g. H-mean, G-mean etc. In
spite of being non-differentiable and non-decomposable, such
classification measures are attractive since they help portray
the tradeoffs between precision and recall, help enable the
handling of mild to severe label imbalance, etc.

Such non-additive measures are generally optimized em-
pirically by choosing a surrogate decomposable measure,
then optimizing the decision boundary threshold using grid
search. In recent years, a host of algorithms have been de-
veloped for optimizing the non-decomposable measures di-
rectly (Joachims 2005; Nan et al. 2012; Narasimhan, Kar,
and Jain 2015; Eban et al. 2017). However, the main draw-
back remains that the algorithms developed are often not very
efficient in practice and, thereby, remain harder to scale over
large datasets.

For decomposable loss functions, such as for regression
or matrix factorization, one way in which this complexity of

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

training has been circumvented is by constructing coresets—
summaries of the dataset that enable an optimizer to optimize
over the coreset only and give both a theoretically guaran-
teed as well as empirically satisfying performance for the
full data. The major tool for coreset creation remains impor-
tance sampling, and that relies crucially on the decompos-
ability of the loss function in order to deduce the importance
weights. Indeed, in traditional classification coreset literature,
researchers have explored various coreset building mecha-
nisms for logistic loss (Munteanu et al. 2018), SVM (Tukan
et al. 2021), etc. However, again the main catch is their evalu-
ation and bounds focus on the decomposable surrogates such
as the logistic loss function, hinge loss function, etc. (Mai,
Musco, and Rao 2021). For non-decomposable performance
measures e.g. F1 score, MCC score, AUC etc. there does not
exist any such coreset creation mechanisms.

Our paper is the first step along this direction. In this
work, we show that for F1-score and MCC, applying stratified
uniform sampling is enough to obtain a (weak) coreset that
preserves the value of these measures up to a small additive
error for an interesting set of queries that contains the optimal.
We also show a lower bound for strong coresets for the F1
and the MCC scores, implying that we cannot do much better
than uniform sampling. We provide experimental evidence
of our results on real datasets and for various classifiers and
sampling techniques. Even though we formally prove our
bounds and theory for F1-score and MCC, it applies to most
contingency table-based measures.

Following are our main contributions:

1. We provide lower bounds against construction of strong
coresets for both MCC and F1 score measures.

2. We show that sampling uniformly from each class in a
stratified manner gives a weak coreset for the F1 score
and a weak coreset with a small additive error for MCC.
Here weak signifies that our coreset works for a set of
a large number of ’important’ classifiers, including the
optimal.

3. We provide empirical results for a number of different
classifiers and real data sets comparing uniform sampling
with other well-known sophisticated coreset construction
strategies.

The rest of the paper is organized as follows: Sections 2 and
3 give the necessary background and related work. Section
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4 provides lower bounds(negative results) for coresets for
both MCC and F1 scores. Sections 5 and 6 give the analysis
of our weak coreset construction guarantees for F1 score
and MCC. We discuss the experiments and comparison of
uniform sampling on real data sets with a variety of sampling
algorithms in section 7 and conclude in section 8. Some
proofs and additional experiments are available in the arXiv
version 1 .

Background
A coreset can be considered to be a weighted subset of data
from the original dataset or some different small-sized rep-
resentation of the original dataset. In designing a coreset,
the main challenge is to build one with provable tradeoffs
between the approximation error and the coreset size.

We interchangeably refer to classifiers as "query" and de-
note them by q. Q denotes the set of all possible classifiers.
Definition 1. (Coreset) (Agarwal et al. 2005) Given a
weighted dataset X , let x ∈ X and µX(x) be its corre-
sponding nonnegative weight. Let Q be a set of solutions
known as query space and q ∈ Q be a query. For each
q ∈ Q, let fq : X → R≥0 be a non-negative function. Define
cost(X, q) =

∑
x∈X µX(x)fq(x). For ϵ > 0, a weighted-

set (C,w) is an ϵ-coreset of X for the cost function {fq}, if
∀q ∈ Q,

|cost(X, q)− cost(C, q)| ≤ ϵ cost(X, q).

For coresets with a θ additive error, the above guarantee
becomes the following– for all q.

|cost(X, q)− cost(C, q)| ≤ ϵ cost(X, q) + θ.

Though stated in terms of decomposable loss functions, this
definition also applies to measures which are not decompos-
able but are rather functions of entire dataset as a whole.
We will also be dealing with weak coresets, i.e. our coresets
will satisfy the above guarantees for a specific subset of the
solution space, that contains the optimal.

In this text, we mainly deal with uniform sampling,
and with two non-decomposable loss functions, the F1
score and the MCC score. For a particular classifier q, let
tp(q), tn(q), fp(q) and fn(q) denote the true-positive, the
true-negative, the false positive and false negative respec-
tively. We will sometimes drop the (q) notation when it is
clear from context.

The F1 score is defined as the following. For a classifier q,

F1(q) = 2 · precision · recall
precision+ recall

=
tp

tp+ 1
2 (fp+ fn)

The MCC score is defined as the following (we leave off
the "(q)" for lack of space).

MCC(q) =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)

=
tp
n − T

′
P

′√
T ′P ′(1− T ′)(1− P ′)

1http://arxiv.org/abs/2312.09885

where T ′ denotes the fraction of ground truth positives and
P ′ = (tp+ fp)/n denotes the fraction of predicted positives.
We will use Y + and Y − to denote the set of all positive
and negatively labeled points. Sometimes we will also use
the same notation to denote the total number of positive and
negatively labeled points.

Related Work
(Joachims 2005) formulated the non-decomposable measures
as a structural prediction problem and gave a direct opti-
mization algorithm using multivariate SVM formulation. The
primary idea is to reduce the number of constraints in multi-
variate SVM by finding the most violated constraint in each
iteration, preparing the candidate set, and applying multi-
variate SVM over that small set only. But in their algorithm
for calculation of the argmax for most violated constraints,
the algorithm must go over all possible configurations of the
contingency table, which amount to n2 different contingency
tables.

(Kar, Narasimhan, and Jain 2014) extend the existing
online learning models for point-loss functions to non-
decomposable loss functions. They also develop scalable
SGD solvers for non-decomposable loss functions. Their
work uses the previous result of representing the non-
decomposable loss function as structural SVMs (Joachims
2005) and optimizing them. Deep learning based methods
for optimizing non-decomposable losses have also been ex-
plored in (Sanyal et al. 2018). We note that our work on
coresets is orthogonal to the work on optimizing such losses,
any such optimizer could be used in parallel with our coreset
technique.

(Eban et al. 2017) proposed an alternative formulation
based on simple direct bounds on per-sample quantities in-
dicating whether each sample is a true positive or a false
positive. Using these bounds, they constructed global bounds
on ranking-based measures such as precision at fixed recall,
recall at fixed precision, and F1 score, among others. From
these global bounds, they derived the surrogate objective
function and the closed-form alternate optimization problem,
which is then optimized. However, they did not discuss empir-
ical results for the F1 score and MCC. (Bénédict et al. 2022)
try to maximize a surrogate loss in place of the F1 score.
There has been some work in active sampling to estimate
F1 score using optimal subsampling (Sawade, Landwehr,
and Scheffer 2010) or iterative importance sampling (Poms
et al. 2021) ,however, both the motivation and guarantees are
different from the coreset guarantees.

Coresets have been studied since (Agarwal et al. 2005).
One of the popular ways to create coreset is to construct
a probability distribution, called sensitivity, over the set of
input points (Langberg and Schulman 2010; Feldman and
Langberg 2011). Sampling points proportional to their sen-
sitivities and appropriately reweighing them gives a core-
set with high probability (Langberg and Schulman 2010;
Feldman and Langberg 2011). However, the major techni-
calchallenge in this method is to figure out computationally
inexpensive upper bounds to the sensitivity scores for each
cost function. More details about the construction of coresets
using the sensitivity framework can be found in (Feldman
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and Langberg 2011; Bachem, Lucic, and Krause 2017, 2018;
Braverman et al. 2016; Mai, Musco, and Rao 2021; Feldman
2020) and references within. While coresets using this frame-
work have theoretical guarantees, it has been shown that for
some problems you can not do much better than uniform
sampling (Samadian et al. 2020). Our paper also has similar
results. It has been shown by (Braverman et al. 2022) that
using uniform sampling with some careful analysis can also
give coreset guarantees for clustering problems. Additionally
empirically uniform sampling has been shown to be compa-
rable to other techniques for many real data sets (Lu, Raff,
and Holt 2023).

Lower Bounds
In this section we first present lower bounds for strong core-
sets for F1 score and MCC.

Lower Bound for Strong F1 Coresets
Theorem 1. Let F1(q) be the F1 score on full dataset D
with fixed query q and F̃1(q) be the F1 score on coreset C.
Then, there does not exist a strong coreset C with a size
less than n that satisfies relative error approximation i.e.
F̃1(q) ∈ (1± ϵ)F1(q) for all queries q ∈ Q.

Proof. Let d be any non-negative even integer. Let S be the
set of all sets of size d/2. We define the set P of points
as follows: In order to generate each point p, choose Bp ∈
S, and yp ∈ {±1}. The vector p is defined as following—
pi = −yp for all i ∈ Bp, and pi = 0 for all i ∈ [d] \ Bp,
pd+1 = yp/2. The label of the point p is also yp.

For each point p, we also define a corresponding classifier
wp in the following way— wp[i] = 0 if i ∈ Bp, wp[i] = 1 if
i ∈ [d] \Bp, and wp[d+ 1] = 1.

By the above construction, for every point

p · wp = yp/2.

Hence sign(p · wp) = yp, and hence p is correctly classified.
For any point q ̸= p, Bp ̸= Bq . Hence,

q · wp = −yq|Bq ∩ B̄p|+ yq/2

Since |Bq ∩ B̄p| ≥ 1, sign(q · wp) = −yq, i.e. q is misclas-
sified.

So for a point p with yp = +1, for the query wp the F1

score is 1
1+(n−2)/2 . However, if the coreset does not sample

the point p, the F1 score for wp would be zero, which is not a
relative error approximation. Since this is true for every point
p, the coreset has to be of size n.

Lower Bound for Strong MCC Coresets
Theorem 2. Let MCC(q) be the MCC score on full dataset
D with fixed query q and M̃CC(q) be the MCC score on
coreset C. Then, there does not exist a strong coreset C with
a size less than n that satisfies relative error approximation
i.e. M̃CC(q) ∈ (1± ϵ)MCC(q) for all queries q ∈ Q.

Proof. Let d ≥ 4 be any non-negative even integer. Let S be
the set of all sets of size d/2. Let n =

(
d

d/2

)
. Let yp ∈ {±1}

be such that exactly n/2 points have yp = +1. We define
the set P of n points as follows: in order to generate each
point p ∈ Rd+1, choose Bp ∈ S. The vector p is defined
as follows: pi = Xp for all i ∈ Bp, and pi = 0 for all
i ∈ [d] \ Bp, pd+1 = yp/2. The label of the point p is also
yp.

Now, lets define Xp for points, 1 ≤ p ≤ n as follows.
If the true label of point p is yp ∈ Y + then, Xp = yp for
1 ≤ p ≤ Y +

2 , and −yp else. Similarly, for p ∈ Y −, Xp = yp

for 1 ≤ p ≤ Y −

2 and −yp else.
For each point p, we also define a corresponding classifier

wp in the following way— wp[i] = 0 if i ∈ Bp, wp[i] = 1 if
i ∈ [d] \Bp, and wp[d+ 1] = 1.

By the above construction, for every point

p · wp = yp/2.

Hence sign(p · wp) = yp, and hence p is correctly classified.
For any point q ̸= p, Bp ̸= Bq . Hence,

q · wp = Xq|Bq ∩ B̄p|+ yq/2

Since |Bq ∩ B̄p| ≥ 1, sign(q · wp) = Xq , i.e. q is classified
as per the sign of Xq .

Therefore, for the classifier wp, all of the points, except
point p, classify according to Xq .

Notice that we have designed Xp for all p such that for Y +

and Y −, it will classify half points positive and half points
as negative.

Therefore for a point p with yp = +1 and classifier wp, we
have tp = n−1

4 + 1, tn = n−1
4 , fn = n−1

4 and fp = n−1
4

respectively for balanced setup i.e. Y + = Y − = n
2 .

For above setup MCC score is,

MCC =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)

=
tp · tn− fp · fn√

(tp+ fp)Y +Y −(tn+ fn)

=
(n−1

4 + 1) · (n−1
4 )− (n−1

4 ) · (n−1
4 )

n
2

√
(n+1

2 )(n−1
2 )

= θ

(
1

n

)
However, if the coreset does not sample the point p, then

we have tp = n−1
4 , tn = n−1

4 , fn = n−1
4 and fp = n−1

4
respectively, thus MCC score for wp would be zero, which
is not a relative error approximation. Since this is true for
every point p, the strong coreset has to be of size n.

Weak Coreset for Queries with High F1 Score
We will be using the following result of (Li, Long, and Srini-
vasan 2001) to get our coreset guarantees for all queries in
the query set of our interest.
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Theorem 3. (Li, Long, and Srinivasan 2001)
Let, α > 0, v > 0 and δ > 0. Fix a countably in-

finite domain X and let q(·) be any probability distribu-
tion over X . Let F be a set of functions from X to [0, 1]

with Pdim(F ) = d
′
. Denote by C a sample of m points

from X sampled independently according to q(·). Then, for

m ∈ Ω
(

1
α2·v

(
d

′
log(1/v) + log(1/δ)

))
, with probability

at least 1− δ it holds that,

∀f ∈ F ; dv

(∑
x∈X

q(x)f(x),
1

|C|
∑
x∈C

f(x)

)
≤ α

where, dv(a, b) =
|a−b|
a+b+v .

Now we state our theorem for bounding the coreset size
and performance for F1 score.

Theorem 4. Let ϵ > 0 and c > 1. Consider an instance
where number of positive samples are Y + and number of
negative samples are Y −, and n = Y + + Y −. We con-
sider Qγ to be the set of queries such that F1(q) ≥ γ and

tp ≥ max
(

n(1−c·ϵ)
2c·(1−ϵ) ,

n(1+c·ϵ)
2c·(1+ϵ)

)
for q ∈ Qγ . Let d = vc-

dimension(Qγ).
Stratified uniform sampling with a total of(
(2−γ)2

γ2ϵ2 + 1
ϵ2 +

(
Y −

Y +

)2
1
ϵ2

)
·
(
d+ log 1

δ

)
samples

would be able to give a coreset for Qγ that satisfies
F̃1(q) ∈ (1 ± c · ϵ)F1(q) for all queries q ∈ Qγ with
probability at least 1− 3δ, for a suitable c > 1.

Proof. We have, tp
tp+ 1

2 (fp+fn)
= F1 ≥ γ, and hence

tp
1
2 (fp+fn)

≥ γ
1−γ . Also, tp+ fp+ fn ≥ Y +. We now find

the minimum value of tp satisfying these two inequalities.

From above, tp =
(

γ
1−γ

)
· 1

2 (fp + fn) + k, where

k ≥ 0. Then,
(

γ
1−γ

)
1
2 (fp + fn) + k + (fp + fn) ≥ Y +

and hence 1
2 (fp + fn) ≥ (Y + − k)/

(
γ

1−γ + 2
)

. Thus

tp =
( γ

1−γ )Y
+

( γ
1−γ +2)

+ 2k
γ

1−γ +2 ≥ γ·Y +

(2−γ) .

Let t̃p and f̃n be the true positive and false negative counts
obtained from the sampled set. Let all the negative samples be

given a weight of Y −

Y + . Hence, let ˜̃fp defined as following—˜̃
fp =

(
Y −

Y +

)
f̃p. Similarly, let ˜̃tn defined as following—˜̃tn =

(
Y −

Y +

)
t̃n. Our algorithm uses the four estimates t̃p,˜̃

fp, ˜̃tn and f̃n to estimate the F1 score. We first show the
quality of each of these estimates by applying Theorem 3
individually.

For tp approximation,

∀q ∈ Q; dv

( ∑
x∈Y +

1

Y +
δx,

1

|S1|
∑
x∈S1

δx

)
≤ α1

where, δx = 1(x ∈ tp) is indicator variable and dv(a, b) =
|a−b|
a+b+v

=

∣∣∣∑x∈Y +
1

Y + δx − 1
|S1|

∑
x∈S1

δx

∣∣∣∑
x∈Y +

1
Y + δx + 1

|S1|
∑

x∈S1
δx + v

≤ α1

=

∣∣∣ tp
Y + − t̃p

|S1|

∣∣∣
tp
Y + + t̃p

|S1| + v
≤ α1

=

∣∣∣∣∣ tpY +
− t̃p

|S1|

∣∣∣∣∣ ≤ 3α1

Since, tp
Y + and t̃p

|S1| is less than one, lets take v = 1
2 .

t̃p ∈ tp

(
S1

Y +

)
± S1 · (3α1)

Y +

S1
t̃p ∈ tp± Y + · (3α1)

Since, tp ≥ γ·Y +

(2−γ) , we have Y + ≤ tp·(2−γ)
γ .

Y +

S1
t̃p ∈ tp± (3α1) ·

tp · (2− γ)

γ

Y +

S1
t̃p ∈

(
1± (3α1) ·

(2− γ)

γ

)
tp

t̃p ∈ (1± ϵ) tp
S1

Y +

where, ϵ = (3α1) · (2−γ)
γ

Therefore, α1 = γ·ϵ
3(2−γ) .

Now, size of samples required to satisfy the
above approximation using Theorem 5.1 is, S1 =

Ω
(

1
α2

1·v
(
d log 1

v + log 1
δ

))
= Ω

(
(2−γ)2

γ2·ϵ2
(
d+ log 1

δ

))
,

with probability 1− δ for all q ∈ Qγ ⊂ Q .

For fn approximation, we can similarly show that

f̃n ∈ fn

(
S2

Y +

)
± S2 · (3α2).

Using ϵ = (3α2), we have the additive error to be ϵS2.

Now, size of samples required to satisfy the
above approximation using Theorem 5.1 is,
S2 = Ω

(
1

α2
2·v
(
d log 1

v + log 1
δ

))
= Ω

(
1
ϵ2

(
d+ log 1

δ

))
,

with probability 1− δ for all q ∈ Qγ ⊂ Q .

For fp approximation,

∀q ∈ Q; dv

( ∑
z∈Y −

1

Y − δz,
1

|S3|
∑
z∈S3

δz

)
≤ α3
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where, δz = 1(z ∈ fp) and dv(a, b) = |a−b|
a+b+v . Again,

using similar arguments, we can show that

f̃p ∈ fp

(
S3

Y −

)
± S3 · ϵ,

where again ϵ ≥ 3α3.

For ˜̃fp, we get the following bound.

˜̃
fp =

(
Y −

Y +

)
f̃p ∈ fp

(
S3

Y +

)
± S3 · (3α3)

(
Y −

Y +

)

After applying reweighing our modified α3 is defined as,
α

′

3 = ϵ
3

(
Y +

Y −

)
.

Now, size of samples require to satisfy
the above approximation using Theorem 5.1
is, S3 = Ω

(
1

(α
′
3)

2·v

(
d log 1

v + log 1
δ

))
=

Ω

((
Y −

Y +

)2
1
ϵ2

(
d+ log 1

δ

))
, with probability 1 − δ

for all q ∈ Q where Qγ ⊂ Q .

Thus, in-order to satisfy all three approximations viz. tp,
fn and fp we would require total sample size,

S = S1 + S2 + S3

=

(
(2− γ)2

γ2ϵ2
+

1

ϵ2
+

(
Y −

Y +

)2
1

ϵ2

)
·
(
d+ log

1

δ

)
Thus, with probability 1− 3δ, above approximation for tp,

fn and fp holds.
Now, for the coreset left hand side guarantee,

F̃1 =
t̃p

t̃p+ 1
2 (f̃n+

˜̃
fp)

≥
(1− ϵ)S·tp

Y +

(1− ϵ)S·tp
Y + + 1

2

[
S·fn
Y + + S·fp

Y + + (ϵ · S)
(
1 + Y −

Y +

)]
=

(1− ϵ)tp

(1− ϵ)tp+ 1
2 [fn+ fp+ (ϵ) (Y + + Y −)]

=
(1− ϵ)tp

(1− ϵ)tp+ 1
2 [fn+ fp+ (ϵ · n)]

=
(1− ϵ)tp

tp+ 1
2 (fn+ fp)−

[
ϵ · tp− ϵ·n

2

]
If the number of samples belongs to tp is chosen to satisfy

tp ≥ n(1−c·ϵ)
2c·(1−ϵ) , then we have that

F̃1 ≥ (1− ϵ)tp

tp+ 1
2 (fn+ fp)−

[
ϵ · tp− ϵ·n

2

]
≥ (1− c · ϵ)tp

tp+ 1
2 (fn+ fp)

= (1− c · ϵ)F1

Similarly, for the coreset right hand side guarantee,

F̃1 =
t̃p

t̃p+ 1
2 (f̃n+

˜̃
fp)

≤
(1 + ϵ)S·tp

Y +

(1 + ϵ)S·tp
Y + + 1

2

[
S·fn
Y + + S·fp

Y + − (ϵ · S)
(
1 + Y −

Y +

)]
=

(1 + ϵ)tp

(1 + ϵ)tp+ 1
2 [fn+ fp− (ϵ) (Y + + Y −)]

=
(1 + ϵ)tp

(1 + ϵ)tp+ 1
2 [fn+ fp− (ϵ · n)]

=
(1 + ϵ)tp

tp+ 1
2 (fn+ fp) +

[
ϵ · tp− ϵ·n

2

]
Again, using the similar assumptions on tp, we have that

for tp ≥ n(1+c·ϵ)
2c·(1+ϵ) , we get

F̃1 ≤ (1 + ϵ)tp

tp+ 1
2 (fn+ fp) +

[
ϵ · tp− ϵ·n

2

]
≤ (1 + c · ϵ)tp

tp+ 1
2 (fn+ fp)

= (1 + c · ϵ)F1

Weak Coreset for MCC
Theorem 5. Let ϵ > 0. Consider an instance where number
of positive samples are Y + and number of negative samples
are Y −, and n = Y ++Y −. Let T to be the ground truth pos-
itive 0/1 labels and P to be the predicted positive 0/1 labels.
Let tp, fp, fn be the true positive, false positive and false

negative on the full data, T
′
=

∑
i Ti

n = tp+fn
n =

|Y +|
n

and P
′
=

∑
i Pi

n = tp+fp
n . We consider Qγ to be the

set of queries such that tp ≥ γ · n and tn ≥ γ · n for
q ∈ Qγ . Let d = vc− dimension (Qγ). We claim that uni-

form sampling with
(

1
ϵ2

(
d+ log 1

δ

)(
2 + 2 ·

(
Y −

Y +

)2))
samples would be able to give a coreset for Qγ that sat-

isfies MCC(q)

(1+ ϵ
γ )

− 2 · ϵ ·C ≤ M̃CC(q) ≤ MCC(q)

(1− ϵ
γ )

+ 2 · ϵ ·C ′

for all queries q ∈ Qγ with probability at least 1− 4δ, where

C ≤ ( 1
γ )

(1+ ϵ
γ )
√

T ′ (1−T ′ )·γ
and C

′ ≤ ( 1
γ )

(1− ϵ
γ )
√

T ′ (1−T ′ )·γ
.

The proof can be found in the full arxiv version.

Experiments
All experiments were run on a computer with Nvidia Tesla
V100 GPU with 32 GB memory and 28 CPUs. We used
Python and its frameworks to implement our experiments.

Data Sets: The COVERTYPE (Blackard 1998) data con-
sists of 581, 012 cartographic observations of different forests
with 54 features. The task is to predict the type of trees at
each location (49% positive). We selected in a stratified way

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14293



Coreset Algorithm CoverType Time (in sec) Adult Time (in sec) KDD Cup ’99 Time (in sec)
uniform 0.01418 0.003462 0.01028

leverage score 0.1331 0.01132 0.0909
lewis score 2.4918 0.19029 1.9072

k-means 0.05942 0.007611 0.0400

Table 1: Time taken to prepare coreset of 10% of full dataset for different datasets.
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(a) CovType Logistic
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(b) CovType SVM
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(c) CovType MLP

Figure 1: MCC Score on CovType dataset for different classifiers and different coreset strategies.

50,000 samples from the real data and used them as our
training data. The KDDCUP ’99 (Stolfo et al. 1999) data
comprises of 494,021 network connections with 41 features,
and the task is to detect network intrusions (20% positive).
In our experiments, we selected in a stratified way 50,000
samples from the real data and used them as training data.
The Adult (Becker and Kohavi 1996) dataset is a widely-
used dataset containing information about individuals from
the 1994 U.S. Census Bureau database. It consists of ap-
proximately 32,000 instances with 14 attributes, including
age, education, and occupation. The dataset aims to predict
whether an individual’s income exceeds $50,000 per year.

Our experiment created binary classification datasets by
converting a multiclass dataset into a binary by flipping labels.
Our final binary dataset class ratios for the CoverType dataset
are [31770, 18230], for the Adult dataset [24294, 7706], and
for the KDDCup dataset, it is [40154, 9846].

Experimental Assessment : To verify our theoretical
claims, we tested a uniform sampling coreset with some
of the sophisticated coresets like leverage score (Drineas,
Mahoney, and Muthukrishnan 2006), l1-lewis score (Cohen
and Peng 2015), and k-means coreset by (Bachem, Lucic,
and Krause 2018).

As our classifier models, we used SVM classifier with lin-
ear kernel; vanilla logistic regression model from the sklearn
library is used with default hyperparameters and a multilayer
perceptron(MLP). For MLP experiments, we considered a
simple MLP classifier with two hidden layers of size 100
each and the final output layer of size two, as we are dealing
with binary classification. The optimizer used for the MLP is
Adam, and the activation function used is ReLU.

We first prepared different coresets from the full datasets.

Then we train our classifier models: logistic regression, SVM,
and Feed Forward Neural Network on our coreset as well as
on the full dataset.

For testing the performance of our coresets, we took mod-
els trained using the coresets and tested them on the entire
training dataset. We report the evaluation measures (F1 and
MCC) obtained and compare it with the original value ob-
tained on full data(using model trained on full data). For all
our experiments, plotted values are means taken over five
independent repetitions of each experiment.

Figures 1 through 4 clearly show that uniform sampling
gives superior or comparable performance to other sophisti-
cated methods for both F1 score and MCC. Also it can be
seen that with increasing coreset size, the performance of
model trained on the coreset also improves as expected. We
also measure the time required to prepare coreset using these
techniques on the different datasets. The times are reported
in Table 1. It is clear that uniform sampling is many times
faster than the other methods. Hence at much lower computa-
tion times we get better or comparable performances to other
coreset construction strategies. Some additional experiments
can be found in the appendix of full arxiv version.

Conclusion
We initiated the study of coresets for non-decomposable clas-
sification measures, specifically for the F1 score and MCC.
We showed lower bounds for strong coresets and construction
of weak coresets using stratified uniform sampling. It would
be interesting to see whether coresets with better additive
guarantees and lesser assumptions on the query vector can
be developed. Similarly, algorithm-specific subset selection
strategies could be explored for more efficiency. The question
of tackling other measures, e.g., AUC-ROC, remains open.
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(b) CovType SVM
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(c) CovType MLP

Figure 2: F1 Score on CovType dataset for different classifiers and different coreset strategies.
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(a) KDDCup Logistic
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(b) KDDCup SVM MCC
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Figure 3: MCC Score on KDDCup dataset for different classifiers and different coreset strategies.
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(b) KDDCup SVM
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Figure 4: F1 Score on KDDCup dataset for different classifiers and different coreset strategies.
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