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Abstract
Unsupervised Graph Domain Adaptation (UGDA) aims to
transfer knowledge from a labelled source graph to an un-
labelled target graph in order to address the distribution shifts
between graph domains. Previous works have primarily fo-
cused on aligning data from the source and target graph in
the representation space learned by graph neural networks
(GNNs). However, the inherent generalization capability of
GNNs has been largely overlooked. Motivated by our empiri-
cal analysis, we reevaluate the role of GNNs in graph domain
adaptation and uncover the pivotal role of the propagation
process in GNNs for adapting to different graph domains. We
provide a comprehensive theoretical analysis of UGDA and
derive a generalization bound for multi-layer GNNs. By for-
mulating GNN Lipschitz for k-layer GNNs, we show that the
target risk bound can be tighter by removing propagation lay-
ers in source graph and stacking multiple propagation layers
in target graph. Based on the empirical and theoretical anal-
ysis mentioned above, we propose a simple yet effective ap-
proach called A2GNN for graph domain adaptation. Through
extensive experiments on real-world datasets, we demonstrate
the effectiveness of our proposed A2GNN framework.

Introduction
The past decade has witnessed remarkable achievements of
Graph Neural Networks (GNNs) (Kipf and Welling 2017;
Zhang et al. 2022; Yang et al. 2022) across a wide range of
applications, from social network analysis (Xia et al. 2021)
and protein prediction (Li et al. 2021), to traffic flow fore-
casting (Lu et al. 2022), etc. As the distribution shifts com-
monly exist among real-world graphs, it makes the majority
of existing GNNs fail to generalize to new domains. Re-
cently, Unsupervised Graph Domain Adaptation (UGDA)
has emerged as a key focus in both industrial and academic
communities. The goal of UGDA is to facilitate the knowl-
edge transfer from a labelled source graph to an unlabelled
target graph, which addresses the issue of distribution shifts,
thus unlocking the full potential of graph neural networks
for diverse applications.

Inspired by the success of domain adaptation in computer
vision and natural language processing (Ganin and Lem-
pitsky 2015), most existing UGDA methods have primarily
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Figure 1: The influence of different operations in GNNs on
task D → A. [·] indicates the module stacking operation.

concentrated on aligning source and target graph distribu-
tions in the representation space generated by GNNs (Zhu
et al. 2023; Liu et al. 2023). This includes learning domain-
invariant representations with measurements like maximum
mean discrepancy (Shen et al. 2021), graph subtree discrep-
ancy (Wu, He, and Ainsworth 2023), or performing domain
discrimination (Shen et al. 2020; Zhang et al. 2021; Dai et al.
2022; Wu et al. 2020; You et al. 2023). However, the un-
derlying generalization capability of GNNs has been largely
overlooked. Given that the representations learned by GNNs
play a pivotal role in UGDA, we propose to revisit the step
prior to alignment and pose a fundamental research ques-
tion: Does GNNs have an inherent capability to adapt to
new domains?

To answer this question, we first decouple GNN’s mecha-
nism into two independent operations: Propagation (P) and
Transformation (T), where the P operation performs mes-
sage passing between neighboring nodes and the T operation
conducts linear transformations to the node representations.
Following the disentanglement, the GNN’s architecture can
be constructed with the combinations of P and T. Figure 1
presents the results under different architectures, from which
we have the following key observations: (i) Simultaneously
adding P and T does not substantially enhance its general-
ization capability. As we can see from Figure 1(a), an incre-
mental trend can be observed when the number of layers is
fewer than 4, and more layers will result in decreased perfor-
mance. (ii) Solely adding T may impair its adaptation capa-
bility. The UGDA performance in Figure 1(b) shows a sig-
nificant decrease with the addition of more transformation
layers while keeping the number of propagation layers fixed;
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(iii) Operation P plays a crucial role in enhancing its adap-
tation capability. Interestingly, results in Figure 1(c) demon-
strates that increasing propagation layers can achieve signif-
icant performance improvements compared with increasing
both transformation and propagation layers.

Motivated by the above findings, we revisit the GNN’s
architecture in unsupervised graph domain adaptation and
propose a simple yet effective model named Asymmetric
Adaptive GNN (abbreviated as A2GNN1). While most ex-
isting UGDA approaches use a shared architecture between
source and target graph, we argue that it’s not necessary as
we thought. By introducing a single transformation layer on
source graph and stacking multiple propagation layers on
target graph, we are able to achieve superior performance.
Furthermore, we also provide a comprehensive theoretical
analysis for our proposed A2GNN via the graph filter theory
and prove that the generalization gap of multi-layer GNNs
depends on its propagation layers. With the designed asym-
metric architecture, our proposed A2GNN exhibits a tighter
target risk bound. Empirical results on multiple real-world
datasets demonstrate that A2GNN outperforms recent state-
of-the-art baselines on node classification tasks with differ-
ent gains. We highlight our contributions as follows:

• New Perspective. Our work is the first to investigate the
underlying generalization capability of GNNs in UGDA
task. Remarkably, our method outperforms state-of-the-
art graph domain adaptation approaches.

• Simple but Effective Method. Based on the aforemen-
tioned observations, we propose an embarrassingly sim-
ple yet effective method A2GNN with asymmetric net-
work architecture. Comprehensive experimental results
show the effectiveness of our proposed A2GNN.

• Theoretical Analysis. In addition to investigating the un-
derlying generalization capability of GNNs, we also de-
rive a domain adaptation bound for multi-layer GNNs.
Furthermore, we prove that our proposed A2GNN yields
a tighter error bound.

Related Work
Unsupervised domain adaptation (UDA) involves the trans-
fer of knowledge from a labelled source domain to an unla-
belled target domain (Pan and Yang 2010; Wang and Deng
2018). A commonly used approach in domain adaptation
is to minimize the domain discrepancy and learn domain-
invariant representations (Ganin and Lempitsky 2015; Long
et al. 2015, 2017; Pei et al. 2018; Tzeng et al. 2017), where
great success has been achieved in computer vision and
natural language processing communities (Blitzer, McDon-
ald, and Pereira 2006; Venkateswara et al. 2017). However,
these methods assume that their inputs are independently
and identically distributed data, thus they are not appropriate
for tasks involving non-IID data, such as node classification
in graph-structured data.

Recently, several approaches have been proposed to trans-
fer knowledge across graph-structured non-IID data. These

1https://github.com/Meihan-Liu/24AAAI-A2GNN

methods can be broadly categorized into two classes: min-
imizing pre-defined domain discrepancy metrics and adver-
sarial learning techniques. For the pre-defined domain dis-
crepancy metrics minimization models (Shen et al. 2021;
Wu, He, and Ainsworth 2023), node representations are first
obtained from the encoder, and then domain-invariant rep-
resentations are learned by minimizing pre-defined domain
discrepancy metrics, such as MMD (Gretton et al. 2012),
graph subtree discrepancy (Wu, He, and Ainsworth 2023),
etc. Instead of explicitly minimizing domain discrepancies,
some methods incorporate the encoder with a domain clas-
sifier that predicts the domain from which the representation
originates. Among them, UDAGCN (Wu et al. 2020) and
AdaGCN (Dai et al. 2022) integrates graph convolution with
adversarial training for graph transfer learning. ACDNE
(Shen et al. 2020) utilizes Gradient Reversal Layer (GRL)
(Ganin et al. 2016) to make node representation domain-
invariant. ASN (Zhang et al. 2021) further improves node
representations with attention mechanisms and disentangle-
ment, where domain-private and domain-shared information
are preserved. SpecReg (You et al. 2023) derives the gener-
alization bound for one-layer GNNs and proposes spectral
regularization to restrict the bound. Instead of focusing on
minimizing domain discrepancy, in this paper, we investi-
gate the GNN’s underlying generalization capability behind
its architecture and propose a simple yet effective method
for unsupervised graph domain adaptation.

Preliminaries
Notations. Consider an attributed graph G = (V, E) with
n nodes and m edges. We denote X = {xv|v ∈V} ∈ Rn×d

as node attribute matrix, where d is the dimension of node
attributes. The adjacency matrix is denoted as A ∈ Rn×n,
where Ai,j = 1 means there exists an edge ei,j ∈ E con-
necting node vi and vj , and Ai,j = 0 otherwise. For a
node classification task, we denote the prediction targets by
Y ∈ Rn×C , where C is the number of classes.

Problem Definition. Unsupervised Graph Domain Adap-
tation (UGDA) aims to transfer the knowledge from a la-
belled source graph to an unlabelled target graph. Formally,
given graph GS = (VS , ES ,YS) and graph GT = (VT , ET )
with the covariate shift assumption (Ben-David et al. 2006,
2009) that PS(G) ̸= PT (G) and PS(Y |G) = PT (Y |G),
where PS and PT are the probability distributions of the
source and target domains, respectively. The target graph la-
bel Yt is unknown. Our goal is to train a graph neural net-
work (GNN) h : G → Y using the labeled source graph
Gs and the unlabeled target graph Gt to accurately predict
labels ŷt on target graph Gt.

Rethinking Propagation for UGDA
In this section, we start with an empirical analysis of GNNs
in the context of UGDA, focusing particularly on the propa-
gation and transformation process. Guided by the intriguing
insights obtained from our empirical analysis, we introduce
a straightforward yet effective framework called A2GNN for
unsupervised graph domain adaptation. Lastly, we offer a
theoretical analysis of the proposed approach.
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Architecture [PT] [P]T [T]P

Macro-F1 68.86 72.41 70.61

Table 1: Performance on different architectures.

target
source w/o propagation w/ propagation

w/o propagation 57.43 55.68

w/ propagation 75.43 72.41

Table 2: Macro-F1 with/without propagation in graphs.

Empirical Analysis
Although the Introduction presented several observations,
this section provides more detailed elaboration and addi-
tional information. In general, most existing GNNs (Kipf
and Welling 2017; Wu et al. 2019; Klicpera, Bojchevski,
and Günnemann 2018) follow the neural message passing
mechanism, which learns node representations by recur-
sively aggregating information from neighborhood nodes.
Specifically, the message passing procedure contains two
major steps, namely Transformation (T) and Propagation
(P) (Hamilton, Ying, and Leskovec 2017a; Zhang et al.
2022). Let H(l−1) denote the node representations gener-
ated by the previous layer and we set H0 = X at the be-
ginning of the GNN. The P operation can be donated as
P(H(l−1)) = ÂH(l−1), where Â is the normalized ad-
jacency matrix with self-connections. The T operation ap-
plies non-linear transformations to the node representations,
which can be donated as T(H(l)) = σ(H(l)W(l)), where σ
is the non-linear activation function and W is the learnable
weight matrix.

To investigate the role of transformation and propagation
operations in UGDA task, we use the classical metric MMD
(Gretton et al. 2012) to minimize the domain discrepancy
on task D → A. The implementation details is provided in
Appendix. According to the results, we have the following
interesting and inspiring findings:

Observation 1: Propagation operation reflects the gener-
alization capability of GNNs. Since we have decoupled
message passing procedure into operations T and P, existing
GNNs can be broadly categorized into the following three
types: [PT] which means stacking multiple P and T opera-
tions simultaneously; [P]T which indicates stacking multi-
ple propagation operations without changing T; [T]P which
represents stacking multiple transformation operations with-
out changing P; [·] is the stacking operation. We first search
the optimal architecture for each category and report their
mean performance in Table 1. As we can see, both [P]T and
[T]P architectures outperform the [PT] architecture, indicat-
ing that the network architecture in UGDA indeed affects its
performance. To further analyze the advantage of the [P]T
and [T]P architectures, we evaluate its effects by increasing
the number of P or T operations. The results, already de-
picted in Figure 1, demonstrate that stacking P operations

Alignment
ComponentP T P T
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Transformation

T

TP P···

···
Shared Encoder

P

Alignment
Component

Source Encoder

Target Encoder

Source Graph
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Source Graph

Target Graph
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Figure 2: The framework of existing models and our pro-
posed A2GNN model.

improves its performance in both architectures, while stack-
ing T operations has the opposite effect. Based on these find-
ings, we conclude that (i) P operation plays a pivotal role in
determining the generalization ability of the model, and (ii)
The T operations are only needed to be executed once.

Observation 2: Conducting propagation solely on target
graph is of primary importance. Although we have ob-
served that propagation contributes to the improvement of
generalization capability in GNNs, the impacts of propaga-
tion on both graphs remain unclear. To investigate this is-
sue, we use the [P]T architecture and examine the effect of
propagation on different domains while keeping the num-
ber of T operations unchanged. When comparing the second
and first rows of Table 2, we find propagation on the tar-
get graph is the primary factor that affects the model’s gen-
eralization capability, while conducting propagation solely
on the source graph produces the worst performance. Inter-
estingly, performing propagation solely on the target graph
leads to better performance compared to performing it on
both graphs (yielding a 1.85% increase in Macro-F1). These
observations support the idea that propagation has different
effects on different domains. Specifically, (iii) stacking P op-
erations on the target graph is particularly important, and
(iv) P operations are not necessary on the source graph.

The Proposed Framework
The aforementioned two observations unveil the inherent
generalization capability of GNNs. Building upon these in-
sights, we propose an asymmetric graph domain adaptation
model called A2GNN, which is embarrassingly simple yet
extremely effective. The overall framework is illustrated in
Figure 2(b), while Figure 2(a) demonstrates the symmet-
ric architecture commonly employed by existing methods
(Shen et al. 2020; Dai et al. 2022).

According to the analyses in the previous section, we find
that it’s not necessary to utilize a shared GNN architecture
between source and target graph, meanwhile stacking more
propagation layers and using fewer transformation layers on
target graph could lead to better performance. Therefore, we
initialize our A2GNN with the following asymmetric archi-
tecture. For the source graph branch, we remove all the prop-
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agation layers, then it will degenerate to a non-linear MLP,
i.e., Hs = σ (XW), where X is the node feature matrix
and W denotes the learnable weight matrix. While for the
target graph branch, we stack k propagation layers with one
transformation layer, i.e., Ht = σ

(
AkXW

)
. Note that the

learnable weight matrix W is shared across the source and
target graph to prevent significant divergence between their
representations.

The objective function of the unsupervised graph domain
adaptation framework can be formulated as follows:

LGDA = Lcls + α · Lalign, (1)

where the first term Lcls indicates the cross-entropy loss
function for the node classification task using source graph
labels, while the second term Lalign focuses on minimizing
domain discrepancy to obtain domain-invariant representa-
tions. α serves as a trade-off parameter that balances the
contributions of the two loss terms.

It is worth highlighting that our domain adaptation frame-
work is flexible to incorporate various alignment loss func-
tions. In our experiments, we utilize two classical alignment
components: maximum mean discrepancy (MMD) (Gretton
et al. 2012) for explicit alignment, represented as LGDA =
Lcls+α·Lmmd, and adversarial training mechanism (Good-
fellow et al. 2020) with gradient reversal layer (GRL) (Ganin
et al. 2016) for implicit alignment, represented as LGDA =
Lcls +α · Ladv . Furthermore, our domain adaptation frame-
work offers the versatility to integrate various propagation
mechanisms, and we will delve into the effects of different
propagation mechanisms in the ablation study section.

Theoretical Analysis
In this subsection, we aim to provide a theoretical explana-
tion for the efficacy of our proposed A2GNN. Specifically,
we first revisit the graph domain adaptation error bound for-
mulated by (You et al. 2023), then we prove that the opera-
tion of transformation is independent of tightening the error
bound. Lastly, we show how our proposed A2GNN narrows
down the error bound.

Theorem 1. Suppose the feature extractor f and the clas-
sifier c is Kf -Lipschitz and Kc-Lipschitz continuous, where
the Lipschitz norm ∥f∥Lip = maxG1,G2

∥f(G1)−f(G2)∥2

η(G1,G2)
=

Kf holds for some graph distance measure η. Let H := {h :
G → Y} be the set of bounded real-valued functions, i.e.
h = c ◦ f ∈ H, with probability at least 1− δ the target risk
ϵT(g, ĝ) is bounded as in the following inequality (You et al.
2023):

ϵT(h, ĥ) ≤ ϵ̂S(h, ĥ) + 2KfKcD (PS(G),PT(G))

+

√
4d

ns
log

(
ens

d

)
+

1

ns
log

(
1

δ

)
+ ω,

(2)

where ϵ̂S(h, ĥ) and ϵ̂T(h, ĥ) represent the empirical source
and target risks respectively. ĥ denotes the labelling func-
tion. ω = min∥c∥Lip≤Kc,∥f∥Lip≤Kf

{ϵS(h, h∗) + ϵT(h, h
∗)}

is the combined error of the ideal hypothesis h∗ that we ex-
pect to be small. D(·) indicates the distance metric, which

formulates the source and target error functions in a Repro-
ducing Kernel Hilbert Space.

Theorem 1 indicates that the generalization gap de-
pends on the domain divergence 2KfKcD (PS(G),PT(G)),
where the Lipschitz constant Kf is a conceptual property re-
lated to the model that needs to be instantiated (You et al.
2023). Therefore, one way to tighten the bound is to regular-
ize the Lipschitz constant Kf of the feature extractor f .

Next, we construct a GNN by composing a graph filter
and nonlinear mapping that f (G) = r (σ (S (A)XW )),
where r is the mean/sum/max readout function to pool node
representations. S is the polynomial function that S (A) =∑∞

k=0 skA
k. W ∈ RD×D′

denotes the learnable weight
matrix. The pointwise nonlinearity holds as |σ(b)−σ(a)| ≤
|b− a|, ∀a, b ∈ R. Based on these notations, a l-layer GNN
can be constructed as f(G) = r◦f (l)◦f (l−1)◦· · ·◦f (1)(G).
The l-layer GNN Lipschitz constant Kf is instantiated in the
following lemma.

Lemma 1. Suppose that the edge perturbation is bounded
that ∀G1, G2 ∈ G, EP =

∥∥A1 − P ∗A2P
∗ T

∥∥
F
≤ ε with

the optimal permutation P ∗, and there exists an eigenvalue
λ∗ ∈ R to achieve the maximum |S (λ∗)| < ∞. Assuming
∥X∥op ≤ 1 and ∥W∥op ≤ 1 ( ∥ · ∥op stands for operator
norm), we can then calculate the Lipschitz constant l-layer
GNN as follows:

Kf = max

T
(l)
1 +

l−1∑
i=1

(
l∏

j=i+1

T
(j)
2 )T

(i)
1 ,

l∏
i=0

T
(i)
2

 , (3)

where T (l)
1 = Kλ (1 + τ

√
n)EP +ε ·O

(
EP 2

)
and T

(l)
2 =∣∣S(l) (λT )

∣∣. τ stands for the eigenvector misalignment that
can be bounded. n = nS + nT means the total number of
nodes in source and target graph. O (·) is the remainder term
defined in (Gama, Bruna, and Ribeiro 2019), and Kλ is the
spectral Lipschitz constant that ∀λi, λj , |S (λi)− S (λj)| ≤
Kλ |λi − λj |.

By integrating Theorem 1 and Lemma 1, we obtain the
graph domain adaptation bound for a l-layer GNN. Lemma
1 indicates that (i) decreasing the Lipschitz constant Kf can
tighten the target error bound in Theorem 1, and (ii) the
transformation operation is independent of the GNN Lip-
schitz constant Kf . Therefore, it is reasonable to employ
a single transformation layer in conjunction with multiple
propagation layers in our proposed A2GNN, which aligns
with the empirical experiments in Observation 1. Based on
the above theory, we next prove A2GNN has a tighter target
error bound.

Lemma 2. Following the setting in Lemma 1, we use a sin-
gle linear transformation in conjunction with k propagation
layers in A2GNN as f (l)

M (G) = r
(
σ
(
S(l)

(
Ak

)
XW

))
. We

rephrase T2 as T2(x), x is the number of propagation layers.
For ∀k > 1, there exists:

l∏
i=0

T
(i)
2 (k) <

l∏
i=0

T
(i)
2 (1), (4)
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Types Datasets #Node #Edge #Feat #Label

Citation
ACMv9 9,360 15,556

6,775 5Citationv1 8,935 15,098
DBLPv7 5,484 8,117

Social Germany 9,498 153,138 3,170 2England 7,126 35,324

Table 3: Dataset Statistics.

Based on Lemma 2, we state that the second term of Kf

can be smaller when we have k (k > 1) propagation layers.
Next, we show that the first term of Kf can be smaller too.

Lemma 3. Following the setting in Lemma 2, if the
source graph structure does not participate in the training
procedure, then the corresponding GNN degenerates into
fL (G) = r (σ (XW )). We rephrase T

(l)
1 as T (l)

1 (x), and x
indicates the number of propagation layers on source graph.
For ∀k > 1, there exists:

T
(l)
1 (0) +

∑l−1
i=1 (

l∏
j=i+1

T
(j)
2 (k))T

(i)
1 (0) < T

(l)
1 (1) +

∑l−1
i=1 (

l∏
j=i+1

T
(j)
2 (1))T

(i)
1 (1).

(5)
According to Lemma 3, we state that the first term of Kf

can be smaller when we conduct k (k > 1) propagation
layers on the target graph and only one transformation layer
on the source graph. We denote the Lipschitz constant K ′

f

of A2GNN as follows:

K ′
f = max

{
T

(l)
1 (0) +

∑l−1
i=1 (

l∏
j=i+1

T
(j)
2 (k))T

(i)
1 (0),

l∏
i=0

T
(i)
2 (k)

}
.

(6)
With Lemma 2 and Lemma 3, we derive that K ′

f < Kf . In
other words, the Lipschitz constant K ′

f of A2GNN is smaller
than that of the previous frameworks. This conclusion is in
line with Observation 2. Combining this conclusion with
Theorem 1, we prove that the graph domain error bound of
A2GNN is tighter. Note that there is currently no theoretical
evidence to support that more layers lead to tighter bound in
Formula (6). Investigation on k is shown in Figure 3(a). A
more detailed proof process is provided in the Appendix.

Experiments and Analyses
Datasets
We conduct comprehensive experiments on three public ci-
tation networks and two social networks across a range of
settings. These datasets are acquired from diverse sources
and time periods with explicit covariate shifts. The citation
networks2 consist of three datasets: ACMv9, Citationv1, and
DBLPv7. Each node represents a paper, and the edges indi-
cate the citation relationships among them. ACMv9 (A) con-
tains papers extracted from ACM between 2000 and 2010,
Citationv1 (C) comprises papers obtained from Microsoft
Academic Graph prior to 2008, and DBLPv7 (D) encom-
passes papers collected from DBLP during the period from
2004 to 2008. Our objective is to classify all the papers into

2https://github.com/yuntaodu/ASN/tree/main/data

five distinct research topics, i.e., Databases, Artificial Intel-
ligence, Computer Vision, Information Security, and Net-
working. As for social networks, we choose Twitch gamer
networks3, which are collected from different regions. Each
node within these networks represents a user, and the con-
nections between them indicate their friendships. We extract
node features encompassing information about users’ gam-
ing preferences, geographical locations, streaming habits,
etc. Specifically, we focus on the two largest graphs: Ger-
many (DE) and England (EN). In this scenario, users are
classified into two groups based on whether they employ
explicit language. For a comprehensive overview of these
datasets, please refer to Table 3.

Baselines
We compare our proposed A2GNN with three categories of
baselines: (i) Hypothesis transfer with unsupervised graph
representation learning: DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014), node2vec (Grover and Leskovec 2016), and
ANRL (Zhang et al. 2018). These methods first learn node
representations in an unsupervised manner, and then the tar-
get graph node representations are evaluated using a classi-
fier that has been trained on the source graph. (ii) Source-
only graph neural networks: GCN (Kipf and Welling 2017),
GAT (Velickovic et al. 2018), GraphSAGE (Hamilton, Ying,
and Leskovec 2017b), and GIN (Xu et al. 2018). This group
of methods trains graph neural networks on the source graph
in an end-to-end manner, thus they can be directly applied to
target graph for evaluation. (iii) Graph domain adaptation
methods: CDNE (Shen et al. 2021), AdaGCN (Dai et al.
2022), ACDNE (Shen et al. 2020), UDAGCN (Wu et al.
2020), ASN (Zhang et al. 2021), GRADE (Wu, He, and
Ainsworth 2023), and SpecReg (You et al. 2023). Compared
with the previous two groups, approaches in this group are
specifically designed to address the graph domain adaptation
problem, which are competitive baselines.

Parameter Settings
Following previous works (Wu et al. 2020; Shen et al. 2020),
we use all the source nodes and target nodes for model train-
ing. Among them, 80% of the labelled source nodes are uti-
lized to provide supervision signals. The remaining labelled
source nodes compose the validation set, and the evaluation
is carried out on the target nodes. To ensure a fair com-
parison, we utilize the source codes released by the authors
for each baseline, and then fine-tune their hyper-parameters
to their optimal values. The node representation dimension
is uniformly set as 128 for all the methods. Our proposed
A2GNN is implemented with PyTorch (Paszke et al. 2019),
where the learning rate and weight decay are searched in the
range of {1e−1, 1e−2, 1e−3, 1e−4, 5e−4}. We consider two
variants of our proposed model: A2GNNmmd which uses
Gaussian kernel as the selected kernel for MMD (Shen et al.
2021) and A2GNNadv which employs adversarial training
for invariant representation learning (Shen et al. 2020). The
experiments are repeated five times, and we report the mean
performance in terms of Micro-F1 and Macro-F1 scores.

3http://snap.stanford.edu/data/twitch-social-networks.html
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Models D → A C → A A → D C → D A → C D → C

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

DeepWalk 19.83 26.23 19.33 21.94 19.87 25.94 17.51 22.57 17.72 21.05 22.76 29.46
node2vec 22.05 28.61 17.99 21.76 19.50 24.54 24.98 28.95 25.84 29.89 16.22 21.16
ANRL 19.12 29.56 22.04 31.84 23.33 29.54 22.71 25.90 20.93 30.31 18.25 25.99

GAT 43.95 52.93 42.14 50.37 41.36 53.80 45.25 55.85 43.64 57.13 50.04 55.52
GraphSAGE 57.31 59.22 64.69 65.22 61.80 64.82 66.86 69.96 69.14 71.40 64.90 67.85
GIN 56.50 58.98 59.48 60.46 50.49 59.10 63.48 66.27 62.49 68.61 63.21 69.25
GCN 59.42 63.35 70.39 70.58 65.29 69.05 71.37 74.53 74.78 77.38 69.79 74.17

CDNE 70.45 69.62 75.06 74.22 69.24 71.58 71.34 74.36 76.83 78.76 77.36 78.88
UDAGCN 55.89 58.16 67.22 66.80 64.83 66.95 69.46 71.77 60.33 72.15 61.12 73.28
ACDNE 72.64 71.29 74.79 73.59 73.59 76.24 75.74 77.21 80.09 81.75 78.83 80.14
ASN 71.49 70.15 73.17 72.74 71.40 73.80 73.98 76.36 77.81 80.64 75.17 78.23
AdaGCN 69.47 69.67 70.77 71.67 71.39 75.04 72.34 75.59 76.51 79.32 74.22 78.20
GRADE 59.35 63.72 69.34 69.55 63.03 68.22 70.02 73.95 72.52 76.04 69.32 74.32
SpecReg 72.34 71.01 73.15 72.04 73.98 75.93 73.64 75.74 78.83 80.55 77.78 79.04

A2GNNadv 73.81 72.17 76.64 75.22 74.03 75.42 75.82 77.32 78.60 80.27 78.18 80.08
Improv.(%) +1.17 +0.88 +1.58 +1.00 +0.05 -0.82 +0.08 +0.11 -1.49 -1.48 -0.65 -0.06
A2GNNmmd 75.69 74.12 77.57 76.15 75.78 77.43 77.04 78.13 81.30 82.64 79.74 81.54
Improv.(%) +3.05 +2.83 +2.52 +1.93 +1.80 +1.19 +1.30 +0.92 +1.21 +0.89 +0.91 +1.40

Table 4: Unsupervised node classification on citation network. The best result is bold and the second best is underlined.

Main Results
Table 4 shows the node classification performance on cita-
tion network, and we have the following observations: (i)
Our proposed A2GNN outperforms recent state-of-the-art
baselines with different gains. On average, A2GNNmmd

achieves 1.80% improvement in Macro-F1 and 1.53% im-
provement in Micro-F1 scores under various settings, while
A2GNNadv also yields comparable results. (ii) The graph
domain adaptation methods outperform the vanilla graph
neural networks and the hypothesis transfer approaches,
indicating that considering the domain discrepancy across
networks is crucial. Furthermore, it should be noted that
A2GNNmmd surpasses A2GNNadv by varying margins.
This divergence can be attributed to the fact that MMD of-
fers explicit signals, whereas adversarial training solely pro-
vides implicit signals.

Similarly, we can draw similar conclusions when it comes
to social networks. The results are shown in Table 5. In
general, our proposed A2GNN outperforms or shows com-
parable performance among all the settings. More specifi-
cally, A2GNNadv outperforms all the baselines on all tasks.
A2GNNmmd obtains the highest scores on both Macro-F1
and Micro-F1 for the EN → DE task, and it ranks second
in terms of Micro-F1 for the DE → EN task. On aver-
age, A2GNNmmd achieves 1.88% improvement in Macro-
F1 and 1.13% improvement in Micro-F1, while A2GNNadv

achieves a 2.54% increase in Macro-F1 and 1.93% improve-
ment in Micro-F1. Moreover, we also observe that some do-
main adaptation methods are outperformed by source-only
graph neural networks, which is known as negative transfer.
This can be attributed to the heterophilic nature of these so-
cial graphs, and it introduces significant challenges for do-
main adaptation tasks. In conclusion, our proposed simple
yet effective A2GNN consistently exhibits impressive per-
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Figure 3: (a) shows the sensitivity of the num of propagation
layers k. (b) shows the sensitivity of trade-off parameter α.

formance on different types of graphs, thus verifying its ca-
pability in graph domain adaptation task.

Ablation Study

The impact of the number of propagation layers k. As
we discussed in previous sections, Lemma 2 and Lemma 3
have proved that propagation on the target graph for k (k >
1) times can tighten the target error bound. Therefore, we
conducted some experiments to analyze the sensitivity of k,
which is shown in Figure 3(a). On the one hand, utilizing a
small number of k (k < 5) can significantly improve its per-
formance. On the other hand, varying values of k yield dis-
tinct effects across various tasks. For the D → A task, as the
value of k increases, its performance improves correspond-
ingly. In contrast, for the D → C task, optimal performance
is observed within the range of 5 to 15, followed by a grad-
ual decline when k surpasses 15. This decline is particularly
pronounced in terms of Macro-F1 scores. In conclusion, the
empirical results align with our theoretical analyses.
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Models DE→EN EN→DE

Ma-F1 Mi-F1 Ma-F1 Mi-F1

Node2vec 46.96 52.64 50.10 54.61
DeepWalk 46.54 52.18 49.97 55.08

GAT 49.50 54.84 40.08 43.65
GCN 54.55 54.77 51.04 62.03
GIN 49.91 52.39 44.26 55.26

UDAGCN 58.19 59.74 56.35 58.69
ACDNE 56.31 58.08 57.92 58.79
ASN 51.21 55.45 45.90 60.45
AdaGCN 35.30 54.56 31.18 40.22
GRADE 56.38 56.40 56.83 61.18
SpecReg 50.30 56.43 46.13 61.45

A2GNNmmd 58.44 59.54 61.42 63.90
Improv.(%) +0.25 -0.20 +3.50 +2.45
A2GNNadv 59.16 59.94 62.03 65.11
Improv.(%) +0.97 +0.20 +4.11 +3.66

Table 5: Unsupervised node classification on social network.
The best result is bold and the second best is underlined.

Transition
matrix

D → A D → C

Ma-F1 Mi-F1 Ma-F1 Mi-F1

Psym 75.69 74.12 79.74 81.54
Pno-loop 75.96 74.51 78.69 80.39
Prw 75.77 74.04 78.10 79.72
Pdiff 74.63 73.18 77.48 79.17

Table 6: Performance with different transition matrices in
the propagation layer of A2GNN.

The influence of different propagation schemes. To fur-
ther investigate whether our proposed framework can be
employed to various types of propagation schemes, we re-
place the widely used symmetric normalized transition ma-
trix Psym = D̃− 1

2 ÃD̃− 1
2 in GCN with three commonly

used transition matrices (Hassani and Khasahmadi 2020):
(1) Pno-loop = D− 1

2AD− 1
2 , i.e., removing the self-loops;

(2) Prw = D̃−1Ã, i.e., the random walk matrix; (3) Pdiff =∑∞
p=0

1
e·p!

(
D̃−1Ã

)p

, i.e., the heat kernel diffusion matrix,
where p is set as 10 by default. The results are presented in
Table 6. We observe that the relative performance stays at al-
most the same level when removing self-loop, which verifies
our observation that deep neighbor information is more im-
portant than local information. The performance of random
walk matrix drops on D → C task while staying at almost
the same level on D → A task. The possible reason is that
random walk matrix have incomplete neighbor information,
which affects the model’s ability to capture the structural in-
formation and thus affects its generalization capability. We
also note a relatively deteriorated performance achieved by
the diffusion transition matrix. This can be attributed to its
emphasis on global information, neglecting the crucial local
neighborhood information for node classification task.

Modules D → A D → C

Ma-F1 Mi-F1 Ma-F1 Mi-F1

Lcls 58.50 61.11 66.78 70.43
+ Lmmd 67.09 65.85 72.96 74.83
+ k P layers 72.41 72.10 78.00 80.47
+ asym arch 75.69 74.12 79.74 81.54

Table 7: Performance contribution of each part in A2GNN.

The effectiveness of different modules. Table 7 demon-
strates that the addition of each module contributes to the
final results without any performance degradation. The first
line, Lcls, only considers the source domain information and
yields unsatisfactory performance, indicating that the model
cannot be effectively applied to the target graph due to the
existence of domain shifts. The second line incorporates the
reduction of domain discrepancy by adding commonly used
MMD constraint Lmmd, highlighting the importance of re-
ducing domain discrepancy. Next, we show how our model
utilizes the inherent generalization capability of GNNs with-
out adding additional trainable parameters. The third line il-
lustrates that performing propagation for k times enhances
the generalization capability of GNN, which is consistent
with Lemma 1. The fourth line demonstrates that the asym-
metric architecture of our proposed A2GNN can further
boost its performance, which is in line with Lemma 2 and
Lemma 3. In conclusion, our proposed A2GNN achieves the
best performance, which validates the effectiveness of com-
bining all the aforementioned modules.

The sensitivity of the trade-off parameter α. To assess
the sensitivity of the trade-off parameter α, we conduct ex-
periments on D → A and D → C tasks, as depicted in
Figure 3(b). The results indicate that A2GNN consistently
performs well across the range of [0.0, 1.0], suggesting its
robustness in the optimization process. When α = 0, we
solely use the source graph, and the overall loss function
is reduced to L = Lcls. The drop in performance highlights
the importance of minimizing domain discrepancy. Thus, it’s
necessary to minimize the distribution discrepancy. We also
have provided more detailed ablation studies in Appendix.

Conclusion
In this paper, we study the problem of unsupervised graph
domain adaptation on node classification task. We start by
conducting a series of experiments to reveal the inherent
generalization capability of GNNs. These observations pro-
vide important insights into designing a simple but effective
model A2GNN for UGDA. To take a step further, we de-
rive the theoretical analysis of the error bound of multi-layer
GNNs and show how A2GNN tightens the error bound. Ex-
tensive experiments on real-world datasets demonstrate the
effectiveness of our A2GNN framework. In the future, we
will extend our model to more complicated scenarios, such
as source-free unsupervised graph domain adaptation and
open-set graph domain adaptation.
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