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Abstract

In reinforcement learning, the optimism in the face of un-
certainty (OFU) is a mainstream principle for directing
exploration towards less explored areas, characterized by
higher uncertainty. However, in the presence of environmen-
tal stochasticity (noise), purely optimistic exploration may
lead to excessive probing of high-noise areas, consequently
impeding exploration efficiency. Hence, in exploring noisy
environments, while optimism-driven exploration serves as
a foundation, prudent attention to alleviating unnecessary
over-exploration in high-noise areas becomes beneficial. In
this work, we propose Optimistic Value Distribution Explorer
(OVD-Explorer) to achieve a noise-aware optimistic explo-
ration for continuous control. OVD-Explorer proposes a new
measurement of the policy’s exploration ability considering
noise in optimistic perspectives, and leverages gradient ascent
to drive exploration. Practically, OVD-Explorer can be easily
integrated with continuous control RL algorithms. Extensive
evaluations on the MuJoCo and GridChaos tasks demonstrate
the superiority of OVD-Explorer in achieving noise-aware
optimistic exploration.

Introduction
Efficient exploration is crucial for improving the reinforce-
ment learning (RL) efficiency and ultimate policy perfor-
mance (Sutton and Barto 2018), and many exploration
strategies have been proposed in the literatures (Lillicrap
et al. 2016; Osband et al. 2016; Chen et al. 2017; Ciosek
et al. 2019). Most of them follows the Optimism in the Face
of Uncertainty (OFU) principle (Auer, Cesa-Bianchi, and
Fischer 2002) to guide exploration optimistically towards
the area with high uncertainty (Chen et al. 2017; Ciosek
et al. 2019). Conceptually, OFU-based methods regard the
uncertainty as the ambiguity caused by insufficient explo-
ration, and is high at those state-action pairs seldom visited,
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Figure 1: An intuitive example. The agent learns to move
to the flag in a room filled with noise, and the noise in the
left side is higher. The optimistic exploration strategy may
overly explore the noisy area, and the risk-averse policy in-
discriminately avoids noisy areas but explores insufficiently.

referred to as epistemic uncertainty (Osband et al. 2016).
Another kind of uncertainty existed in RL is known as

aleatoric uncertainty, caused by the randomness in the en-
vironment or policy, and referred to as noise (Kirschner and
Krause 2018) or risk (Dabney et al. 2018a). The noise is
ubiquitous in real world. For example, unpredictable wind
shifts the trajectory after an robot’s action, and rough ground
changes the force point of objects, etc. However, overly vis-
iting such noisy areas may cause severely unstable state
transitions (the Optimistic arrow in the intuitive example
in Fig. 1), thus is detrimental to the learning efficiency
(Clements et al. 2019). For this, risk-averse policy is pro-
posed to avoid visiting the areas with high aleatoric un-
certainty estimation (Dabney et al. 2018b,a). Typical ap-
proaches use Conditional Variance at Risk (CVaR) to calcu-
late a conservative value estimation and guide policy learn-
ing for easing the negative effect of the noise (Dabney et al.
2018a). However, indiscriminately avoiding noise may also
yield no performance guarantee due to excessively conser-
vation (the risk-averse arrow in Fig. 1).

Therefore, a more reasonable approach is integrating the
risk-averse policy and optimistic exploration, guiding the
agent to optimistically exploring the whole areas, while
avoiding overly exploring the areas with high noise, like the
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Ours arrow in Fig. 1. Note that overly exploring noisy areas
may damage performance, but moderate exploration of such
area is necessary, which should be ensured by the ability of
optimistic exploration. The similar concern has been demon-
strated to be effective under discrete control tasks (Nikolov
et al. 2019; Clements et al. 2019). However, for continu-
ous control tasks, such concern has not yet been investigated
well. A natural way to apply discrete control algorithms to
solve continuous control problems is to discretize the con-
tinuous action space, but it suffers from the scalability issue
due to the exponentially increasing discretized actions (An-
tos, Munos, and Szepesvári 2007; Li et al. 2021), and it may
throw away crucial information in action space causing its
performance to be compromised (Lillicrap et al. 2016; Tang
and Agrawal 2020). Thus, designing such an optimistic ex-
ploration strategy that can avoid overly exploring noisy area
for continuous action space is required.

In this work, we propose OVD-Explorer, a noise-aware
optimistic exploration strategy that applies to continuous
control tasks for the first time. Specifically, we propose a
new policy’s exploration ability measurement, quantifying
both the ability of avoiding noise and pursuing optimisticity
during exploration. To capture the noise, the value distribu-
tion is modelled. Further, to guide optimistic exploration,
the upper bound distribution of return is approximated us-
ing Optimistic Value Distribution (OVD), representing the
best returns that the policy can reach. Then we quantitatively
measure such ability using OVD, and generates the behavior
policy by maximizing the exploration ability measurement,
thus names our approach as Optimistic Value Distribution
Explorer (OVD-Explorer).

To make OVD-Explorer tractable for continuous control,
we generate the behavior policy using a gradient-based ap-
proach, and propose a scheme to incorporate it with policy-
based RL algorithms. Practically, we demonstrate the explo-
ration benefits based on SAC (Haarnoja et al. 2018), a well-
performed continuous RL algorithm. Evaluations on vari-
ous continuous RL tasks, including the GridChaos, MuJoCo
tasks and their stochastic version, are conducted. The results
demonstrate the effectiveness of OVD-Explorer in achieving
an optimistic exploration that avoids overly exploring noisy
areas, leading to a better performance.

Related Work
In this work, we consider the exploration strategy under the
OFU principle (Auer, Cesa-Bianchi, and Fischer 2002), and
aim to a noise-aware optimistic exploration strategy.

Overview of exploration approaches. Basic exploration
strategies always lead to undirected exploration through ran-
dom perturbations (Lillicrap et al. 2016; Sutton and Barto
2018; Haarnoja et al. 2018). With the increasing emphasis
on exploration efficiency in RL, various exploration meth-
ods have been developed (Hao et al. 2023). One kind of
methods uses intrinsic motivation to stimulate agent to ex-
plore (Martin et al. 2017; Bellemare et al. 2016; Savinov
et al. 2019; Houthooft et al. 2016; Badia et al. 2020; Yuan
et al. 2023). Some other methods, originating from track-
ing uncertainty, guide exploration under the OFU princi-
ple (Thompson 1933; Osband et al. 2016; Nikolov et al.

2019; Ciosek et al. 2019; Pathak, Gandhi, and Gupta 2019;
Bai et al. 2021b,a). The key of OFU-based exploration meth-
ods is modeling the epistemic uncertainty (Osband et al.
2016; Gal and Ghahramani 2016; Qiu et al. 2022). Specifi-
cally, we use ensemble (Osband et al. 2016) for estimating
epistemic uncertainty.

The issue of overly exploring noisy areas. There is another
uncertainty in RL system, i.e., aleatoric uncertainty (a.k.a.
noise (Kirschner and Krause 2018) or risk (Dabney et al.
2018a)), captured by return distribution (Bellemare, Dabney,
and Munos 2017; Dabney et al. 2018a,b). Overly exploring
the areas with high noise could make learning unstable and
inefficient, thus many works seek a conservative and noise-
averse (or risk-averse) policy to make the policy stable (Dab-
ney et al. 2018a; Ma et al. 2020; Bai et al. 2022). Neverthe-
less, conservative alone without advanced exploration could
induce low exploration efficiency, and exploration without
avoiding noise could make interaction risky. Thus some re-
cent works produce optimistic exploration strategies consid-
ering risk (Mavrin et al. 2019; Nikolov et al. 2019). How-
ever, such methods are complicated when deriving a behav-
ior policy and only limited to discrete control.

Indeed, addressing noise in exploration poses a challenge
for well-performing continuous RL algorithms (Haarnoja
et al. 2018; Ma et al. 2020). While exploration strategies like
OAC (Ciosek et al. 2019) are designed following OFU prin-
ciple, guided by the upper bound of Q estimation, they over-
look the potential impact of noise. This oversight can lead to
misguided exploration, hampering the learning process. To
address that, we propose OVD-Explorer to guide agent to
explore optimistically, while avoiding overly exploring the
noisy areas, improving the robustness of exploration espe-
cially facing heteroscedastic noise.

Preliminaries
Distributional Value Estimation
To capture the environment noise, we use quantile regression
(Dabney et al. 2018b) to formulate Q-value distribution. Q-
value distribution, represented by the quantile random vari-
able Z, maps the state-action pair to a uniform probability
distribution supported on the return values at all correspond-
ing quantile fractions. Given state-action pair (s, a), we de-
note the i-th quantile fraction as τi, and the value at τi as
Zτi(s, a), where τi ∈ [0, 1].

Based on the Bellman operator (Watkins and Dayan
1992), the distributional Bellman operator (Bellemare, Dab-
ney, and Munos 2017) T π

D under policy π is given as:

T π
DZ(s, a)

D
= R(s, a) + γZ(s′, a′), a′ ∼ π(·|s′). (1)

Notice that T π
D operates on random variables, D

= denotes
that distributions on both sides have equal probability laws.
Based on operator T π

D , QR-DQN (Dabney et al. 2018b)
trains quantile estimations via the quantile regression loss
(Koenker and Hallock 2001), which is denoted as:

LQR(θ) =
1

N

N∑
i=1

N∑
j=1

[ρτ̂i(δi,j)], (2)
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where θ and θ̄ is the parameters of the value distribution es-
timator and its target network, respectively, TD error δi,j =
R(s, a) + γZτ̂i(s

′, a′; θ̄) − Zτ̂j (s, a; θ), the quantile Huber
loss ρτ (u) = u ∗ |τ − 1u<0|, and τ̂i means the quantile
midpoints, which is defined as τ̂i =

τi−1+τi
2 .

Distributional Soft Actor-Critic
Distributional Soft Actor-Critic (DSAC) (Ma et al. 2020)
seamlessly integrates distributional RL with Soft Actor-
Critic (SAC) (Haarnoja et al. 2018). Basically, based on the
Eq. 1, the distributional soft Bellman operator T π

DS is de-
fined considering the maximum entropy RL as follows:

T π
DSZ(s, a)

D
= R(s, a) + γ[Z(s′, a′)− α log π(a′|s′)],

(3)
where a′ ∼ π(·|s′), s′ ∼ P(·|s, a). Then, to overcome over-
estimation of Q-value estimation, DSAC extends clipped
double Q-Learning (Fujimoto, van Hoof, and Meger 2018),
maintaining two critic estimators θk, k = 1, 2. Thus, the
quantile regression loss differs from Eq. 2 on TD loss of θl:

δli,j =R(s, a) + γ[ min
k=1,2

Zτ̂i(s
′, a′; θ̄k)− α log π(a′|s′; ϕ̄)]

− Zτ̂j (s, a; θl),
(4)

where θ̄ and ϕ̄ represents their target networks respectively.
The objective of actor is the same as SAC,

Jπ(ϕ) = E
s∼D
ϵ∼N

[ log π(fϕ(s, ϵ)|s)−Q(s, fϕ(s, ϵ); θ) ], (5)

where D is the replay buffer, fϕ(s, ϵ) means sampling action
with re-parameterized policy and ϵ is a noise vector sampled
from any fixed distribution, like standard spherical Gaussian.
Here, Q value is the minimum value of the expectation on
totally N quantile fractions, as

Q(s, a; θ) = min
k=1,2

Ei∼U(1,N)Zτ̂i(s, a; θk). (6)

Optimistic Value Distribution Explorer
In noisy environments, a more efficient exploration strat-
egy entails being noise-aware optimistic, especially to avoid
excessive exploration in noisy areas. Over exploration to-
wards the areas with high noise may damage the exploration
performance, but indiscriminately avoiding visiting such ar-
eas could also compromise performance due to excessively
conservation and insufficient exploration. In this work, we
propose OVD-Explorer to achieve a noise-aware optimistic
exploration in continuous RL. Accordingly, the key insight,
theoretical derivation and formulation, and analysis of OVD-
Explorer are outlined below.

Noise-aware Optimistic Exploration
Several previous optimistic exploration strategies for con-
tinuous control typically estimate the upper bound of Q-
value, and guide exploration by maximizing this upper
bound (Ciosek et al. 2019; Lee et al. 2021). While such up-
per bounds provide valuable guidance for optimistic explo-
ration, they fail to capture the noise in the environment. To

address that, we propose to incorporate the value distribu-
tion into the definition of the upper bound to capture noise,
and define the upper bound distribution of Q-value. Addi-
tionally, we introduce a novel exploration ability measure-
ment for policy distribution π(·) using such upper bound
distribution, to characterize a policy’s ability for noise-aware
optimistic exploration. We then derive the behavior (explo-
ration) policy by maximizing this ability measurement.

Firstly, we define the upper bound distribution of the Q-
value at each state-action pair as Z̄π(s, a).

Definition 1 (The upper bound distribution of Q-value)
Given state-action pair (s, a), the upper bound distribution
of its Q-value, denoted as Z̄π(s, a), is a value distribution
satisfying that at each quantile fraction τi ∈ [0, 1], its value
Z̄π
τi(s, a) is the upper bound of possible estimations:

Z̄π
τi(s, a) := sup

θ
Zπ
τi(s, a; θ), (7)

where θ represents different estimators of value distribution,
Zπ
τi(s, a; θ) represent the value at quantile fraction τi of the

value distribution estimation Zπ(s, a; θ).

We expect an effective exploration policy to approach the
upper bound of Q-value. With the distribution-based defini-
tion of such an upper bound, we then employ mutual infor-
mation to evaluate the correlation between the policy distri-
bution and the upper bound distribution, which forms the ba-
sis for our definition of exploration capability. Overall, given
current state s, we quantitatively measure the policy’s explo-
ration ability, denoted as Fπ(s), by the integral of mutual-
information between policy π(·|s) and the upper bound dis-
tributions of Q-value over the action space:

Fπ(s) =

∫
a′
MI(Z̄π(s, a′);π(·|s)|s) da′ (8)

where a′ ∈ A denotes any legal action. Now we state how
to approximate the exploration ability in Proposition 2.

Proposition 2 The mutual information in Eq. 8 at state s
can be approximated as:

Fπ(s) ≈ 1

C
E

a∼π(·|s)
z̄(s,a)∼Z̄π(s,a)

[
ΦZπ (z̄(s, a)) log

ΦZπ (z̄(s, a))

C

]
.

(9)
Φx(·) is the cumulative distribution function (CDF) of ran-
dom variable x, z̄(s, a) is the sampled upper bound of re-
turn from its distribution Z̄π(s, a) following policy π, Zπ

describes the current return distribution of the policy π, and
C is a constant (see proof in the Appendix).

Note that, to optimize the above objective, we need to for-
mulate two critical components at any state-action pair (s, a)
under policy π: 1 the return distribution Zπ(s, a) and 2 the
upper bound distribution of return Z̄π(s, a). We detail the
formulations in Sec. 4.2.

Proposition 2 reveals that Fπ(s) is only proportional to
the CDF value ΦZπ (z̄(s, a)), which is also proportional to
z̄(s, a), an upper bound of Q-value, thus a higher Fπ(s)
represents the higher ability of optimistic exploration, fol-
lowing traditional OFU principle. Meanwhile, ΦZπ (z̄(s, a))
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increases as the variance of current return distribution Zπ

becomes lower, thus the higher Fπ(s) means the higher abil-
ity of exploring towards the areas with low variance of return
distribution, i.e., low noise. A more detailed analysis is given
in Sec. 4.3.

Given current state s, OVD-Explorer aims to find the
behavior policy πE which has the best exploration ability
Fπ(s) in the policy space Π, as follows:

πE = argmax
π∈Π

Fπ(s). (10)

For continuous action space, generating the analytical so-
lution πE in Eq. 10 is intractable. Hence, we propose to
perform the gradient ascent based on the policy π, so as
to iteratively deriving a behavior policy with high ability
of noise-aware optimistic exploration. In short, given the
policy πϕ parameterized by ϕ, we calculate the derivative
∇ϕΦZπϕ (z̄(s, a)) and guide ϕ along the gradient direction
to improve the exploration ability (more details in Sec. 5).

Distributions of Return’s Upper Bound and Return
Now, we introduce the formulation of the return distribution
Zπ(s, a) and its upper bound distribution Z̄π(s, a).

In specific, we use two value distribution estimators
Ẑ(s, a; θ1) and Ẑ(s, a; θ2) parameterized by θ1 and θ2, as
ensembles to formulate Z̄π and Zπ differently. Unless stated
otherwise, (s, a) is omitted hereafter to ease notation. As
mentioned earlier, two types of uncertainties are involved,
epistemic uncertainty and aleatoric uncertainty (noise), de-
noted as σ2

epistemic(s, a) and σ2
aleatoric(s, a), respectively. Due

to space limitations, the computational details regarding un-
certainty value are presented in detail in the Appendix.

Formulation of Z̄π . The Z̄π denotes the upper bound dis-
tribution of return that policy π can reach. We propose Gaus-
sian distribution with optimistic mean value µZ̄(s, a) for for-
mulation to formulate Z̄π(s, a) as follows, and accordingly
refer to it as Optimistic Value Distribution (OVD):

Z̄π(s, a) ∼ N (µZ̄(s, a), σ
2
aleatoric(s, a)), (11)

where σ2
aleatoric(s, a) is its variance. Notable, Chen et al.

(2017) discovers the optimisticity is beneficial for better es-
timating the upper bound, which motivates us to optimisti-
cally estimate µZ̄(s, a) as averaged upper bound value of
return by considering epistemic uncertainty as follows:

µZ̄(s, a) = µ(s, a) + βσepistemic(s, a),

s.t. µ(s, a) = Ei∼U(1,N)Ek=1,2Ẑτi(s, a; θk)
(12)

where µ(s, a) represents the expected Q-value estimation,
and uncertainty value is weighted by β, U is uniform distri-
bution, N is the number of quantiles, and Ẑτi(s, a; θk) is the
value of the i-th quantile drawn from Ẑ(s, a; θk).

Leveraging optimistic value estimations together with ex-
plicitly modeling the noise, the upper bound distribution Z̄π

can be comprehensively formulated, known as OVD. Such
an optimistic distribution can guides effectively optimistic
exploration for OVD-Explorer.

Formulation of Zπ . Zπ estimates the return distribution
obtained following policy π. Following Fujimoto, van Hoof,

and Meger (2018), to alleviate overestimation, we formulate
Zπ in a pessimistic way. In practice, Zπ can be measured in
two ways. First, similar to formulating Z̄π in Eq. 11, Zπ can
also be formulated as Gaussian distribution as follows:

Zπ(s, a) ∼ N (µZπ (s, a), σ2
aleatoric(s, a)),

s.t. µZπ (s, a) = µ(s, a)− βσepistemic(s, a),
(13)

where µ(s, a), σaleatoric(s, a) and σepistemic(s, a) are the same
defined in Eq. 12. Differently, σepistemic(s, a) is subtracted
from µ(s, a) to reveal the pessimistic estimation.

Another way is to formulate Zπ pessimistically as multi-
variate uniform distribution as:

Zπ(s, a) ∼ U{zπi (s, a; θ)}i=1,...,N ,

s.t. zπi (s, a; θ) = min
k=1,2

Ẑτi(s, a; θk),
(14)

where each quantile value zπi (s, a; θ) is the minimum esti-
mated value among ensemble estimators (i.e., Ẑτi(s, a; θk).

OVD-Explorer formulates the value distribution Zπ in
two ways using Eq. 13 and Eq. 14, abbreviated in the fol-
lowing as OVDE G and OVDE Q, respectively. Intuitively,
Gaussian distribution is expected to help more when the en-
vironment randomness follows a unimodal distribution, and
multivariate uniform distribution is more flexible and suit-
able for scenarios with multi-modal distributions.

Analysis of OVD-Explorer
To analyzes how OVD-Explorer optimistically explores the
whole areas and performs noise-aware exploration at the
same time, an intuitive example involving two actions is
adopted. According to Proposition 2, the behavior policy of
OVD-Explorer maximizes Fπ(s), which is proportional to
the CDF value ΦZπ (z̄(s, a)). Supposing an agent need to
select an actions between a1 and a2 to explore, Fig. 2(a) and
(b) illustrate the CDF value (shaded area) for each action.

In these cases, the value distribution Zπ(s, a) is speci-
fied as Gaussian (Eq. 13), and the sampled optimistic value
z̄(s, a) is specified as the mean of OVD µZ̄(s, a) (Eq. 12).
At state s, we assume that the means of Zπ at actions a1 and
a2 are the same for ease of clarification.

Optimistic exploration: Fig. 2(a) illustrates how OVD-
Explorer achieves an optimistic exploration. Assuming the
noise at a1 and a2 is equal, but epistemic uncertainty is
higher at a1, then µZ̄(s, a1) > µZ̄(s, a2) and the CDF value
is larger at a1. Therefore, OVD-Explorer prefers a1 with
high epistemic uncertainty for an optimistic exploration.

Noise-aware exploration: Fig. 2(b) demonstrates how
OVD-Explorer behave noise-aware to avoid the area with
higher noise (aleatoric uncertainty). When both actions have
equal epistemic uncertainty, µZ̄(s, a1) = µZ̄(s, a2), and
noise is lower at a1 (PDF curve of Zπ(s, a1) is “thinner and
taller”), the CDF value will be larger at a1. In such a case,
OVD-Explorer prefers action a1 with lower aleatoric uncer-
tainty (i.e., lower noise) for a noise-aware exploration.

Adaptivity. In the early training, the noise estimations
of all actions are nearly identical (Fig. 2(a)), and the ex-
ploration is primarily guided by epistemic uncertainty. Af-
ter sufficient training, the epistemic uncertainty decreases,
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Figure 2: How OVD-Explorer explores (a) optimistically
about epistemic uncertainty, (b) pessimistically about noise.

while the noise estimation converges to true environment
randomness (Fig. 2(b)). At this point, exploration strategy
tends to be noise-avoiding. OVD-Explorer seeks an adap-
tive balance of noise-aware optimistic exploration through-
out the exploration process, which is a significant advantage
compared to other OFU-based methods.

OVD-Explorer for RL Algorithms
For continuous RL, solving the argmax operator in Eq. 10
is intractable. In this section, aiming at maximizing Fπ(s),
we use a gradient-based approach to generate the behavior
policy, and incorporate it with policy-based algorithms.

We denote the policy learned by any policy-based algo-
rithm as πϕ, parameterized by ϕ. To avoid the gap between
πϕ and the training data collected by behavior policy πE ,
we derive πE in the vicinity of πϕ. Then, aiming at maxi-
mizing Fπϕ(s), we derive its gradient regarding the policy
∇ϕF

πϕ(s) using automatic differentiation and generate be-
havior policy πE by performing gradient ascent based on πϕ.
Thus πE can guide exploration towards maximizing the ex-
ploration ability continuously, performing noise-aware opti-
mistic exploration. Concretely, Proposition 3 shows how to
calculate πE .
Proposition 3 Based on any policy πϕ = N (µϕ, σϕ), the
OVD-Explorer behavior policy πE = N (µE ,ΣE) at given
state s is as follows:

µE = µϕ + αEZ̄π

[
m× ∂z̄(s, a)

∂a
|a=µϕ

]
, (15)

and
ΣE = σϕ. (16)

In specific, m = log
ΦZπ(s,µϕ)(z̄(s,µϕ))

C +1, z̄(s, a) is a sam-
ple from OVD Z̄π , and α controls the step size of the update
along the gradient direction, representing the exploration
degree (see proof in the Appendix).

The expectation EZ̄π can be estimated by K samples, then
Eq. 15 is simplifies as:

µE = µϕ +
αm

K

K∑
i=1

∂z̄i(s, a)

∂a
|a=µϕ

. (17)

Algorithm 1 summarizes the procedure to generate a be-
havior policy at step t of OVD-Explorer. Following Algo-
rithm 1, OVD-Explorer can be integrated with any exist-
ing policy-based RL algorithms from a distributional per-
spective, to render a stable and well-performed algorithm.

Algorithm 1: Behavior policy generation at step t.
Input: Current state st, current value distribution estimators
θ1, θ2, current policy network ϕ.
Output: Behavior policy πE .

1: Obtain policy πϕ(·|st) ∼ N (µϕ(st), σϕ(st))
2: // Construct the distributions of return and upper bound
3: Construct OVD Z̄π(st, µϕ(st)) using Eq. 11
4: Construct Zπ(st, µϕ(st)) using Eq. 13 or 14
5: // Calculate the behavior policy
6: Calculate the behavior policy’s mean µE using Eq. 17
7: return πE ∼ N (µE , σϕ(st))

Specifically, given state st, based on the current policy (Line
1), by constructing the optimistic value distribution Z̄π as
well as the value distribution Zπ of the policy (Line 3-4),
the behavior policy derived from OVD-Explorer can be cal-
culated directly using Proposition 3 (Line 6-7).

Experiments
To reveal the consistency between our theoretical analysis
and the performance of OVD-Explorer, and demonstrate the
significant advantage over other advanced methods, we con-
duct experiments mainly for the following questions:
RQ1 (Exploration ability): Can OVD-Explorer explore as a
noise-aware optimistic manner as expected?
RQ2 (Performance): Can OVD-Explorer perform notable
advantages on common continuous control benchmarks?
Due to space constraints, more experimental details and
evaluation results can be found in the Appendix.

Baseline Algorithms and Implementation Details
Our baseline algorithms include SAC (Haarnoja et al.
2018), DSAC (Ma et al. 2020), and DOAC, an exten-
sion of the scalar Q-value within the OAC (Ciosek et al.
2019) to distributional Q-value. Our implementation of
OVD-Explorer is based on the OAC repository, also refers
to the code of DSAC 1 and softlearning 2. We im-
plement OVD-Explorer G and OVD-Explorer Q (or ab-
breviated as OVDE G and OVDE Q), representing ap-
proaches to formulate the value distribution Zπ using Eq. 13
(torch.distributions.Normal) or Eq. 14, respec-
tively. The key hyper-parameters associated with the explo-
ration, i.e., the exploration ratio α and the uncertainty ratio
β, are determined by grid search, with detailed information
presented in the Appendix. Moreover, the hyperparameters
related to the training procedure remain consistent across all
algorithms.

All experiments are performed on NVIDIA GeForce RTX
2080 Ti 11GB graphics card. To counteract the randomness
from a statistical perspective, we conduct multiple trials us-
ing different seeds. The final results of each trial are col-
lected based on the mean undiscounted episodic return over
the last 8% epoch (or up to the last 100 epochs) to ensure
impartiality and minimize bias.

1https://github.com/xtma/dsac
2https://github.com/rail-berkeley/softlearning
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Figure 3: GridChaos. Left: In this map, the areas with darker
background color have higher noise injected, and the agent
aims at reaching the goal at the top right. Right: The values
of uncertainty and exploration ability.

Exploration in GridChaos (RQ1)
To illustrate that OVD-Explorer guides noise-aware opti-
mistic exploration, we first evaluate OVD-Explorer on Grid-
Chaos. The GridChaos task is characterized by heteroge-
neous noise and sparse reward, making it particularly chal-
lenging and necessitating a robust capacity for noise-aware
optimistic exploration to successfully accomplish the task.

GridChaos Task GridChaos is built on OpenAI’s Gym
toolkit, as shown in Fig. 3. In GridChaos, the cyan trian-
gle is under the agent’s control, with the objective of reach-
ing the fixed dark blue goal located at the top right corner.
The state is its current coordinate, and the action is a two-
dimensional vector including the movement angle and dis-
tance. An episode terminates when the agent reaches the
goal or maximum steps (typically 100). Also, it receives
a +100 reward when reaching the goal, and otherwise 0.
To simulate noise, heterogeneous Gaussian noise is injected
into the state transitions.

Exploration Patterns Analysis We first analyse the ex-
ploration pattern facilitated by OVD-Explorer. We compare
values of uncertainty and the exploration ability measure-
ment (in Proposition 2) corresponding to distinct actions at
the state in Fig. 3. It shows the values obtained at the 1249th
training epoch. Basically, it shows that estimated aleatoric
uncertainty (noise) of left is the highest, aligning with the
environment’s inherent attribute. This indicates that OVD-
Explorer models the noise properly. Further, OVD-explorer
encourages to explore towards right, where the exploration
ability (in green) is higher. It implies that OVD-explorer bal-
ances the optimistic and noise in exploration, aligning with
our intended objective. Nevertheless, if the noise is not con-
sidered in exploration, the agent would be guided towards
left, where the epistemic uncertainty is higher, then the agent
may be trapped due to the high randomness in this area, po-
tentially explaining why DOAC fails to effectively address
such a stochastic task.

Evaluation on Various Noise Scales To further empiri-
cally prove our strength, we test OVD-Explorer in Grid-
Chaos with various noise scales settings, as outlined in row
A-D in Tab. 1. Note that the variance is not reported, as the
mean values of 5 seeds offer a comprehensive representation
of results. For instance, when the average result approaches
20, it indicates that only one seed successfully achieved the
goal (obtaining a reward of +100) in the end. The row S

Average return FRG epoch
DSAC OVDE DOAC DSAC OVDE DOAC

s 0.00 59.30 3.02 1250+ 229 1222
a 18.94 58.99 38.42 1161 180 662
b 39.78 79.52 18.71 694 144 846
c 0.05 39.64 20.59 1250+ 180 309
d 20.00 40.46 39.99 284 276 321
e 0.00 20.20 14.60 1250+ 185 1118

Table 1: The averaged return of 5 runs for GridChaos (the
first part). FRG epoch means the minimum training epochs
to Firstly Reach the Goal before totally 1250 epochs.

Average return FRG epoch
DSAC OVDE OVDE(m) DOAC DSAC OVDE DOAC

f 0.00 19.84 39.96 20.14 1250+ 188 233
g 0.00 20.69 20.07 0.00 1250+ 247 1250+
h 0.00 40.00 60.00 39.99 1250+ 200 301
i 20.00 39.98 20.00 20.00 236 312 296

Table 2: The averaged return of 5 runs (the second part).

is the standard GridChaos as shown in Fig. 3. Remarkably,
the results indicate that OVD-Explorer consistently achieves
better performance across all the tested settings. This under-
scores OVD-Explorer’s exploration capability in such noisy
tasks, leading to more efficient learning and faster conver-
gence towards the goal (see column FRG).

Also, we make observations in the case without noise
(row E). Here, DSAC fails in any run across 5 seeds, while
DOAC reaches the goal in one run but at a slower pace.
OVD-Explorer achieves the goal swiftly in one run. This
highlight the capability of OVD-Explorer and the highly
challenging nature of the task, emphasizing the significance
of employing a robust exploration strategy.

Evaluation on Tasks in Which the Noise is High around
the Goal To verify whether the noise avoidance ability of
OVD-Explorer dominates the exploration process when the
noise around the target is higher, we conduct the experiment
where the noise in the right half (where the goal is located),
is set larger. The results are shown in row F-I in Tab. 2. Note
that we use OVDE to denote the usual implementation that
pessimistically estimates the value distribution (i.e., using
Eq. 13). Besides, OVDE(m) denotes the implementation that
does not pessimistically estimate the value distribution (i.e.,
we modify the mean of Gaussian distribution Zπ in Eq. 13
from the lower bound to expected value of the Q estimation
µ(s, a) as in Eq. 12).

Overall, in most cases, OVD-Explorer guides better ex-
ploration and perform better than baselines. This highlights
OVD-Explorer’s ability to handle various scenarios effec-
tively, even in tasks with higher noise levels around the goal.

Moreover, an intriguing observation is that OVD-Explorer
may exhibit better performance when the pessimistic esti-
mation is turned off in the presence of higher noise around
the goal (see column OVDE(m)). This finding suggests that
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Task SAC DSAC DOAC OVD-Explorer G OVD-Explorer Q

Ant-v2 4867.8±1658.7 6385.9±1287.2 6625.4±746.8 7175.3±789.0 7382.3±466.6
HalfCheetah-v2 11619.8±1642.01 13348.4±1957.1 12987.6±148.1 14796.2±1473.2 16484.3±1373.75
Hopper-v2 2593.5±574.7 2506.0±390.56 2353.0±754.1 2394.6±496.6 2559.3±384.5
Reacher-v2 -22.7±2.0 -12.2±1.6 -18.7±1.7 -11.6±1.0 -11.3±1.2
InvDbPendulum-v2 9306.2±89.5 8916.9±1041.7 5798.5±3439.0 9263.8±189.1 9355.0±12.1

N-Ant-v2 222.96±41.93 465.34±53.94 344.71±20.39 524.16±10.54 513.77±17.87
N-HalfCheetah-v2 368.57±28.01 431.81±39.41 402.26±37.27 447.30±38.57 453.56±55.97
N-Hopper-v2 213.71±21.97 238.62±19.89 252.53±13.07 234.88±15.24 239.43±9.90
N-Pusher-v2 -50.57±20.65 -27.33±3.79 -29.82±4.29 -25.69±3.57 -26.13±3.63
N-InvDbPendulum-v2 931.63±7.14 932.81±1.87 381.87±139.36 932.70±2.26 933.54±2.69

Average (standard tasks) 5672.92 6229.00 5549.16 6723.66 7153.92
Average (noisy tasks) 337.26 408.25 270.31 422.67 422.83

Table 3: Comparisons of algorithms on five standard and five noisy tasks. The averaged performance and standard deviation of
10 runs are reported. The training epoch count is shown in column epoch, and the best values of each row are shown in bold.
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Figure 4: Training curves on Noisy Ant-v2 tasks with dif-
ferent maximum episodic length setup. The sub-title of each
figure represents the episodic horizon. We report the median
of returns and the interquartile range of 10 runs. Curves are
smoothed uniformly for visual clarity.

excessive pessimism may not be necessary when there is a
crucial need to explore noisy areas. In such cases, a more
balanced approach may lead to improved results.

Performance on Mujoco Tasks (RQ2)
To showcase the broader efficacy of OVD-Explorer, we con-
duct experiments encompassing 5 standard and 5 stochastic
tasks based on wildly-used continuous control benchmark,
Gym Mujoco. Tab. 3 shows the averaged performance and
standard deviation of 10 seeds. It is important to note that for
the standard tasks3, the dynamics are deterministic, and any
observed noise is ascribed to the stochastic policy employed.
Conversely, in the case of the five noisy tasks (indicated by
the prefix N-), Gaussian noise of varying scales is randomly
injected into each state transition. The investigation yields
compelling insights into the capabilities of OVD-Explorer.

Primarily, OVD-Explorer can perform stably in standard
task. The results reveal that DSAC consistently outperforms
SAC, underscoring the advantage that value distribution
brings to policy evaluation. Notably, OVD-Explorer sur-
passes baseline algorithms significantly, particularly in high-
dimensional tasks, such as Ant-v2 and HalfCheetah-v2.

3https://github.com/openai/gym/tree/master/gym/envs/mujoco

These evaluations on standard tasks convincingly demon-
strate OVD-Explorer’s remarkable proficiency in promoting
optimistic exploration, highlighting its universal efficacy in
exploration capabilities.

Second, these results underscore the efficacy of OVD-
Explorer in exploring noisy environments while avoiding
the adverse impact of noise. This is exemplified by exper-
iments on 5 noisy tasks (Tab. 3). Notably, DOAC’s perfor-
mance is even inferior to DSAC in most tasks, indicating
that the presence of heteroscedastic noise significantly in-
terferes with the exploration process guided by DOAC. In
contrast, OVD-Explorer exhibits substantial advantages over
SAC and DOAC, and outperforms DSAC in most cases.

Furthermore, regarding the two implementations (namely
OVDE G and OVDE Q) of OVD-Explorer, we observe that
OVDE Q consistently demonstrates greater stability. The
key distinction between these implementations lies in the
formulations of Zπ(s, a). OVDE Q’s employment of quan-
tile distribution offers higher flexibility, allowing for a more
accurate characterization of the value distribution. Con-
versely, OVDE G, reliant on the Gaussian prior, exhibits
limited capacity in this regard, leading to a relatively dimin-
ished performance in some cases.

Conclusion
In this paper, we have presented OVD-Explorer, a novel
noise-aware optimistic exploration method for continuous
RL. By introducing a unique measurement of exploration
ability and maximizing it, OVD-Explorer effectively gener-
ates a behavior policy that adheres to the OFU principle.
Also, it intelligently avoids excessive exploration in areas
with high noise, thereby mitigating the adverse effects of
noise. Consistently across tasks with no noise as well as var-
ious forms of noise, the experiment underscores our perfor-
mance advantages. Moving forward, we recognize the po-
tential for extending OVD-Explorer to discrete tasks and
even Multi-agent tasks. This will enhance the versatility of
OVD-Explorer, affording it the capability to effectively con-
front the challenges of exploration in noisy environments
that are widespread across diverse real-world scenarios.
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